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I. INTRODUCTION 

In connection with the discussion in my earlier paper [1] entitled: "A Cor-
ollary to Iterated Exponentiations" in which I have presented a new conjecture 
concerning Fermat's Last Theorem* it occurred to me that it is of interest to 
make a systematic study of the sets of three integers x9y9 z which satisfy the 
condition 

x2 + y2 = z2. (1) 

Such a triplet of integers (x9 y9 z) is commonly referred to as a "Pythagorean 
tripletj" for which we shall also use the abbreviation P-triplet. 

The actual motivation of the present work is to explore as thoroughly as 
possible the two cases, n - 1 and n = 2, for which the Diophantine equation of 
Fermat has solutions, namely., 

xn + yn = zn (n = 1 , 2 ) . (2) 

This interest is, in turn, derived from my earlier conjecture [1] that be-
cause n - 1 and n - 2 are the only two positive integers that are smaller than 
es (2) holds only for n - 1 and n - 2 when x9 y9 and z are restricted to being 
positive integers. Most of the discussion in the present paper will be devoted 
to the case in which n - 2 . 

I 1. PYTHAGOREAN DECOMPOS S TIONS 

By using a computer program devised by M. Creutz, we were able to determine 
all Pythagoeran triplets for which z ^ 300. At this point, a distinction must 
must be made between P-triplets for which x9 y9 and z have no common divisor 
[the so-called "primitive solutions" of (1)] and P-triplets which are related 
to the primitive solutions by multiplication by a common integer factor k. So, 
if Xi9y^9 zi are relatively prime and obey (1), it is obvious that the derived 
triplet (kx£S ky^, kzi) will also satisfy (1). 

The original computer program was therefore modified to print out only the 
primitive solutions, and was extended up to 2 < 3000. To anticipate one of my 
results, the number of primitive solutions in any interval of 100 in z is ap-
proximately constant and equal to « 16. Thus there are 80 primitive solutions 
(PS) between 3 = 1 and 500, and 477 PS in the entire interval 1 < z < 3000. We 
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will make the convention to denote by x the larger of the two numbers in the 
left-hand side of (1), i.e.. , X > z/. 

In Table 1, I have tabulated all primitive solutions for 1 < z < 500. The 
triplets are presented in the order x^9 y^9 z^. When a value of z± is under-
lined, this indicates that it is not prime. The nonunderlined zi values are 
primes which we will call "Pythagorean primes" or P-primes. In this work, and 
also for the region 501 ^ z ^ 2000, the tables of primes and prime factors 
given in the Handbook of Chemistry and Physics [2] were essential. 

When the z± of the primitive solution is not a prime, I have underlined it, 
and the underlined number is usually followed by a subscript 1 or 2, which has 
the following significance., Already in the work for z ^ 300 (with all trip-
lets listed) , I have noticed the following rule: If Zpt i and 3p,j belong to two 
different primitive solutions, the product 

zP*k = 2p,isp,j (3> 

belongs to two new primitive solutions, namely, 

(a?i.*» yi,k> zP,k) a n d ^2,fc> y2tk> *p,k)- (*) 

These two new P decompositions are relatively prime and are also prime with 
respect to the expected decomposition obtained by taking the product of zp,j 
with the decomposition (xps^, ypti* Zptt) and that obtained by taking the prod-
uct of Zp91 with the decomposition (xp,j» yp,j> sp,«7')* Thus, there are four 
linearly independent P decompositions for the number zp> \ of (3). To take an 
example, according to Table 1, the number 65 has the decompositions (56, 33, 
65) and (63, 16, 65), and, in addition, (52, 39, 65) and (60, 25, 65) obtained 
from (4, 3, 5) and (12, 5, 13), respectively. 

This rule is satisfied in all decompositions of products zp i^p^j provided 
that the prime factors of %Pti and Zp,j are different. On the other hand, if 
zPt i and zPtj are merely powers of the same prime pi , then there will be just 
one additional linearly independent Pythagorean decomposition for 

"p.* -PW-P^"*'- (5) 
As an example, the number 25 = 52 has one additional P decomposition, namely, 
(24, 7, 25) besides that derived from (4, 3, 5), namely, (20, 15, 25). Simi-
larly, the number 125 = 53 has one new P decomposition, namely, (117, 44, 125) 
in addition to the two decompositions derived from the P decompositions for 5 
and 25, namely, (100, 75, 125) and (120, 35, 125), respectively. 

We may notice that the square 52 = 25 has two P decompositions and the cube 
53 - 125 has three P decompositions. Thus, in general, a power p?* will have a^ 
Pythagorean decompositions, where p^ is a Pythagorean prime (such as 5, 13, 17, 
etc.). In Table 1, I have indicated the factors zp>i and zPtj which give rise 
to the new double primitive solution, when zp>% is a product of two different 
Zpt i and Zp9j which are relatively prime to each other. When a single power 
p^i is involved, this has also been noted, e.g., 132 = 169 has the new P decom-
position (120, 119, 169), in addition to the one expected from (12, 5, 13), 
namely, (156, 65, 169). 

The total number of primitive solutions in the successive intervals of 100 
in Table 1 are: 16 from 1 to 100, 16 from 101 to 200, 15 from 201 to 300, 16 from 
301 to 400, and 17 from 401 to 500, giving a total of 

Znp = 16 + 16 + 15 + 16 + 17 = 80. (6) 
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Table 1. Listing of the Pythagorean primitive decompositions for the integers 
in the range 1 ̂  N ̂  500. The values of z which are not prime num-
bers are underlined, and the subscripts 1 and 2 indicate the two new 
primitive solutions associated with such numbers. An exception oc-
curs when the number Ni is a power of a single P-prime numberf p?* 9 
in which case only one new primitive solution arises. For the num-
bers which are underlined (non-primes)s the prime decomposition is 
indicated. 

\* 
1 

2 

3 

4 

5 

6 

7 
8 

9 
10 

11 

12 

13 

14 
15 
16 

17 

18 

19 

20 

xi» yi> %i 

4 , 3 , 5 

12 ,5 ,13 

15,8 ,17 

2 4 , 7 , 2 5 = 5 2 

21 ,20 ,29 
35 ,12 ,37 

4 0 , 9 , 4 1 

45 ,28 ,53 
60 ,11 ,61 
5 6 , 3 3 , ^ = 5x 13 

63,16,j652
 = 5 x 1 3 

55 ,48 ,73 
77 ,36 ,85^ = 5x 17 

8 4 , 1 3 , 8 5 2
 = 5 x 1 7 

80 ,39 ,89 
72 ,65 ,97 

99 ,20 ,101 

91,60,109 

112,15,113 

117 ,44 ,125= 5 3 

Vi 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

*i> hi* *i 1 
105,88,137 

143 ,24 ,145! = 5x 29 

144 ,17 ,145 , = 5x 29 

140,51,149 

132,85,157 

120,119,169= 132 

165,52,173 

180,19,181 

153,104,185, = 5x 37 

176 ,57 ,185 , = 5x 37 

168,95,193 

195,28,197 

156,133,205, = 5 x 4 1 

187,84 ,205 2 = 5 x 4 1 

171 ,140 ,221 , = 13x 17 

2 2 0 , 2 1 , 2 2 1 , = 13 x 17 

221,60,229 

208,105,233 

209,120,241 

255,32,257 

Vi 

41 

42 

43 

44 

45 

46 

47 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

*i> yi> zi 1 
247 ,96 ,265 , = 5x 53 
264 ,23 ,265 , = 5x 53 

260,69,269 

252,115,277 

231,160,281 

240,161,289= 172 

285,68,293 

224,207,305, = 5x 61 
273 ,136 ,305 , = 5x 61 
312,25,313 
308,75,317 
253,204,325, = 5x 65 
323 ,36 ,325 2 = 5x 65 
288,175,337 
299,180,349 
272,225,353 
357 ,76 ,365 , = 5x 73 
364 ,27 ,365 , = 5 x 73 
275,252,373 
3 4 5 , 1 5 2 , 3 7 7 ^ 13x 29 

