ON THE COEFFICIENTS OF A RECURSION RELATION FOR THE FIBONACCI PARTITION FUNCTION

TAD WHITE
(Student)
California Institute of Technology, Pasadena, CA 91126
(Submitted July 1984)

Let $F=\{1,2,3,5, \ldots\}$ be the set of Fibonacci numbers, where $F_{2}=1$, $F_{3}=2$, and thereafter $F_{n}=F_{n-1}+F_{n-2}$. We shall examine the function $p_{F}(n)$, which we define to be the number of ways to additively partition the integer n into (not necessarily distinct) Fibonacci numbers.

We first consider the generating function for $p_{F}(n)$. By elementary partition theory, we have

$$
\begin{equation*}
\sum_{n \geqslant 0} p_{F}(n) x^{n}=\prod_{a \in F} \frac{1}{1-x^{a}}=\prod_{m \geqslant 2} \frac{1}{1-x^{F_{m}}} . \tag{1}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\left(\prod_{m \geqslant 2}\left(1-x^{F_{m}}\right)\right) \sum_{n \geqslant 0} p_{F}(n) x^{n}=1 . \tag{2}
\end{equation*}
$$

We may expand the infinite product as a power series

$$
\begin{equation*}
\prod_{m \geqslant 2}\left(1-x^{F_{m}}\right)=\sum_{m \geqslant 0} a_{m} x^{m}, \tag{3}
\end{equation*}
$$

where a_{m} counts the number of partitions of m into an even number of distinct Fibonacci numbers, minus the number of partitions of m into an odd number of distinct Fibonacci numbers; we may write this as

$$
\begin{equation*}
a_{m}=p_{F}^{\mathrm{e}}(m)-p_{F}^{\circ}(m) . \tag{4}
\end{equation*}
$$

We shall see later that knowledge of the terms a_{m} will lead us to a recursion relation for $p_{F}(n)$. With this objective in mind, we prove the following.

Theorem: Let

$$
P_{k}=\prod_{m=2}^{k}\left(1-x^{F_{m}}\right) \quad \text { when } k \geqslant 2
$$

and set $P_{1}=1$. Let $L_{n}=F_{n+1}+F_{n-1}$ be the $n^{\text {th }}$ Lucas number. Then

$$
P_{\infty}=\prod_{m \geqslant 2}\left(1-x^{F_{m}}\right)=1-x-x^{2}+\sum_{k \geqslant 3} x^{L_{k}} P_{k-2} .
$$

First proof: This proof is combinatorial in nature. First consider the partial products P_{k}. When expanded as a power series of the form

$$
P_{k}=\sum_{m=0}^{k} a_{m}^{(k)} x^{m}
$$

the coefficients $\alpha_{m}^{(k)}$ represent the same thing as the α_{m}, except that the partitions are now restricted to Fibonacci numbers not exceeding F_{k}. It is evident that $a_{m}^{(k)}=a_{m}$ for all m such that $0 \leqslant m<F_{k+1}$, by inspection of (4). We shall use this fact later.

We may partition an integer n into distinct Fibonacci numbers in one particular way by first writing down the largest Fibonacci number not greater than n, subtracting, and iterating this process on the difference. For example,

$$
27=21+5+1
$$

See the references listed at the end of this paper for a more detailed discussion of these points.

For simplicity of notation, we will represent a partition of a number into distinct Fibonacci numbers as a string of l's and 0 's, with the rightmost place corresponding to $F_{2}=1$, and each succeeding place corresponding to the next Fibonacci number. In the above example,

$$
27=1 \cdot 21+0 \cdot 13+0 \cdot 8+1 \cdot 5+0 \cdot 3+0 \cdot 2+1 \cdot 1
$$

which we may write more compactly as
(8)

