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1. INTRODUCTION 

There is a large literature concerning various properties of the Bernoulli 
numbers; see, for example, [1, 12, 16, 23] and their references. According to 
H. S. Vandiver [23], by 1960 over 1500 papers had been written on the subject. 
The main thrust of the present paper is to consider several congruence proper-
ties of the Bernoulli numbers that extend various results of Vandiver, Nielson, 
Carlitz, and Stevens; see [2, 16, 19, 22]. The Bernoulli numbers Bn (n > 0) 
are defined by the expansion 

r 1 Z-f Dn ~ j 9 

ex - 1 n = o nl 

which is equivalent to 

t (")sr = Bn (n > 1) (1.1) 

together with B0 = 1. It is sometimes convenient to write (1.1) in the form 

(B + l)n = Bn (n > 1) (1.2) 

where it is understood that, after expansion of the left-hand side, we replace 
Bk by Bk. It is easy to check that for the first few values of n we have 

Bx = -1/2, B2 = 1/6, Bh = -1/30, 

and that in general B2k+1 = 0 if k ^ 1. 
Bernoulli numbers have numerous interesting properties. For example, if 

Sn(k) = ln +... + kn
9 then Sn(k) = (Bn+1(k + 1) - Bn+1)/(n + 1), where Bn(x) = 

(B + x)n. The Bernoulli numbers are related to class numbers and to FermatTs 
Last Theorem. Moreover, they satisfy numerous recurrences and congruences. 
For further details regarding various properties of the Bernoulli numbers, the 
reader should consult the papers [1, 12, 16, 23] and their references. 

2. CONGRUENCE PROPERTIES 

If p is a prime, we now consider several congruence properties of sequences 
of rational numbers where we say that a/b is integral modulo p if (b9 p) = 1. 

*Professor Stevens passed away on Decembers, 1983. Many of the results in 
this paper were presented by him to the departmental number theory seminar held 
on December 1, 1983. The paper, based on results obtained by Professor Stevens, 
has been written by several departmental colleagues. 
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Moreover, if a lb and c/d are integral modulo p, then 

a _ c 
-r = -j (mod p) if ad = bo (mod p) . 

We assume throughout this paper that p is an odd prime even though similar re-
sults could be obtained for the case in which p = 2. 

In [15] Kummer proved that 

Bn+ l-p Bn 

; = — (mod p) 
n + p - 1 n p 

for all n > 1, where (p - 1) ( n. More generally, one can consider congruences 
of the form 

,?0<-'>-(;)„°"<7-Vo <-*-> 
for n > P, where (p - 1) | n. In [15] Kummer studied congruences similar to the 
above but in a more general setting in which he proved the following theorem. 

Theorem 1 (Kummer): Let an be integral modulo p and suppose 

X > n ^ = £ An(e* - l)n. (2.2) 
n=0 n ! n=0 

If the An are integral modulo p, then 

E(-l) 8 ( * W + e<p-D E °  (mod p'), for n > r > 1. (2.3) 

Nielson showed in [16] that if an = Bn, the nth Bernoulli number, then the 
Bernoulli numbers themselves satisfy (2.3) if (p - 1) | ns where the modulus is 
replaced by pr~ 1. In attempting to remove the restriction (p - 1) | n, Vandiver 
[22] showed that if n = a(p - 1) and an = Bn then (2.3) holds modulo pr~ 1 pro-
vided that v + a < p - 1. This latter restriction is, however, a rather severe 
one. In [2] Carlitz showed that the congruence (2.3) holds if P < p - 1 and 
that some much weaker congruences hold if r ^ p - 1. 

Congruences similar to (2.3) were later studied in a series of papers by 
Carlitz and Stevens [5-9,18-21]. Recently, a number of authors have taken re-
newed interest in the topic of congruences for various sequences of numbers. 
For example, Rota and Sagan [17], Gessel [13], J. Cowles [10], and J. Cowles, 
S. Chowla, and M. J. Cowles [11] have used various general combinatorial tech-
niques, such as group actions on sets, to obtain various congruence properties 
for several sequences of numbers. 

If one looks at Kummerfs Criterion (2.2) and (2.3), it is easy to see that 
the condition is sufficient but not necessary. We will make use of the follow-
ing theorem due to Carlitz [5]. 

Theorem 2 (Carlitz): Let an be integral modulo p and suppose 

00 xn °°  (ex - 1)^ 
2-r an ~~\ ~ L* ^-k y\ • 

rc=0 n ' k=0 K-

Then Ak = 0 (mod p^/p]) for a n k >,0 if and only if 
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jto(-D8(r
8)«n+Hp-i)EO (mod PP)' for a11 n > r > l' 

3. APPLICATIONS 

In this section we apply Theorem 2 to the Bernoulli numbers to obtain sev-
eral congruences that extend various results of Vandiver, Nielson, Carlitz, and 
Stevens, see [1, 16, 19, 22]. Finally, we use the theorem to obtain an elemen-
tary proof of the Staudt-Clausen theorem. Let us put 

* = f B SSl = logd + (e* - 1)) _ f* , n „ nl (ex - l)n 

ex __ i n = 0 n- ex - I n = ° 

so that 

(-l)nn! 
*" n + 1 ' 

Now however, the -4nTs do not satisfy the condition of the theorem. If we mul-
tiply by p, each coefficient in the new series does satisfy the condition, ex-
cept for the coefficient of 

(p2 - 1)! 