V i 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

xi» hi> *i 

3 5 2 , 1 3 5 , 3 7 7 , = 13 x 29 1 

340,189,389 

325,228,397 [ 

399 ,40 ,401 

391,120,409 

420 ,29 ,421 1 

304,297,_4251 = 5x 85 

416 ,87 ,425 ? = 5x 85 

408,145,433 

396 ,203 ,445 1 = 5x 89 

4 3 7 , 8 4 , 4 4 5 , = 5x 89 

351,280,449 

425,168,457 

380,261,461 

360 ,319 ,481 , = 13x 37 

4 8 0 , 3 1 , 4 8 1 ^ = 1 3 x 3 7 

1 476,93,485^ = 5x 97 

483 ,44 ,485 2 = 5x 97 

4 6 8 , 1 5 5 , 4 9 3 ^ 17 x 29 

475 ,132 ,493 , = 17 x 29 

In Table 1 the numbers z^ that are not underlined are the primes for which 
a Pythagorean decomposition is possible. We will call them Pythagorean primes 
or P primes. The other primes (which are not P-decomposable) will be called 
non-Pythagorean primes or NP primes9 e.g.9 29 39 79 119 199 239 319 439 and 47 
are the NP primes below N = 50. 

As mentioned aboves all of the primitive solutions up to N - 3000 have been 
obtained with the computer program. (The total running time on the CDC-7600 
Computer was less than 30 seconds.) However9 I have limited the main analysis 
to the numbers N < 2000. 

In the discussion below, I will derive a general formula for the number nd 
of Pythagorean decompositions for an arbitrary integer. 

In connection with the results of (3) and (4), it was noted and proved by 
M. Creutz [3] that when the triplets (x 1$ y 1$ 2X) and (x2> y2> %i) a r e multi-
plied by each other9 the additional primitive solutions mentioned in (4) have 
the following form; 

X1 = xxy2 + y1x2, Y1 = \x±x2 - z/^J; (7) 
x2 = l*i#2 - yixzl» Y2 = x i x 2 + y^z- ( 8 ) 
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Here we have omitted the subscript p for simplicity of notation. To prove the 
validity of (7) and (8), we note that 

X\ •+ Y\ = x\y\ + y\x\ + 2x1x2y1y2 + x\x\ + y\y\ - 2x1x2yly2 

= (x2 + y\)(xl + y\) - SJS2 = (Sig2)2 = Z 2 s ( 9 ) 

thus verifying that Z ~ z1z2 has the P decomposition (X19 Y±i Z) . A similar 
equation is obtained by calculating X\ + Y\ = z\z\ = Z2, thus confirming the 
new P triplet (J2, J2, Z) . 

As an example, for Z = 65, we have Xi = 4, 2/i = 3, 3i = 5 and x2 = 12, 2/2 = 5, 
B2=13, which gives Z1 = 56, ̂  = 33, leading to the triplet (56, 33, 65) listed 
in Table 1. Furthermore, equations (8) give X2=16> Y2 = 63, which is equiva-
lent to the second triplet, (63, 16, 65), also listed in Table 1. 

It is also obvious from (7) and (8) that if x± = x2, y1 = z/2, i.e., zp>k = 
zi ^ in the notation of (3), then 

X1 = 2x1y1, Y1 = 1^ - y11 , 

which gives rise to only one new P triplet, since for the other solution, X2 = 
0, Y2 = x\ + y\ - Zpsi = zpik . For the case x± = x2 = 4, z/x == y2 = 3, we have 

^ = 2x1z/1 = 24, J2 = 42 - 32 = 7, 

giving the one new triplet, (24, 7, 25). 
In Table 2, all the Pythagorean primes from N = 1 to N = 2000 are listed. 

Successive intervals of 100 are separated by semicolons. 

Table 2. List of all Pythagorean primes for 1 < N < 2000, i.e., primes which 
satisfy (1) where x and y are positive integers. Those primes which 
are underlined belong to a set of twin primes, i.e., primes p^ and pj 
such that \Pi~pj\ = 2 . For each set of twin primes pi , p-, one and 
only one is a P-prime. The primes in successive intervals of 100 are 
separated by a semicolon. 

I> 1A> il» .29, 37> AL> 53> 11> 21. 89, 97; 101, 109, 113, 137, 149, 157, 173, 

181, 193, 197; 229, 233, 241, 257, 269, 277, 281, 293; 313, 317, 337, 349, 

353, 373, 389, 397; 401, 409, 421, 433, 449, 457, 461; 

509, 521, 541, 557, 569, 577, 593; 601, 613, 617, 641, 653, 661, 673, 677; 

701, 709, 733, 757, 761, 769, 773, 797; 809, 821, 829, 853, 857, 877, 881; 

929, 937, 941, 953, 977, 997; 

1009, 1013, 1021, 1033, 1049, 1061, 1069, 1093, 1097; 1109, 1117, 1129, 1153, 

1181, 1193; 1201, 1213, 1217, 1229, 1237, 1249, 1277, 1289, 1297; 1301, 1321, 

1361, 1373, 1381; 1409, 1429, 1433, 1453, 1481, 1489, 1493; 

1549, 1553, 1597; 1601, 1609, 1613, 1621, 1637, 1657, 1669,1693, 1697; 1709, 

1721, 1733, 1741, 1753, 1777, 1789; 1801, 1861, 1873, 1877, 1889; 1901, 1913, 

1933, 1949, 1973, 1993, 1997. 
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MI, CONNECTIONS WITH THE TWIN PRIMES 

Note that many of the Pythagorean primes in Table 2 are underlined. These 
are the primes which belong to a set of twin primes, i.e., primes p^ and p • , 
which are separated by 29 i.e., such that \pi - p.| = 2, As an example9 17 is 
part of the twin prime set (17, 19); similarly9 41 is part of the twin prime 
set (41, 43). By a survey of all twin primes N^ < 20009 it was found that in 
all cases, for each set of twin primes9 one of them is a P-prime (P-decompos-
able), while the other is a non-P-prime. This result can be shown to follow 
naturally from a theorem due to Fermat, according to which all primes p. E 1 
(mod 4) are P-primes, while all primes q • = 3 (mod 4) are non-P-primes. Actu-
ally, what Fermat proved is that all primes p = 1 (mod 4) can be written in 
the form p^ = a2 + b2, and this is, according to an elementary theorem due to 
Diophantos, the necessary and sufficient condition for p2 = x\ + y2 to be sat-
isfied [4]. Here, x^ = a2 - b2 and yi = 2ab9 and the result follows naturally 
from the following equation: 

p2 E (a2 +b2)2 = (a2 - b2)2 + (2ab)2 = ah + bh - 2a2b2 + ka2b2 « (10) 

Obviously, pi E 1 (mod 4) means that pi can be written as 4n + 1. Then, if pj 
is either 2 units larger or smaller than p. , it is given by 4np + 3, and p. = 3 
(mod 4). 

Of the 147 P-primes listed in Table 29 60 are twin primes. The remaining 
87= 147-60 P-primes are "isolated" primes, i.e., they do not belong to a twin 
set. If we consider successive intervals of 500, we find a total of 44 P-primes 
between 1 and 500; 36 P-primes between 501 and 1000; 36 P-primes between 1001 
and 1500; and 31 P-primes between 1501 and 2000. Incidentally, there is a total 
of 302 prime numbers between 1 and 2000, so that the overall fraction of P-
primes is 147/302 = 0.487 * 49%, close to 50%, as would be expected from Fer-
mat fs Theorem concerning p^ E 1 (mod 4). 