27: 1001001,
where the (8) signifies that the 1 below it is the coefficient of $F_{8}=21$.
The first few terms a_{m} for $m=0,1,2$, and 3 can be obtained by direct calculation of the first few P_{k}; they are seen to be $1,-1,-1$, and 0 , respectively. Now let $n \geqslant 3$; our objective will be to characterize the terms a_{m} in the range $L_{n} \leqslant m<L_{n+1}$. As $L_{3}=4$, this will give us a_{m} for every nonnegative m. Since $n \geqslant 3$, we have a partition of L_{n+1} obtained in the above manner (from here on, all partitions are into distinct Fibonacci numbers, unless otherwise stated):

$$
L_{n+1}: 10 \stackrel{(n)}{1} 00000 c c c c
$$

Thus, we have the following nine possibilities for partitions of m, where $L_{n} \leqslant m<L_{n+1}$:
(n)
(d) $0110 x \cdots x$
(e) $0101 \times x \cdots x$
(f) $0100 x \cdots x$
(n)
(a) $1001 x \cdots x$
(b) $10000 x \cdots x$
(g) $00011 x \times x$
(h) $0010 x \cdots x$
(i) $000 x x \cdots x$

The x 's indicate "we don't care which digits go here."
In the above list, we may find a one-to-one correspondence between the partitions in (a) and the partitions in (c). Given a partition beginning with 100 , we may replace these three digits with 011 . Both strings will have equal value because $F_{n+2}=F_{n+1}+F_{n}$. However, out of each of these pairs of partitions, one is a partition of even cardinality, whereas the other is odd, since they are different only in their first three places. Hence, these partitions will cancel each other out when we compute a_{m} using equation (4). Similarly, there is a one-to-one correspondence between partitions of type (b) and of type (d), and they cancel out for the same reason. Partitions of the forms (f) and (g) differ only in the positions corresponding to F_{n+1}, F_{n}, and F_{n-1}; they cancel each other out in the same way. Partitions of the forms (h) and (i) are excluded from possibility. To see this, recall that

$$
\begin{equation*}
F_{1}+F_{2}+\cdots+F_{k}=F_{k+2}-1 \tag{5}
\end{equation*}
$$

Thus, the largest number expressible in the form (h) is

$$
F_{n}+F_{n}-2<2 F_{n} .
$$

But $L_{n}=F_{n+1}+F_{n-1}$, so

$$
L_{n}=F_{n}+2 F_{n-1}>F_{n}+F_{n-1}+F_{n-2}=2 F_{n} .
$$

Thus, if m is expressible in the form (h), then $m<L_{n}$, contrary to assumption. Similarly, if m is expressible in the form (i), then $m \leqslant F_{n+1}-2$, which is less than F_{n+1}, which in turn is less than L_{n}, again a contradiction.

Therefore, the only class of partitions of m which will contribute to the right-hand side of (4) are those of the form (e). But the leftmost four places in (e) form our partition of L_{n}; therefore, the $x \cdots x$ in (e) must represent a partition of $m-L_{n}$ into distinct Fibonacci numbers of size less than or equal to $n-2$. Conversely, given any such partition of $m-L_{n}$, we can construct a partition of m of the form (e). Since both partitions in this correspondence are of the same parity, i.e., either both are partitions into odd numbers of Fibonacci numbers or both are partitions into even numbers of Fibonacci numbers, we deduce from (4) that

$$
\begin{equation*}
a_{L_{n}+m}=a_{m}^{(n-2)}, \quad \text { whenever } 0 \leqslant m<L_{n-1} . \tag{6}
\end{equation*}
$$

We have thus proved the theorem.
Second proof: This proof is analytical. We require the following two results: Let $A=a_{1}, a_{2}, \ldots$ be an arbitrary set of positive integers. If $|q|<1$, then

$$
\begin{equation*}
\prod_{a \in A} \frac{1}{\left(1-z q^{a}\right)}=1+\sum_{i \geqslant 1} \frac{z q^{a_{i}}}{\left(1-z q^{a_{1}}\right)\left(1-z q^{a_{2}}\right) \cdots\left(1-z q^{a_{i}}\right)} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{a \in A}\left(1+z q^{a}\right)=1+\sum_{i \geqslant 1}\left(1+z q^{a_{1}}\right) \cdots\left(1+z q^{a_{i-1}}\right) z q^{a_{i}} \tag{8}
\end{equation*}
$$

