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In this paper we extend some results on Fibonacci binary trees to Fibonacci 
k-ary trees, k ^ 2. The multinomial coefficients and higher-order Fibonacci 
numbers are used in our study. 

For any integer k ^ 2, let {F%, n ) 0} be a sequence of integers defined by 

F% = 0, F* = 1, for 1 < n < k9 
and 

Fn = Fn-1 + Fn-2 + • • ' + tf_ k . for n > k + 1. 

The sequence {F%, n ^ 0} is thus the ordinary Fibonacci sequence. For k ^ 3, 
the sequence {i*7 ,̂ n ̂  0} is different from the Fibonacci sequence {V*9 n > 0} 
of order ft, which is defined by 

7* = o, 7* = 1, 7* = 2n~2, for 2 < n < ft, 
and 

^ = ^-i + Kk-2 + ••• + #-*• for « > fc + 1. 

We also need the following integer sequence. For any integer k ^ 2 and 
1 < 77? < ft, let {F^,m

9 n > -ft} be a sequence defined by 

F*'m = 0, for n < 0, 

f̂e.m = 2n-i5 f o r x < n < W j 
and 

F*.* = Fk,m + Fk,m + ... + «*,* f o r n > 777 + 1. 

It is easy to see that, for any integer k ^ 1, the sequence {F^s l, n ̂  0} is 
precisely the Fibonacci sequence of order k9 i.e., F^' x = 7^. By induction, it 
can be shown that, for any k < n, 

A-* " Fn' 
7 7 7 = 1 

For any fixed k ^ 2 and n ^ 0, one can obtain multinomial coefficients 
cni> 0 ̂  j ̂  (ft - l)n + 1, by expanding the expression 

(1 + x + x2 + ••• + a;*"1)". 

and obtain the corresponding (generalized) Pascal triangle (see [4], [5], and 
[6]). For convenience, we set c%tj = 0, for j < -1 and j > (k - l)n + 2. For 
ft = 2, one has binary coefficients and the Pascal triangle. For k = 3, one has 
trinomial coefficients c^- and the corresponding generalized Pascal triangle, 
as shown in Figure 1. 

One can draw diagonals in the triangle, and see that the sums of numbers 
between parallel lines are precisely the 3rd-order Fibonacci numbers 7^, just 
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as in the case k = 2 [1, p. 245]. In general, by an argument similar to that 
in [1, p. 246], one has the following relation between Fibonacci numbers V* and 
multinomial coefficients c^ .: 

[n- n/k\ 
v: 

J=0 
"n-J, J5 

where [ J indicates the largest integer function., 
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Figure 1. Generalized Pascal Triangle 

For any fixed integer k ^ 2, we now define the Fibonacci trees T% of order 
n, n > 1, inductively on n. For 1 < n < &, S7^ consists of only a root node. 
For n > /c + 1, T^ consists of a root node with fc ordered sons T^_l3 T%_2, ..., 
T%_ k from left to right. For k = 2, one has the ordinary Fibonacci trees [2]. 
For k = 3, one has the Fibonacci ternary trees. 

Figure 2. Fibonacci Ternary Trees 

In Figure 2, every terminal node of T\ is labelled by p, q9 or P. For each 
n > 5, the tree T^ can be obtained from T^_± by replacing all the labels r and 
q in ^ _ x by q and p, respectively, and replacing all the terminal nodes in 
T^_± with label p by ^ . This is a simple rule to grow a Fibonacci tree to a 
higher order,similar to that given in [3] for Fibonacci binary trees. One can 
also set a similar rule to grow the trees Ty\ with any fixed k ^ 3, where, in-
stead of using only three labels, k labels—p±9 p 9 ..., p — a r e needed. 
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For any k ^ 2, a k-ary tree is a tree with each internal node containing 
exactly k ordered sons. We now specify branch costs of a k-ary tree. We will 
assume that each left-most branch has unit cost 1, each second-to-the-left 
branch has cost 2, . .., and each right-most branch has cost k. The cost a^ of 
a node i, is the sum of costs of the branches from the root to this node. If 
the path from the root to a node has I branches, the node is said to be at 
level £. The average cost of a tree T is defined by 

m 

J = l 

where 77? is the number of terminal nodes in T 9 and the summation is over all the 
terminal nodes in T. As in the case k = 2 (see [2]), one can see that if a k-
ary tree has n internal nodes, then it has (k - l)ft + 1 terminal nodes. It is 
easy to verify the following lemma. 

Lemma 1: In a k-ary tree, let a^ be the cost of the terminal node %9 and let 
bj be the cost of the internal node J. Then 

(k- l)«+ 1 n 
E ai (k - 1) £ bd + nk(k + l)/2 

i = 1 3 = 1 
(fc - l)n + 1 (fc - l)n + 1 

As was stated in [7], one can construct an optimal k-ary tree in the sense 
of minimum average cost as follows: Suppose that an optimal k-ary tree with 
(k - I)(n - 1) + 1 terminal nodes is given. To obtain an optimal k-ary tree 
with (k - l)n + 1 terminal nodes, one can split a terminal node of minimum cost 
in T to produce k new terminal nodes. This can be verified by using Lemma 1, 
just as was done in the case k = 2 in [2]. 