The approximate equality of the number nP of P-primes and nNP of non-P-
primes indicates that the Pythagorean primes have an intimate connection with 
the entire system of positive integers and9 in addition, this connection indi-
cates that we may expect that very approximately on the order of one-half of 
all integers are P-decomposable in at least one way (n^ ^ 1 ) , while the other 
half is not Pythagorean-decomposable. These integers will be called P-numbers 
and non-P or #P-numbers, respectively. Numerical results for the fractions of 
P-numbers in three different intervals for N < 2000 will be given below. Ob-
viously, for an integer Nj, to be P-decomposable in at least one way, it is 
necessary and sufficient that N^ can be written as 

«i = ViJ, (ID 

where pi is an arbitrary P-prime and J is a positive integer. 

IV. THE DECOMPOSITION FORMULA FOR nd 

The most general integer can be written as 

= ri PII uqf -^kBk9 ( i2) 
i = 1 j = 1 
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where the p^ and P-primes are the oi£ are the corresponding powers, and simi-
larly, the qj are the non-P-primes and the gj are the corresponding powers. In 
the second row of (12)s na denotes the number of different P-primes in N% and 
rift denotes the number of different non-P-primes in the prime decomposition of 
Nk; finally, A^ and B^ represent the two products involving p?* and qfy , re-
spectively. 

Theorem: The total number of Pythagorean decompositions nd corresponding to Nk 
of (12) is given by: 

na na na na 

i = l i<j i<j<k i<j<k<SL 

+ 2 a" aTa2a3 ••• a„a. (13) 

Here, the first sum extends over all a^, the second sum extends over all pos-
sible products of pairs of a^, the third sum extends over all possible products 
GLzajGLk» where three a^'s are involved, etc. As an example, for the number 65 
of Table 1, we have 65 = 51x 131, so that a1 = a2 = 1, and (13) gives 

nd = 1 + 1 + 2(1)(1) = 4. (14) 

Similarly, for Nk = 325 = 52x 13, with ax = 2, a2 = 1, we find 

nd = 2 + 1 + 2(2)(1) = 7. (15) 

In order to illustrate equation (13), we consider the number 1625= 53x 13. 
First, we will count the number of ways in which 1625 can be written without 
mixing up the 5?s and the 13 in the decomposition. We use the notation (p?*) 
with parentheses to indicate the decomposition of p?*. Now, there are clearly 
ax= 3 decompositions pertaining to the powers of 5 alone; they are (53), (52), 
and (5), where (53) stands for (117, 44, 125) (see Table 1), (52) stands for 
(24, 7, 25), and (5) = (4, 3, 5). Thus, three decompositions of 1625 can be 
written as (53) x 13, (52) x 65, and (5)x 325, where the multiplication applies 
to the three integers x^s y^9 and z^ listed above for each case. In addition, 
there is the decomposition (13) x 125, where (13)= (12, 5, 13). These four de-
compositions correspond to ai + a2 = 3 + 1 = 4. Next, we consider the cases in 
which a product of a power of 5 times 13 appears inside the parentheses. These 
cases are (53 x 13), (52 x 13) x 5, and (5 x 13) x 25. According to the rule of 
equations (3) and (4) for zp%i and zPtj having different prime factors, there 
are two new primitive solutions for each such case, e.g., 

(325)x 5 = (253, 204, 325)x 5 and (323, 36, 325) x 5, 

where 325 = 52x 13 (see Table 1). There are axa2 = (3)(1) = 3 such cases, and 
they contribute 2axa2 = 6 decompositions. Thus, the total 

nd = 4 + 6 = 10 = a2 + a2 + 2axa2 

as given by (13). This illustration can be generalized to give the various 
terms of (13) and to provide the proof by induction. In each case, the factor 
2, 4, 8 in the second, third, and fourth terms, respectively, of (13) corre-
sponds to the doubling of the primitive solutions described above, where more 
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than one prime is involved. For another example of (13), consider the number 

N = (52)(13)(17) = 5525, (16) 

It has 22 decompositions of the type 

55252 = x1 + y2
9 (17) 

since ax = 29 a2 = a3 = 19 and9 from (13), 

nd = (2 + 1 + 1) + 2(2 + 2 + 1) + 4(2) = 4 + 10. + 8 = 22, (18) 

Using (13)9we have obtained the number of decompositions nd for three sets 
of 51 integers, namely those extending from N = 50 to N = 100 9 those extending 
from N = 950 to 1000, and those extending from N = 1950 to 2000, The results 
are presented in Table 39 which lists nps the number of Pythagorean numbers 
(for which nd > 1)9 nNps the number of non-P-prime numbers (for which nd = 0), 
the total Znd/np and9 finally, the ratio of nP to the total number 51, It is 
seen that while nP/all N = 0,49 for the first set (50-100), for the other two 
sets., np/all N is constant at a value of » 0,61, However, the total number 
of decompositions, T,nds increases from 34 (for N = 50-100) to 58 (for N = 1950-
2000), and the average Znd/np also Increases from 1,36 to 1,87 per Pythagorean 
number. It thus appears that the fraction of all numbers that are P-decompos-
able reaches a plateau value of -0,61 for large N9 at least In the range of 
N = 1000-2000, 

Table 3* For three ranges of N: 50-100, 950-1000, 1950-2000, I have tabulated 
the total number of Pythagorean numbers nP9 the total number of non-
P-numbers nNP, the total number of P-decompositions T,nds and the ra-
tios T,nd/np and nP/5l$ where 51 is the total number of integers in 
each range, 

1 N range 

50-100 

950-1000 

1950-2000 

nP 

25 

31 

31 

nNP 

26 

20 

20 

lnd 

34 

53 

58 

En /n-p 

1,36 

1,71 

1,87 

Wp/51 

0,490 

0,608 

0,608 

We note that for very large numbers N^ (say Nk~ 1020) which have many fac-
tors p?t [see (12)]s the use of (13) for nd becomes cumbersome. For this rea-
sons I have derived a simpler formula for nd which can be readily evaluated for 
large Nk. This formula is presented in Appendix A of this paper [see equation 
(A25)]. 

As a final remark regarding (12), we note that we may define a Pythagorean 
congruence (P-congruence) as follows: Referring to (12), it is seen that the 
product AK determines completely the type and the number nd of P-decompositions 
as given by (13), Therefore9 we can write 

Nk = Ak(P)s (19) 

and all numbers N^m with the same product A^ (but different values of Bk) will 
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have the same P-decompositions, except for a different cofactor Bk.. The con-
gruence (19) holds under the operation of multiplication, i.e., if we have two 
integers Nk and Nkt with different values of Ak and Bks then the product NkNk' 
can be written as follows, 

NkNk,~ (AkAk,)BkBk,9 (20) 

and the P-decompositions of NkNkt will be uniquely determined by the product 
AkAk'9 except for the cofactor BkBkt which multiplies all decompositions (x^9 
yi9 z^). Therefore, NkNkt is P-congruent to AkAkf. 

NkNk,= AkAk,(P). (21) 

As examples of Pythagorean congruence, we mention three cases: 84 = 1 (P), 
since 84 is not P-decomposable, and 84 = 22x 3x 7 is a product of non-P-primes 
only; similarly, 6630= 1105(P) = 5x 13 x 17(P), where 5, 13, and 17 are P-primes. 
Finally, 929E929(P), since 929 is a P-prime. 