Proof of (7): We consider the partial products. Clearly,

$$
\frac{1}{\left(1-z q^{a_{1}}\right)}=1+\frac{z q^{a_{1}}}{\left(1-z q^{a_{1}}\right)}
$$

Now suppose that

$$
\prod_{i=1}^{n} \frac{1}{\left(1-z q^{a_{1}}\right)}=1+\sum_{i=1}^{n} \frac{z q^{a_{i}}}{\left(1-z q^{a_{1}}\right)\left(1-z q^{a_{2}}\right) \cdots\left(1-z q^{a_{i}}\right)}
$$

Then

$$
\begin{aligned}
& \prod_{i=1}^{n+1} \frac{1}{\left(1-z q^{a_{i}}\right)}=\left(\prod_{i=1}^{n} \frac{1}{\left(1-z q^{a_{i}}\right)}\right)\left(1+\frac{z q^{a_{n+1}}}{\left(1-z q^{a_{n+1}}\right)}\right) \\
& =1+\sum_{i=1}^{n} \frac{z q^{a_{i}}}{\left(1-z q^{a_{1}}\right) \cdots\left(1-z q^{a_{i}}\right)}+\frac{z q^{a_{n+1}}}{\left(1-z q^{a_{n+1}}\right)} \prod_{i=1}^{n} \frac{1}{\left(1-z q^{a_{i}}\right)}
\end{aligned}
$$

ON THE COEFFICIENTS OF A RECURSION RELATION

$$
=1+\sum_{i=1}^{n+1} \frac{z q^{a_{i}}}{\left(1-z q^{a_{1}}\right) \cdots\left(1-z q^{a_{i}}\right)} .
$$

By induction on n, the partial products on the left-hand side of (7) are equal to the partial sums on the right-hand side. As $|q|<1$, the sum converges. This proves (7).

Proof of (8): The first partial product is clearly the first partial sum. So suppose that

$$
\prod_{i=1}^{n}\left(1+z q^{a_{i}}\right)=1+\sum_{i=1}^{n}\left(1+z q^{a_{1}}\right) \cdots\left(1+z q^{a_{i-1}}\right) z q^{a_{i}}
$$

Then

$$
\begin{aligned}
& \prod_{i=1}^{n+1}\left(1+z q^{a_{i}}\right)=\left(\prod_{i=1}^{n}\left(1+z q^{a_{i}}\right)\right)\left(1+z q^{a_{n+1}}\right) \\
& =1+\sum_{i=1}^{n}\left(1+z q^{a_{1}}\right) \cdots\left(1+z q^{a_{i-1}}\right) z q^{a_{i}}+z q^{a_{n+1}} \prod_{i=1}^{n}\left(1+z q^{a_{i}}\right) \\
& =1+\sum_{i=1}^{n+1}\left(1+z q^{a_{1}}\right) \cdots\left(1+z q^{a_{i-1}}\right) z q^{a_{i}}
\end{aligned}
$$

By induction on n, this proves (8).
The following argument is due to the referee.
In (8) we set $z=-1, q=x$, and $A=F$:

$$
\begin{aligned}
\prod_{m \geqslant 2}\left(1-x^{F_{m}}\right)= & 1-x-x^{2}+x^{3}-\sum_{m \geqslant 3}\left(1-x^{F_{2}}\right) \cdots\left(1-x^{F_{m}}\right) x^{F_{m+1}} \\
= & 1-x-x^{2}+x^{3}-\sum_{m \geqslant 3}\left(1-x^{F_{2}}\right) \cdots\left(1-x^{F_{m-1}}\right) x^{F_{m+1}} \\
& +\sum_{m \geqslant 3}\left(1-x^{F_{2}}\right) \cdots\left(1-x^{F_{m-1}}\right) x^{F_{m+2}} \\
= & 1-x-x^{2}+x^{3}-\sum_{m \geqslant 3}\left(1-x^{F_{2}}\right) \cdots\left(1-x^{F_{m-2}}\right) x^{F_{m+1}} \\
& +\sum_{m \geqslant 3}\left(1-x^{F_{2}}\right) \cdots\left(1-x^{\left.F_{m-2}\right) x^{L_{m}}}\right. \\
& +\sum_{m \geqslant 3}\left(1-x^{F_{2}}\right) \cdots\left(1-x^{F_{m-1}}\right) x^{F_{m+2}} \\
= & 1-x-x^{2}+\sum_{m \geqslant 3}\left(1-x^{F_{2}}\right) \cdots\left(1-x^{\left.F_{m-2}\right) x^{L_{m}}}\right.
\end{aligned}
$$