It is obvious that each tree T% is a k-ary tree, and that it has F% termi-
nal nodes. As in the case k = 2 in [2], we have the following lemma. 

Lemma 2: Each Fibonacci tree T%9 n > k + 1, has exactly F^l^ terminal nodes of 
cost n - j, where l ^ j ^ k ^ n - 1 . 

Proof: The proof is by induction on n. The tree Tjjf+1 has k terminal nodes, and 
it has exactly 1 (= F^'3) terminal node of cost k + 1 - J, where 1 ̂  j < k. 
Now, we assume that the Lemma holds for all n9 k + 1 ̂  n ^ N9 where N > k + 1 
is a fixed integer. The tree T^+l has k subtrees T^ 9 T^_li ..., T$_ k+ l9 from 
left to right. The number of terminal nodes of cost N + 1 - j in T£is, for 
k > J > N + 1 - k9 

F t i + Fti-i+ • • • + FI'J' +1 = 2N~k-i+ 2N~k~2+... + 1 + 1 
2N~ k = Fk> J' 

N+ l - &' 

and for j < N + 1 - k9 the number i s 

Fk,j , Fk,j + . . . . vk, j _ Fk,3 
N-k N-k-1 N-2k+l rN+l~k' 

This completes the proof. 

With the branch costs specified as above, for any fixed k ^ 2, we have the 
following theorem. 
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Theorem 1: The average cost of a Fibonacci tree T^ of order n is 

= in - 1) + iu - DFti ' * • * , 

(« - 1) - L (J ~ Wn'A Fn ' n-k n' 

and i t i s op t imal among k-ary t r e e s for each n > fe + 1. 

Proof: By Lemma 2 , for n > k + 1, 

0 = 1 I 

= («- DZFtihn - i u - wtilFZ 
J = 1 / J = 1 / 

k 

I 
J = 2 

If k = 2 s one has 

82
n = (n - 1) - Fn2>_22/^ = <„ - 2) + (F2 - F^^/Fl = (« - 2) + ^ _ 2 / * £ , 

as was shown in Theorem 3 of [2]. 
For the second assertion, by the rule for constructing optimal fc-ary trees 

mentioned above, we need to show that, by splitting all the terminal nodes of 
cost (n - k) in T%% we can obtain T%+1. As in the proof in [2], we proceed by 
induction on n. The claim clearly holds for n = k + 1. We assume it holds for 
all n, fc+l<n</y-l, where N > /c + 2 is a fixed integer. Since the left-
most subtree of T^ is T^_ ,, by the induction hypothesis, after splitting all 
the terminal nodes of cost (21/ - k) in this subtree, we obtain T^ . A similar 
argument applies to all the remaining (k - 1) subtrees of T*. Therefore, the 
resulting tree has k ordered subtrees T^, T _ , ..., J^_ k + ^ and so it is TN+l. 
This completes the proof. 

Our next result generalizes a result in [3] which deals with the number of 
terminal nodes at each level of a Fibonacci tree. 

Theorem 2: At level I in a Fibonacci tree T*9 n > k + 1, there are c£ ,_ 
nodes with label p ^ and c\. u n . k ^ + c^_u n_k_^_l+ ••- + o\_u n_k_^[k_~^ 
nodes with label p. , 2 < J < k. 

Proof: The assertion holds for n = k + 1. We assume that it holds for some 
n > k + 1, and then prove it for n + 1. By hypothesis, there are 

°£- 1, n- k- £ + 1 

nodes with label p in Tn at level £ - 1, and 

C £ - 1, n-k- I u l - I, n-k- I- (k-2) 

nodes with label p2 in Tn at level £. Thus, the number of nodes with label p1 
in T^+1 at level I is 

•3 fc _L rk _i_ ... _L nk - nk 
l - l , n - k - l + l £ _ i j n _ f c _ £ I- 1, n-k-I- (k-2) $L,n+l-k-Z' 
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Similarly, one can compute the number of nodes with label p. , j > 2, in Tn+1 at 
level £. This completes the proof. 

One can see from Theorem 2 that the number of terminal nodes at level I in 
the tree T% is 

k 
3°<L- 1, n- 2k- l+j9 

«7 = 1 

and since T% has F* terminal nodes, 

n-k k 

E E 
1=13=1 

*„* = E E ii,,„_2M + i forn > k + 1. 

Finally, one can see that the trees T* and T% have average costs s% and s^, 
respectively. Since the characteristic equations of the recurrence relations 
for the sequences {Fn, n > 0} and {i^, J, n > 0} are the same, and have exactly 
one root x1 satisfying |a?i|>l, and since the coefficients of the nth power of 
X-L in the expressions of Fn and F^,J are clearly nonzero, the ratio F^i/F^ 
converges to a finite limit as n -*- °°. Using Theorem 1, one has the limit 

s^/s2 •> 1 as n -> oo. 

On the other hand, the trees T% and T% have i^ and F* terminal nodes, respec-
tively. For any k ^ 3, one has the limit 

F^/F2 -*• °o as n -> °°. 
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