V. CONCLUDING COMMENTS 

Of particular interest among the P-triplets, are those for which x = z - 1 
(see Table 1 for examples). In this case, it is easily seen that y must be an 
odd integer, which can therefore be written as 

y = 2v + 1, (22) 

where v is an arbitrary positive integer. We can now write: 

x2 + y2 = (z - I)2 + (2v + l)2 

= z2 - 2z + 1 + 4v2 + 4v + 1 = z2. (23) 

Upon subtracting z2 from the last two expressions in (23), and dividing by 2, 
we obtain 

-z + 1 + 2v2 + 2v = 0, (24) 

which gives 

z = 2v(v + 1) + 1, (25) 

and, therefore, x = z - 1 = 2v(v + 1), and a suitable (x9 y9 z) triplet exists 
for any choice of V (>0), i.e., for any odd integer except y = 1. [In the 
latter case, x - 0 and equation (1) is trivially satisfied.] Thus, the ensem-
ble of numbers y includes all odd numbers ^ 3, and hence, obviously, all prime 
numbers except y = 1 and y ~ 2. An example of such a triplet (from Table 1) is 
(40,9, 41), in which case V = 4, z = (2) (4) (5) + 1 = 41, x = z - 1 = 40. Thus, 
the set of y%s for x = z - 1 contains all prime numbers larger than e. We see 
again the privileged position of the numbers y = 1 and y - 2 (cf. [1]) that are 
not included among the y^s in the P-triplets, in complete similarity to the 
exponents n - 1 and n = 2 for which Fermat's Last Theorem is satisfied [i.e., 
equation (2)]. I should also note that I can amplify the statement made in [1] 
concerning the Diophantine equation 

F(x> y) E xy - yx = 0. (26) 
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In [1], I stated that the only nontrivial solution of (26) for integer x 
and z/is# = 2, z/ = 4. However, if we do not demand that y be an integer, but 
if we consider a limiting process for x and y9 then another nontrivial solution 
exists for x-+l9 i.e., the limit of y as x approaches 1 from above (x = 1 + e, 
e -> 0) is z/ = oo, Specif ically, I have calculated the values of y determined by 
(26) for x = 1.1, x = 1.01, and x = 1.001, with the following results: 

y(x = 1.1) = 43.56, x* = yx = 63.53; (27) 

z/(a? = 1.01) = 658.81, x* = yx = 703.0; (28) 

z/(a? = 1.001) = 9133.4, a:* = yx = 9217.05. (29) 

It is clear from these results that the limit of y as x approaches 1 from above 
is infinity, i.e., 

lim y = °°. (30) 

Thus, equation (26) is essentially satisfied for both x = 1 and x = 2, analo-
gous to Fermatfs Last Theorem., which is satisfied only for n = 1 and n = 2. 

Parenthetically, I may note that for x - 0, (26) cannot be satisfied for 
any positive z/, since 

P(0, z/) = 0* - y° = -1 (31) 

for all y. Analogous to this result, Fermatfs Last Theorem, equation (2), also 
has no solution for n = 0, since the left-hand side x° + y° - 2, whereas the 
right-hand side z° = 1. 

In summary, I have shown that the Pythagorean decompositions of z according 
to (1) provide a new classification of the number system into: (a) P-numbers 
NPt i [see (11)] that are P-decomposable in at least one way (nd > 1); (b) non-
P-numbers NNPii that cannot be decomposed according to (11) and (12), i.e., for 
which all of the a^ exponents of (12) are zero. The system of integers is ap-
proximately evenly divided between P-numbers and non-P-numbers in the range 
50 < Ei < 100, although for large Ni in the range of ~ 900-2000, the P-numbers 
predominate slightly, to the extent of 60% of all integers. 

The set of P-primes pi and products or powers of the p^, i.e., p^p. or p?* 
give rise to the primitive solutions (x^s y^9 Zi) for which (1) is satisfied. 
As described by equations (3) and (4), and (7)-(9), for each pair of primitive 
solutions (xPii, ypti , zpsi) and (x?a j , yp$ j , zp, j) , the product zp>k = zpsizPtj 
contributes two new primitive solutions (provided the prime factors of zPsi and 
zPij are different). 

The total number of Pythagorean decompositions for a given P-number NPii 
increases rapidly with the number na of p^ primes [see equation (12)] and with 
the powers a^ associated with each pi. I have obtained a general expression 
for nd in terms of the a^ and na [see equation (13)]. Furthermore, (13) has 
been proven by induction in the discussion which follows (15). An equivalent 
formula for (13) will be derived in Appendix A. The results given in Appendix 
A provide the means for a rapid evaluation of nd when the integer Nk [see (12)] 
is large, so that there is a large number na of P-primes pi in the prime decom-
position of Nk. 

Concerning the primitive solutions, I have noticed empirically from the 
decomposition tables that the density of primitive solutions, i.e., their fre-
quency, is almost constant in going from N ~ 0-100 to N = 3000. Thus, gener-
ally, for each additional interval of 100 in N9 we obtain sixteen additional 
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primitive solutions. As an example, the total number of primitive solutions 
included in Table 1 for 1 < N < 500 is exactly 80 = 5x 16 [equation (6)]. For 
1 < N ̂  1000, the total number of primitive solutions is 158, and for the en-
tire sample with 1 < N < 3000, the total number of primitive solutions is 477, 
almost equal to the expected number 16x30 = 480. At present, I have no ex-
planation for the remarkable constancy of the density (frequency) of primitive 
solutions as a function of iV. 

As a final comment, it is not clear at present to what extent the results 
reported in this paper for the case n = 2 will help in the ultimate proof of 
Fermat's Last Theorem. Nevertheless, my previous suggestion about the values 
of n > e [1] and its amplification as presented in this paper [equations (26)-
(30)] may offer a guideline to a complete proof. In any case, the interesting 
discovery of the doubling of the primitive solutions [equations (3), (4)] and 
the derivation of the resulting decomposition formula [equation (13)] will per-
haps shed new light on the nature of our integer number systme. Additional 
results on the evaluation of (13) and on the case n ~ 1 in (2) will be given in 
Appendix A and Appendix B, respectively. 

APPENDIX A 

EVALUATION OF EQUATION (13) 

In connection with (13) for the number nd of Pythagorean decompositions 
of an arbitrary integer N% as given by (12), it seems of interest to tabulate 
typical values of n^ for integers with relatively low values of the exponents 
â .. Table 4 shows a systematic listing of the numbers of decompositions n^ for 
all cases for which Ea^ < 6,. Obviously, the table can be subdivided into sub-
tables pertaining to those cases for which any given number of P-primes p^ are 
involved. Thus, the top part of the table pertains to a1 > 0, a2 = ot3 = a^ -
a5 = a6 " 0 (i.e., the case na = 1). The next panel of the table pertains to 
cases for which two Pythagorean primes occur (na = 2) in the decomposition of 
#& [equation (12)] , and these will be denoted a1 and a2, i.e., a3s ••»$ a6 = 0. 
In this panel I have arbitrarily assumed that a x^ a2 and, of course, all cases 
are subject to the limitation that a1 + a < 6. The third, fourth, fifth, and 
sixth panels of the table are similarly constructed. 

The next-to-the-last column of the table lists the values of n^, while the 
last column lists the values of Nm±n , the smallest integer N^ for which the 
particular decomposition as given in the first six columns exists. In addi-
tion, the prime decomposit ion of Nm±n is listed after the value of Nm±n • Obvi-
ously, in order to obtain the lowest Nk value consistent with the set {a^}, we 
must assume that all of the 3j in (12) are zero, i.e., B^ = 1. Furthermore, it 
is necessary to choose for the P-prime with the largest a^ the value 5, then 
the value 13 for the P-prime with the next largest a^, and so forth. 