Thus, we have 

n = 0 
E PBn fr = - ^ (e* - l)p - 2 + C(x), 

where C(x) satisfies the condition of the theorem. Hence, if D is the deriva-
tive operator, then 

2 , 

(Dp-D)*±PB„£= (Dp -Df {~l\ " ( e * - I ) ? 2 ' 1 (mod p " ) , 
n = o n-

where we say t h a t 

£ a>n ZT = L, bn Z7T (mod m) 
n = 0 r i ' « = 0 r i ' 

i f an = bn (mod TW) for each n *> 0 . 2 
We now c o n s i d e r (£>p - D)r(ex - l)p ' 2 (mod p p + 2) . S ince 

(e* - l)p2-2 = PZ (-lf~l~Hpl 7 ^ S 
-r = n \ J / 

if we apply the operator (Dp - D)r, we get after some simplification that, f,or 
each n > 0, the coefficient of xn/n\ is 

sW ! - u f : Mcr1- nv+'. (3.D 
= o x J / 3 
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We now break the sum (3.1) into two sums E f and E " § where in E ' we sum over 
those j for which p \ j s while in E " we sum over those j for which p\j. 

To compute E ?
 s suppose that j p ~ l - 1 = pk(j) , so that 

j = o x «7 

We know that 

-.* - n x f/ / 

(p2 . *) = (-l)J (mod p). 

If j ' = j (mod p) so that j ' = j + $p9 then &(jf) = &(j) - jp~2Q (mod p ) , and 
hence 

(*> Z ' (- i )p 2"1"J'(p 2 r ^(fco-))1-^"*1, 

j " " (mod p) ( -D" 2 " 1 P E P E W ) - jp"2c)' 
.5=0 

E (-l)̂ -1 Ptr+r E V (mod p), 
j = l e = o 

since the terms in the brackets run through a complete residue system modulo p. 
If (p - I) ][ r» then the inner sum is zero modulo p 3 while If (p - 1) | (n + r) 9 
then the outer sum is zero modulo p . If (p - l)|r and (p - 1)|(n + r), then 
the left-hand side of (&) is congruent to (™l)p " l modulo p. Hence § 

(0 (mod pJ,+ I) if (p - 1 ) | r 

£ ' = <0 (mod p^+1) If (p - 1) | («'+ r) 

((~1)P2- x (mod p^+1) If (p - 1)|P and (p - l)|(n + r ) . 

Along similar lines, we may compute the sum E ! ! to obtain 

(0 (modp^1) if (p - 1 ) | (n + p) 

\(-l)p2 + rpn+r (mod p*+i) if (p - l)|(w + r) 

Therefore, combining the congruences obtained for E f and E 9 we see that pBn 
is integral modulo p, Thuss we may apply Theorem 2 to the sequence an = pBn to 
obtain 

Theorem 3: Let N = E (™ 1) P~ S( q ) 5«+s(p-i) 

(A) If (p - 1) | n where n > r > 1, then tf = 0 (mod p r ~ * ) . 

(ft) If (p - 1) \n and (p - 1) | r where n > r > 1, then /!/ E 0 (mod p r~ 2 ) . 

(C) If (p - l)|n and (p - l)|r where n > r > 1, then N = p p~ 2 (mod pr~ l). 

(D) If n = r and (p - 1)|w, then N = 0 (mod p r + 0 -

We note that (A) is a result of Nielson [16] , while the result in (B) improves 
upon results of Vandiver [22] and Carlitz [2]. 
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We now obtain a generalization of these congruences. Since 

---1'-"1 y> 

Se - yPe= (xP"1 - yP"1)^- W'1 + *(p- WW1-
+ ar(P-3)p-1j/2P-1 + ... + yCP-Dp- 1 ) , 

by induction on e one can prove the following identityt 
e - 1 

xPe-' - yP"1 = £ pi(x - y)P"1'ifi(x9 y) (e > 1) (3.2) 

where each f^(x9 y) is a polynomial in x and z/. Let E be the difference oper-
ator and suppose b ̂  1. Let x = #&(p-l) and z/ = 1 in (3.2) and then take the 
p t h power of both sides. We obtain 

.^•^"'(D^ip'-'o'-i)' °(mod pA) ( 3 - 3 ) 

where A is the minimum of 

e- 1 e- 1 
-1 + £ &X +5Zpe""1~ ̂  a n d a

0
 + " " + 0te_ ! = P. 

i = l £ = 0 

This minimum occurs when 

aQ = ••• = ae_ 2 ~ 0 and ae_ x = P. 

Hence, if n > er, then ;4 = er - 1. We may now state 

Theorem k: Let b > 1, e > 1, and M = £ (-l)r~ S ( ^ ) ^ + sbpe-i(p_ i y 

(A) If r > 1, n > er, and either (p - l)|n or (p - 1) \ r9 then 
M E 0 (mod p e r ~ l ) . 

(B) If n > er9 (p - 1) |n, and (p - l)|r, then M E 0 (mod p e p ~ 2 ) . 

These results should be compared with Theorem 8 of Stevens [19]. 

We now apply Theorem 2 to obtain an elementary proof of 

Theorem 5 (Staudt-Clausen): If n > 1, then 

B2n = G2n " ^ ~ 
(p- D|2n ̂  

where £ 2 n is an integer. 

Proof: It suffices to show that pBn = -1 (mod p) if and only if (p - 1) \ n . We 
have 

*fe -2. p 
£P** fr= £ (~Dfe irrrte* - x> & 

By induction on n in (1.1), it is easy to show that pBn = 0 (mod p) if 0 < n < 
p - 2, and hence from (1.1) we have that pBp_x E -1 (mod p ) . If n = a(p - 1), 
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then for r = 1 we have pBa(P- i) = pBp. i (mod p) so that Ba(p. i) = -1/p + Q where 
C is integral modulo p. Similarly* p£n E 0 (mod p) if (p - 1) | n. Thus p di-
vides the denominator of Bn if and only if (p - 1) \n. 
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