This proves the theorem.
Corollary: For all $m \geqslant 0, a_{m}$ is either $1,-1$, or 0 .
Proof: We have already seen that this is true for $m \leqslant 3$. Now the degree of P_{k-2} is $1+2+3+\cdots+F_{k-2}$, or $F_{k}-2$, which is clearly less than $L_{k+1}-L_{k}$, which equals L_{k-1}. What this tells us is that the polynomials on the righthand side of the theorem add together without overlapping. Thus, we only need to show that each P_{k} has coefficients $\alpha_{m}^{(k)}=0,1$, or -1 for all m.

We do this by induction on k. Clearly, it is true for $k=1$, as $P_{1}=1$. Suppose, then, that $a_{m}^{(k)}=1,-1$, or 0 for all m and all $k<n$. By the definition of P_{n}, it is clear that the first F_{n+1} coefficients of P_{n} are identical to those of P_{∞}; in other words,

$$
a_{m}=a_{m}^{(n)} \text { for all } m \text { such that } 0 \leqslant m<F_{n+1}
$$

Hence, by the theorem, the first $n+1$ terms $\alpha_{m}^{(n)}$ are the coefficients of the partial products P_{k} with k such that $L_{k}<F_{n+1}$; this includes all k less than $n-2$ because $L_{n-3}<F_{n+1}<L_{n-2}$. By the induction hypothesis, the first F_{n+1} coefficients are either $1,-1$, or 0 .

Now recall that P_{n} is a finite product of "antipalindromic" polynomials of the form ($1-x^{F_{k}}$). Thus, we have

$$
\begin{equation*}
a_{m}^{(n)}=(-1)^{n+1} a_{F_{n+2}-2-m}^{(n)} \tag{9}
\end{equation*}
$$

whenever both subscripts are positive, since the degree of P_{n} is $F_{n+2}-2$. But $F_{n+1}>\frac{1}{2}\left(F_{n+2}-2\right)$, so the first half of the coefficients in P_{n} are 1 , -1 , or 0 . By (9), so are the last half. By induction, all P_{k} 's have coefficients 1 , -1 , or 0 . By the theorem, all terms a_{m} are $1,-1$, or 0 . This proves the corollary.

By equating like terms on both sides of (2), where we have evaluated the product P as the power series (3), we obtain, for all $n \geqslant 0$:

$$
a_{0} p_{F}(n)+a_{1} p_{F}(n-1)+\cdots+a_{n-1} p_{F}(1)+a_{n} p_{F}(0)=0,
$$

where $p_{F}(0)=1$ in accordance with the power series (1). This yields a recursion for $p_{F}(n)$ with all coefficients a_{k} equal to $1,-1$, or 0 .

REFERENCES

Br. U. Alfred. "Exploring the Fibonacci Representations of Integers." The Fibonacci Quarterly 1(1963):72.
J. L. Brown, Jr. "A New Characterization of the Fibonacci Numbers." The Fibonacci Quarterly 3 (1965):1-8.
D. E. Daykin. "Representations of Natural Numbers as Sums of Generalized Fibonacci Numbers." J. London Math. Soc. 35 (1960):143-160.
H. H. Ferns. "On the Representations of Integers as Sums of Distinct Fibonacci Numbers." The Fibonacci Quarterly 3 (1965):21-29.