Several results are apparent from a study of Table 4 and of (13)t 

1. Consider equation (13) and a particular a^, say a^ 0. Because the par-
ticular a.£, o appears linearly in all of the terms of (13), n^ depends linearly 
on o^ 0 , and in particular, for equally spaced values of % , e.g., 

ai,o> ai,o + x> a n d at,o' ai,o ~ x» 

we find 

116 

(Al) 

[May 



SOME RESULTS CONCERNING PYTHAGOREAN TRIPLETS 

Table 4. Listing of special cases of (13) for the number of Pythagorean decom-
positions as a function of thea^'s and na, I have tabulated all 
cases for which Z^ = 1a^ < 6, The seventh column of the table gives 
the values of n^{a^} as obtained from (13). The last column gives the 
smallest numb er î min for which the. listed exponents ot̂ , o&2, oiq} ot̂ , otc, 
and a6 are realized. The prime decomposition of N m±n is listed for 
each ̂ mi n. The blank spaces in the columns for a^ correspond to val-
ues of a^ = 0. 

a l 

1 
2 
3 
4 
5 

! 6 

1 
2 
2 
3 
3 
3 
4 
4 
5 

i 1 
2 
2 
2 
3 
3 
4 

1 
2 
2 
3 

1 
2 

1 

a 2 

1 
1 
2 
1 
2 
3 
1 
2 
1 

1 
1 
2 
2 
1 
2 
1 

1 
1 
2 
1 

1 
1 

1 

a 3 

1 

a , 

1 
1 
1 
1 

1 
1 

1 

a 5 

1 
1 

1 

a 6 

1 

M a ; } 
1 
2 
3 
4 
5 
6 

4 
7 

12 
10 
17 
24 
13 
22 
16 

13 
22 
37 
62 
31 
52 
40 

40 
67 

112 
94 

121 
202 

364 

^ m i n J 

5 
25 
125 
625 
3125 
15,625 

65 = 5x 13 
325 = 25x 13 
4225 = 25x 169 
1625 = 125x 13 
21,125 = 125x 169 
274,625 = 125x 2197 
8125 = 625x 13 
105,625 = 625x 169 
40,625 = 3125x 13 

1105 = 5 x 13x 17 
5525 = 25x 13x 17 
71,825 = 25x 169x 17 
19221,025 = 25x 169 x 289 
27,625 = 125x 13x 17 
359,125 = 125x 169 x 17 
138,125 = 625x 13x 17 

32,045 = 5 x 13x 17X 29 
160,225 = 25x 13x 17X 29 
2 ,082,925 = 25x 169 x 17x 29 
801,125 = 125x 13x 17x 29 

1,185,665 = 5x 13 x 17 x 29 x 37 
5 ,928,325 = 25 x 13x 17 x 29 x 37 

48 ,612 ,265 = 5 x 13 x 17 x 29 x 37 x 41 

and, indeed, for any two values of a^ which differ by 1, the differences 

will be the same. Of course, in applying (Al), one must keep all of the other 
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CLJ values constant. Equation (Al) can be used to check the correctness of the 
entries of Table 4. As an example, 

nd(2, 2) - nd(29 1) = 1 2 - 7 = nd(29 1) - nd(2, 0) 

= 7 - 2 = 5 . (A2) 
Similarly, 

nd(3, 1, 1, 1) - nd(29 1, 1, 1) = 94 - 67 

= nd{29 1, 1, 1) - nd(l, 1, 1, 1) 

= 67 - 40 = 27. (A3) 

Here I have used the notation nd(a19 a2, a3, a^) and nd(al9
 a 2^ ̂ o r t*le c o r r e~ 

sponding entries in Table 4. 

2. Next, we consider the cases where all of the a^ are 1, e.g., 

nd(l, 1, 1) = 13, nd(l9 1, 1, 1, 1) = 121, etc. 

For simplicity, nd(l9 1, ..., 1) with £ lfs will be simply denoted by nd[l^]. 
We note that the nd[l^] satisfy the recursion relations 

V ^ + i J = 3n^[lc] + 1. (A4) 

As an example, nd[lB] =364; nd[l5] = 121, and we have 

nd[l6] = 3nd[l5] + 1 = 364 = (3x 121) + 1. (A5) 

Equation (A4) together with the additional condition n̂ tl-jj = 1 can be used to 
derive all of the nd[l^] values of Table 4, namely, 4 {= nd[l2]}9 13, 40, 121, 
and 364. 

I also note that the difference nd[l^ + 1] - na[l^] obeys the equation 

ndlh+J " nd^0 - 3*. (A6) 

As an example: nd[l6] - nd[l5] = 364 - 121 = 243 = 35. 
Therefore, I find: 

ndUO = £ 3n. (A7) 
n = o 

3. A similar relation is obtained when we calculate differences between 
values of nd(29 1, ..., 1). For simplicity, we write nd{29 1, ..., 1) with y 
l's as nd[29 1Y]. We note that 

nd(29 1, 1) - nd(29 1) = 22 - 7 = 15, (A8) 

nd(29 1, 1, 1) - nd(29 1, 1) = 67 - 22 = 45, (A9) 

and also 

nd(29 1) - nd(2) = 7 - 2 = 5. (A10) 

These results suggest the relation: 
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nd[29 1Y] - nd[29 l ^ J = 5 xJ*"1. (All) 

In fact, for y = 4, we find 

nd[2, 1J - nd[29 13] = 5 x 3 3 = 135 = 202 - 67, (A12) 

Moreover, I have found that 

nd[29 1Y] - nd[ls 1Y] - 3Y, (A13) 

and, therefore, in view of (A7), and generalizing to nd[k9 ly]9 

nd[k9 1Y] - E 3n + (ft - 1)3Y, (A14) 
n = o 

where & is an arbitrary positive integer. 
Finally, as a generalization of (A7), I have found that the nd[k^] for an 

arbitrary number £ of integers ft, e.g., nd[29 2, 2] = nd[23]9 are given by the 
following expression: 

£-1 
nd[kA = & E(2ft + l)n. (A15) 

* n = o 

As an example: nd[29 2, 2] = nd[2z] is given by 

2 
nd[23] = 2 E (5)n - 2(1 + 5 + 52) = 62, (A16) 

n = o 

in agreement with the corresponding entry in Table 4. The generalized recur-
sion relation which pertains to (A15) is 

nd[k^+l] = (2ft + l)nd[kK] + ft. (A17) 

A more general formula which is based on (A14) and (A15) gives 

nAk9 ft'] = ft'E (2ftF + D n + U2kf + 1)Y. (A18) 
Y n = o 

(A18) gives nd for y powers a^ equal to ftf and a single power aj equal to ft. 
In an attempt to simplify the evaluation of (A15) and (A18), we note that 

the sum in (A18) can be written as follows: 

E(2ft'+l)n= (2ft'+l)y-1|l + — + — - + . - . + ^—7IT\< 
-o L 2ft'+I (2fc'+l)2 (2ft'+l)Y XJ 

Y-l 

E 
n = o (A19) 

The expression in square brackets is the major part of the infinite series 

1 = i + —1 + I + • • • . (A20) 
1 - l/(2ft'+l) -2ft'+l (2ft'+l)2 

The left-hand side of (A20) can be rewritten as follows: 

1 _ 2fe '+l . A 9 n 

1 - l / ( 2 f t ' + l ) " 2kf 9 i A Z i ; 
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Therefore, the sum of (A19) is approximately given by 

Y~ 1 
E(2fc' + l)n = (2k' + l)y/2k\ (A22) 
n = o 

The part of the expression (A20) which is not included in the sum of (A19) 
can be shown to result in a negative contribution to n#[k9 k'-]9 which is given 
by 

A«<* = -*{i-i/(2fc' + i).-x] - -"'(rhr1 ~ 0 = -i- (A23) 

Upon inserting these results in (A18), we obtain: 

nd[k9 k'] = k'(2k' + 1)Y/2k' - \ + k(2k' + 1) 

= \(2k' + l)y(2k + 1) - ~. (A24) 

Equation (A24) suggests a natural generalization to an arbitrary number of dif-
ferent fe^'s, since each ki gives rise to a power (2ki + l)Yi in the expression 
for nd. We therefore obtain: 

ndaoL€}) = | n (2fc + l)Yi - | . (A25) 

This equation permits a rapid evaluation of w^({a^}) and is completely equiva-
lent to the much more complicated equation (13) from which it is ultimately 
derived. I may note that we have the additional relation 

^ max 

E yt = na, (A26) 
i = 1 

where na is the number of different P-primes, as used in (12). As an example, 
I consider the following number, 

N[29 113] = 52x 13 x 17 x 29 x 37 x 41 x 53 x 61 x 73 x 89 x 97 x 101 x 109 x 113 

Z 6.1605x 1023, (A27) 

which is close to Avogadrofs number 

NAv = 6.02204x 1023. 

The notation N[29 I13] obviously means that the lowest P-prime, p± = 5, was 
squared and the next 13 P-primes (power ki~ 1) were multiplied in the order of 
increasing pi (see Table 2). 

According to (A25), the number of Pythagorean decompositions of N[29 113] 
is , , 

^({ a i» = y(5)(313) - ± = 3,985,807. (A28) 

In general, we may try to calculate numbers.N% which in a given range have 
the largest number of P-decompositions nd. This is usually accomplished by 
multiplying an appropriate number y1 of P-primes, all taken linearly (k± = 1), 
i.e., to the first power. This conclusion was derived from the results of 
Table 4 which show, for example, that N[l, 1, 1, 1, 1] = N[l5] = 1,185,665 has 
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nd = 121 P-decompositions, whereas the slightly larger N[29 2, 2] = #[23] = 
1,221,025 has only nd = 62 P-decompositions. 

In view of this result, I have made a study of the numbers N[ly]9 where 
N[ly] denotes the product of the first y primes in Table 2. As an example, 

tf[liij = 5x 13 x 17 x 29 x 37 x 41 x 53 x 61 x 73 x 89 x 97 x 101 x 109 x 113 

= 1.2321x 102 3 (A29) 

has nd[llh] Pythagorean decompositions, where [from (A25)]: 

n d i l i ^ =|(31I+ - 1) - 2,391,484. (A30) 

For several values of y up to y = 25, Table 5 gives the values of N[ly] 9 

the corresponding nd[ly] [cf. (A30)], and the exponent a(y), which will be de-
fined presently. I noticed that nd[ly] is, in all cases, of the order of 

{ t f [ l Y ] } 1 / 3 tO {N[ly]}1/\ 

so that an accurate inverse power, denoted by 1/a, can be defined for each y, 
such that 

nd[iy] = o n i Y ] } 1 / a . (A31) 

a(y) is a slowly varying function of y that increases from a = 2.732 for y = 3 
to a = 4.145 for y = 25. Below y = 3,'a(y) increases to a = 3.011 for y = 2 
and to °°  for y = 1, since the first P-prime, p x = 5, has a single P-decomposi-
tion, and 5°  = 1. The resulting curve of a(y) vs y is shown in Figure 1. 

4.2 

4.0 

3.8 

3.6 

3.4 
r 

3.2 

3.0 

2.8 

2.6 

2.4j 
I 8 i I l I I i I 

2 4 6 8 10 12 14 16 18 20 22 24 
r 

Figure 1. The inverse exponent a as a function of Y for the nd values pertain-
ing to N[ly] [see (A31)]. 
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Table 5- Values of a(y) , #[1Y], and nd[ly] for selected values of y in the range 
1 < y < 25 [see (A31)]. 

Y 

1 
2 

3 

4 

5 

6 

8 

10 
I 1 2 
1 14 

17 

20 

i 22 

25 

a(Y) 

oo 

3.011 

2.732 

2,813 

2.916 

3.001 

3.184 

3.358 

3.503 

3.620 

3.789 

3.936 

4.024 

4.145 

N[ly] 

5 

65 

1105 

32,045 

1,185,665 

48 ,612,265 
1.572x 1 0 1 1 

1.021x 10 1 5 

1.004x 10 1 9 

1.232x 10 2 3 

3 .949x 10 2 9 

2 .286x 10 3 6 

1.076x 1 0 4 1 

1 . 5 5 3 x l o 4 8 

nd[ly] 

1 

4 

13 

40 
121 

364 

3,280 

29,524 

265,720 

2 ,391,484 j 

64 ,570,081 

1 . 7 4 3 x l 0 9 , 

1 . 5 6 9 x l 0 1 0 

4 . 236x 1 0 1 1 

APPENDIX B 

THE CASE n = 1 OF EQUATION (2) AND COMMENTS ABOUT GOLDBACH'S CONJECTURE 

I t i s obvious t h a t the case n = 1 of ( 2 ) , namely 

x + y = z (Bl) 

always has a solution with integers x9 y, and z. We will assume, for definite-
ness, that x > y* Then (Bl) has z/2 linearly independent solutions when z is 
even, and (z - l)/2 linearly independent solutions when z is odd. As an exam-
ple for z = 11, we have the following (11 - l)/2 = 5 linear decompositions of 
g: 10 + 1, 9 + 2, 8 + 3, 7 + 4, and 6 + 5 . 

There is a well-known conjecture, namely Goldbachfs Conjecture, that any 
even z can be written as the sum of two prime numbers x and y. To my knowl-
edge, this conjecture has not yet been proven in the general case, i.e., for an 
arbitrary even s. In this Appendix I have made a systematic study of the lin-
ear decompositions [equation (Bl)] of all the even numbers z ^ 100 in terms of 
sums of two primes x and y. 

It can be shown that the total number of linearly Independent decomposi-
tions of an even z Into a sum of two odd numbers according to (Bl) is s/4 for 
z = 4v (divisible by 4) and (z + 2)/4 for z = 4v + 2 (not divisible by 4). 
According to the above-mentioned program, I am led to consider all of the lin-
ear decompositions of z as a sum x + y9 where x and y are restricted to being 
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prime numbers. It will be seen shortly that in this endeavor, the concepts of 
a Pythagorean prime (P-prime) and a non-P-prime are of great importance. 

In Table 69 I have listed all of the prime decompositions for even z in the 
range from 2 to 100. The number z is also denoted by N. In the prime decom-
positions, I have underlined the value of x^ or y^ in those cases where Xi or 
yi is a Pythagorean prime. The most striking result of this table (aside from 
the large number of prime decompositions as z - N increases) is that there are 
two types of cases, depending upon whether N is or is not divisible by 4; (a) 
If N is divisible by 49 i.e., N - 4v (V = positive integer)9 then each decom-
position is the sum of a P-prime and a non-P-prime. (The only apparent excep-
tion occurs for 4 = 2 4- 29 and this decomposition will be discussed further 
below.) (b) If N is not divisible by 4, i.e., for N = 4v + 2, the prime de-
compositions involve either the sum of two P-primes (both x and y underlined) 
or the sum of two non-P-primes (neither x nor y underlined). As an example, 
N = 16 = _13 + 3 = 11 + 5>- By contrast il/=10 = 7 + 3=_54-.5. 

These two rules can be derived from the theorem of Fermat [see the discus-
sion preceding equation (10)] that all primes p^ = 1 (mod 4) are Pythagorean 
primes9 while all primes q. = 3 (mod 4) are non-P-primes. Thus9 we can writes 

pi = 4V; + 1, (B2) 

q. = 4VJ - 1, (B3) 

from which it follows that 

p. + qA = 4 (v. + v7.) = 4v (B4) 
Is J <s V 

for numbers N = 4v that are divisible by 4. On the other hand9 

p. + p = 4v^ 4- 4v^4- 2 = 4(v$ + vv) 4- 2 = 4v 4- 2, (B5) 

q. 4- <?.,= 4vJ. 4- 4VJV- 2 = 4(Vj + V^. - 1) + 2 = 4v + 29 (B6) 

for even numbers that are not divisible by 49 i.e., N = 4v 4- 2 or 4v + 2. 
It may be noted that9 in constructing Table 69 I have underlined the number 

19 i.e., I have treated 1 as a Pythagorean prime (with the decomposition 1 = 
I2 + 02). This is essentially a matter of definition., but it is mandated by 
the result that the decompositions which involve 1 obey the rules (a) and (b) 
described above, provided that 1 is regarded as a P-prime for the present pur-
poses. I will also note that to regard 1 as a P-prime in cases where a direct 
addition is involved makes good sense, whereas in the arguments leading to the 
decomposition formula, (13), if I had introduced an arbitrary factor la°  in the 
expression for Nk of (12), this would have invalidated (13) for the total num-
ber of decompositions n^9 unless a0 = 0. 

The decomposition 4 = 2 4- 2 is an apparent exception to rules (a) and (b) 
given above. It does not seem to conform to the rule that one of the pair (x9 
y) be a P-prime, whereas the other of the pair (x9 y) should be a non-P-prime. 
One way to obviate this contradiction is to specify that rules (a) and (b) ap-
ply only when the prime numbers x and y are odd. Another way of looking at 
the situation with respect to both 1 and 2 is that9 as was emphasized repeat-
edly in [1] and in this paper, both 1 and 2 are special integers to which some 
of the rules governing other primes (̂ 3) do not apply; see especially the last 
two paragraphs of [1] and the discussion following (26) above. This privileged 
position of 1 and 2 has been correlated with the special properties of the 
powers n = 1 and n - 2 in the original Fermat equation, (2). Finally, a third 
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and more speculative way to describe the status of the integer 2 in connection 
with 4 = 2 + 2 is that just as y = 1 had to be defined as a P-prime in connec-
tion with Table 6, but as a non-P-prime in connection with (13), so x = 2 or 
y = 2 behaves half of the time as a P-prime (with the decomposition 22 = 22 + 02) 
and half of the time as a non-P-prime which has no decomposition 22 = x2 + z/2, 
where x9 y > 0. According to this interpretation, we could write 4 = 3 + 1 = 
2 + 2 in Table 6. 

Table 6. Linear decompositions of all even numbers 2 ̂  N ̂  100. For each N=%, 
all of the linear decompositions into a sum of prime numbers z - x + y 
are listed. Values of x and y which correspond to Pythagorean primes 
are underlined; the nonunderlined values correspond to non-P-primes. 
Note that when N is divisible by 4, i.e., N = 4v (v = positive inte-
ger) , one of the pair (x9 y) is a P-prime whereas the other number in 
the sum is a non-P-prime. When N is divisible by 2, but not by 4, 
i.e., for N = 4v + 2, either both x and y are P-primes, or both x and 
y are non-P-primes. A possible exception occurs for the decomposition 
of 4 = 2 + 2 (see discussion in text). We assume that x ^ y. 

N 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 

1 44 

1+1 
3 + 1 , 2 + 2 
2 + 1 , 3 + 3 
7 + 1 , J5+3 
7 + 3 , 2+_5 
1 1 + 1 , 7 + l 
JL3 + 1 , 11 + 3 , 7 + 7 
1 3 + 3 , 1 1 + 2 
1 7 + 1 , 1 3 + 5 / 11 + 7 
19 + 1 , l Z + 3 » i l + 7 
1 9 + 3 , 17 + 1 , 11+ 11 
23 + 1 , 19 + .5, I Z + 7 > i l + 1 1 
2 3 + 3 , 19+7 , i l + H 
23 + 1 , 1Z.+ 11 
19 + 1 , 2 3 + 7 , 19+11 9 17 + i l 
3 1 + 1 , _29+3, 1 9 + H 
31 + 3, 29 + 1 , 23+11* H + i Z . 
3 1 + 1 , 1 9 + 7 , 23 + H , l9 + l l 
1 7 + j . , 3 1 + 7 , 19+ 19 
_37 + 3 , 2 9 + 1 1 , 23 + 17 
4 1 + 1 , 37_+5_9 3 1 + 1 1 , 21+13 , 
43 + 1, Ai + 3 » lZ.+ 7» 3 l + i l 

*i + yj 

23+19 
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Table 6. continued 

1 N 

46 
48 

| 50 
52 
54 

' 56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 

92 
94 
96 
98 

100 

4 3 + 3 , 
4 7 + 1 , 
47 + 3, 
4 7 + 1 , 

H+l» 
^ 3 + 3 , 
H + l * 
59 + 1 , 
H + l , 
H + 3 , 
H + l * 
6 7 + 1 , 
6 7 + 3 , 
7 1 + 1 , 
72+1, 
1 3 + 3 , 

11+1' 
79 + 1 , 
7 9 + 3 , 
83 + 1 , 
8 3 + 3 , 
83 + 1 , 
89 + 1 , 
47 + 43 
8 £ + 3 , 
89 + 1 , 
89.+7, 
9 7 + 1 , 
12+3, 

xi + Vi 

4 1 + 1 , H + 2 1 * 23+23 
43 + 1 , A i + 7 , 37.+11, 3 1 + H , 19+19 
4 3 + 7 , 31+13 , 31+ 19 
41+ 11, 19+23 
4 7 + 7 , 4 3 + 1 1 , 41+13 , H + 2 2 > 3 1 + 2 3 

43 + 21 , 1 2 + 1 9 

47+ 11,' 4 1 + J 7 , 19 + H 
H + 7 , 4 7 + H , 43 + H , 41+19 , H + 2 3 , 3 1 + H 
5 9 + 3 , 43+19, 31 + 31 
59 + 1 , 5 3 + 1 1 , 47 + H , ^ 1 + 2 3 
5 9 + 7 , H + 2 1 , 47+19 , 43+23 , H + H 
6 1 + 7 , H + 3 1 
5 9 + 1 1 , H + 2 2 > 47+23 , 41 + 29 
67 + 1 , 1 1 + 1 1 , 59 + 21* H + 1 9 , 43 + 19 , 41+31 
71 + 3, 6 7 + 7 , 61+21» 4 3 + 3 1 , H + H 
7 1 + 1 , 59 + 21* H + 2 3 , 47+19 
71+7 , 6 7 + 1 1 , 61+175 59+19, 4 7 + 3 1 , 4 1 + H 
H + 7 , 67+21* 61+19, 4 3 + H 
71+11 , 59+23 , 13 + H , 4 1 + 4 1 
79 + 1 , H + l l » 71+21* 67 + 21* H + 2 3 , H + 3 1 , 4 7 + H , 
79+7 , 1 1 + 2 1 , 67+19, 43 + 43 
71+21* 59 + H , 47 + 41 
8 3 + 7 , 79+11 , 71+21* 71+19, 67+23 , H + H , 5 9 + 3 1 , 

79 + H * 2 1 + 1 9 , H + 3 1 
8 3 + 1 1 , 71 + 23, 51+41* 47 + 47 
83 + 21* 79+21* 22+23* 67+19, 59 + 12* H + 4 3 
79+ 19, 6 7 + 3 1 , 61+12 
H + l l , 83 + H , 71+29, 5 9 + 4 1 , H + 4 7 

4 3 + 4 1 

11+12* 
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The number of prime linear decompositions n^d9 (Bl), varies somewhat spor-
adically in going from a specific N9 N^9 to its neighbors N^ + 2, N^ + 4, etc. 
However, there is a definite trend of an increasing number of prime decomposi-
tions n^d with increasing N9 as would be expected because of the increasing 
number of integers x9 y which are smaller than N9 as N increases. We note, in 
particular, that ngd = 10 for N = 90 (see Table 6). Since the total number of 
all linear decompositions of N = 90 into a sum of two odd numbers is 

(N + 2)/4 = 23, 

we see that the percentage of the linear decompositions which consist of sums 
of primes is 10/23 = 43%. 

In Table 7 I have tabulated the total number of linear prime decompositions 
(£d) n^d for all even numbers N in the range 2 < N < 100. For the cases where 
N is not divisible by 4, I have also listed the partial n£d fs for two P-primes 
(x9 y), denoted by nAdj 2 » and for no P-prime, denoted by n£dj 0 . Obviously, 
when N is not divisible by 4, we have 

nU = n£d,2 + nU90' <B7) 

At the bottom of the table, I have listed the total number of ild's Zn^ in 
the range 2 < N < 50 and 52 < N < 100, and for the complete range 2 < N < 100. 
It is seen that Eft zd increases from 78 for the first half of the table (2!/<50) 
to Y,nld = 135 for the second half of the table (52 < N < 100), showing the in-
crease of the average Eft#d/25 from 3.12 to 5.40. 

Similar tabulations have been made for En£dj0 and Eft£ds 2 • It is seen that 
the total number of £d's with np_prinies =0 slightly predominates over the total 
number of £d*s with ftp-primes = 2. The ratio for the complete sample of 108 de-
compositions (up to N = 100) is 60/48 = 1.25. 

I have also written down the prime decompositions for eight even integers 
in the range 102 < N < 200. The results are: 

nid(N = 116) =6, n£d(130) = 7, nu (150) = 13, ft£d(164) = 6, 

ft£d(180) =15, ft£d(182) = 7, nu (184) = 8, and nu (200) = 9 . 

Finally, I wish to point out an important correlation which is as simple as 
the one derived by Fermat concerning p^ = 4v + 1 for a P-prime and qj = 4v + 3 
for a non-P-prime. It is well known that any prime number pi can be written in 
the form 

pi = 6vi + 1 or 6vi - 1, (B8) 

where v^ is an arbitrary positive integer. (This equation does not, however, 
apply to the prime numbers 2 and 3, and for p^ = 1 we must use v^ = 0.) The 
argument for (B8) goes as follows: Consider a specific v^. Then 6v^ + 1 is 
divisible by neither 2 nor 3, and therefore may be a prime; 6v^ 4- 2 is divisi-
ble by 2; 6v^ + 3 is divisible by 3; 6vi + 4 is again divisible by 2; 6v^ + 5 = 
6(v^ + 1) - 1 is divisible by neither 2 nor 3, and therefore is a candidate for 
being a prime number. 
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Table 7- For all even integers N in the range from 2 to 100, Lu is the number 
of linear decompositions of N into a sum of primes N = x^ + y^ 3 as 
given in Eq. (Bl). For the integers N which are divisible by 2 but not 
by 49 i.e»s for values N = 4v + 2S I have also listed the number of 
linear decompositions into a sum of two P-primes9 denoted by n£ds 2 * 
and the number of linear decompositions into a sum of two non-P-primes s 
denoted by n^dt0 * Obviously9 for values of N = 4v + 29 we have n%d = 
n£d 2 + n£d,o • The sum of all n^d and n£dsa (ot = 0 or 2) is listed at 
the' end of the table for the intervals 2 < N < 50 and 52 < N < 100, 
and also for the total range 2 < N ̂  100. 

^ 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 

j 26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

nU 

1 
2 
2 
2 
2 
2 
3 
2 
3 
3 
3 
4 
3 
2 
4 
3 
4 
4 
3 
3 
5 
4 
4 
6 
4 

n £ d s 2 

1 

1 

1 

1 

2 

1 

1 

2 

2 

1 

3 

2 

1 

n £ d 9 0 

0 

1 

1 

2 

1 

2 

2 

2 

2 

2 

2 

2 

3 

E n £ d (52 < tf < 100) „ 

lnu{2 < tf < 100) „. 

tf 

52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 

t 74 
1 76 

78 
80 
82 
84 
86 
88 
90 
92 
94 
96 
98 

100 

nZd 

3 
6 
3 
4 
7 
4 
5 
6 
3 
5 
7 
6 
5 
7 
5 
5 
9 
5 
4 

10 
4 
5 
7 
4 
6 

78 

135 
i 213 

n £ d , 2 

3 

3 

1 

3 

2 

3 

3 

2 

1 

4 

2 

2 

19 
29 

48 

n £ d 9 0 

3 

1 

3 

3 

3 

3 

4 

3 

4 

6 

3 

2 

22 

38 
60 

Now the correlation which can be derived from Fermat's p. = 4v + 1 theorem 
is that all Pythagorean primes are of the form 

and 
p . = 6v^ + 19 i f v^ i s even* 

= bvi ~ 1, i f \>i i s odd* 

(B9) 

(B10) 
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Thus, 37 = (6)(6) + 1 is an example of (B9) (even v^ = 6); 89 = (6)(15) - 1 is 
an example of (BIO). 

In view of (B9) and (BIO), the non-P-primes (except 2 and 3) are of the 
form 

q3- = 6Vj - 1, if Vj is even, (Bll) 
and 

qj = 6Vj + 1 , if Vj is odd. 

It should perhaps be noted that not all v^ or Vj give rise to P- or non-P~ 
primes. The first few V^ values which do not give rise to a prime number are: 
V^ = 20, 24, 31, 34, 36, 41, etc. The preceding equations signify only that if 
a given number is a P-prime p^ or a non-P-prime q -, then it can be expressed 
by (B9) or (BIO), and (Bll) or (B12), respectively. 

Referring to the results of Table 7, I wish to note that the total number 
nAd of prime decompositions has maxima when N is divisible by 6 (N = 6v) , at 
least starting with N = 24. This trend is particularly noticeable when N lies 
in the range from 72 to 96. Thus, n^d (90) = 10 is considerably larger than 
w£d(88) = 4 a n d 

n^d(92) = 4. Similarly, ̂ ^(84) = 9 characterizes a peak in 
the n^d values as a function of N since, for the neighboring N = 82 and N = 86, 
we find n^d(82) = 5 and n^d(86) = 5. This property may be caused by the fact 
that, when N = 6v, we have two primes such that one of them is of the form 
6v2 + 1 and the other prime can be written as 6v2 - 1, and in taking the sum, 
we obtain N = 6(vx + v2) = 6v. It is also interesting that in several cases, 
particularly for N = 6v, both members of each of two twin prime sets are in-
volved , e.g., 

78 = 21 '+ 1 = 71 + 7 = 6l_ + ll_ = 59 + 19. 

Note also that 
84 = 2 1 + 11 = 71 + JL2 = 4_L + 4 3 

and 
90 = 21 + 11 = 7 1 + 19 = §1 + ^ i = 59 + 31. 
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