JOSEPH W. CREELY 31 Chatham Place, Vincetown, NJ 08088 (Submitted January 1983)

1. INTRODUCTION

We will enumerate the different $m \times m$ matrices $B_r(n)$, $n = 1, 2, 3, \ldots, r = 1, 2, 3, \ldots, r_n$, and x_n , having elements from the set [0, 1], where the allowed column vectors B_j and some conditions between elements b_{ij} are specified. That is,

C1:
$$b_{ij} = 1 \Rightarrow b_{i,j-1} = 0$$
,
C2: $b_{ij} = 1 \Rightarrow \begin{cases} b_{i-1,j} = 0 \\ b_{i+1,j} = 0, m > i > 1 \end{cases}$

and

$$b_{1j} = 1 \Rightarrow b_{2j} = 0,$$

$$b_{mj} = 1 \Rightarrow b_{m-1,j} = 0.$$

The number of different matrices $B_{P}(n)$ is called x_{n} and is the general term of a combinatorial sequence $\{x_{n}: n = 1, 2, 3, \ldots\}$. The vector $B_{j} = P_{j}$ is one of the p distinct column vectors in an $m \times p$ matrix P called the primitive matrix. The vector P_{j} is named in accordance with the following rules:

1. The name of the zero vector is 0; the remaining vectors may be identified by the positions of 1's in them.

2. The numbers in these names, if more than one, are conveniently given in increasing order with a bar placed over them.

3. The dimension m of B_j is greater than or equal to the largest number in its name.

EXAMP	LES
-------	-----

Name of P_j				P_j	
0	0	0	0	0	
1	1	0	0	0	
2	0	1	0	0	
12	1	1	0	0	
13	1	0	1	0	0
123	1	1	1	0	0

1986]

	Some Primitive Matrices P							
m	Under C2	Unrestricted						
1	(0 1)	(0 1)						
2	(0 1 2)	(0 1 12 2)						
3	(0 1 13 2 3)	(0 1 12 123 13 2 23 3)						
4	(0 1 13 14 2 24 3 4)	(0 1 12 123 1234 124 13 134 14 2 23						
		234 24 3 34 4)						
Size	$m \times F_{m+2}$	$m \times 2^m$						

Any figure consisting of a succession of like segments each of which is divided into m cells which can be occupied by either a l or a 0 under given conditions may be represented by a matrix $B_r(n)$ in which n is the number of segments in the figure. The cells in any segment must be numbered in a given way (1, 2, 3, ..., m) and correspond to the row numbers in $B_r(n)$. Figures in which only cells of like number in adjacent segments are adjacent are said to be *regular*. This adjacency condition (AC) is symbolized by $b_i \rightarrow b_i$. Figures in which at least one cell b_{ij} in the jth segment is adjacent to more than one cell in the $(j + 1)^{st}$ segment $(b_{s, j+1}, b_{t, j+1}, \ldots)$ are said to be *irregular*. This AC is symbolized by $b_i \rightarrow b_s$, b_t , ... (see Fig. 1).

Figure 1

Consider a prism of *n* segments formed of segments of unit height on bases *A* or *B* (Figure 2). If the segments have equal bases *A* or *B*, $P = (0 \ 1 \ 2 \ 3)$ is a possible primitive matrix and $b_i \rightarrow b_i$. If the successive segments have bases that alternate between *A* and *B*, *P* may be unchanged but $1 \rightarrow 2$, 3; $2 \rightarrow 1$; $3 \rightarrow 1$.

Condition 1 may be replaced by the more general condition C3: any two adjacent cells, each from a different segment cannot both contain the number 1.

The matrix P has a companion matrix \overline{P} in which the column P_j has a counterpart \overline{P}_j in \overline{P} obtained by applying the given AC, $b_i \rightarrow b_s$, b_t , ..., to each number i in the name of P_j and ordering the resulting numbers without repetition. A bar is placed over these numbers to distinguish the columns of \overline{P} . That is, if $P = (1 \ \overline{12} \ \overline{13} \ 2 \ 3)$ in Figure 1(b), then $\overline{P} = (\overline{12} \ \overline{123} \ \overline{23} \ 3)$.

[Aug.

Define the $(p+1) \times 1$ set matrix M(1) with elements consisting of sets of matrices such that $m_1(1) = \emptyset$, the empty set, and $m_i(1) = [P_{i-1}]$, where $p + 1 \ge 1$ $i \ge 1$ and L is the $(p+1) \times (p+1)$ partitioned matrix

$$L = \begin{pmatrix} U^T \\ - & \\ 0 & \\ K \end{pmatrix},$$

where 0 is the $p \times 1$ zero vector, U is $(p+1) \times 1$ with $u_1 = 0$, and $u_i = 1$ if $p + 1 \ge i \ge 1$. A matrix K, called the kernel, is $p \times p$ with $K_{ij} \in [0, 1]$ and is a function of P and the given AC as described later.

A special product is defined for L and a conforming set matrix generating another set matrix as a product.

$$L \cdot M(n-1) = M(n), n > 1,$$
 (1.1)

hence

$$(L_{\cdot})^{n-1}M(1) = M(n).$$
(1.2)

The expression $\ell_{ji}m_i(n-1)(P_{j-1})$ represents the result of augmenting each member of the set $m_i(n-1)$ by appending the vector P_{j-1} on the right if $\ell_{ji} = 1$ 1. If ℓ_{ji} = 0, this expression represents Ø.

$$\begin{split} m_{1}(n) &= \bigcup_{2}^{p+1} \ell_{1i} m_{i}(n-1) \\ m_{j}(n) &= \bigcup_{2}^{p+1} \ell_{ji} m_{i}(n-1) (P_{j-1}), \ j > 1 \end{split}$$

Define N(1) as the vector with $n_1(1) = 0$ and $n_j(1) = 1$ if $p + 1 \ge j \ge 1$. Let

$$LN(n-1) = N(n), n > 1.$$
(1.3)

The sets $m_j(n)$, $p + 1 \ge j > 1$ are disjoint, and their cardinality is unchanged by appending columns to their matrix elements. It can be shown by mathematical induction that N(n) is a vector with $n_1(n) = x_{n-1}$ and that $n_j(n)$ is the number of matrices $B_n(n)$ having P_{j-1} for the n^{th} column. Let \mathbf{N}_n be the $p \times 1$ matrix with $\mathbf{n}_i(n) = n_{i+1}(n), p \ge i > 1$, then

$$x_n = n_1(n+1) = \sum_{i=1}^{p+1} n_i(n) = \sum_{i=1}^{p} n_i(n).$$
(1.4)

1986]

Example: Let $B_n(n)$ represent a 2 × n matrix with $P = [0 \ 1]$. If C1 holds,

$$k = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad M(1) = \begin{bmatrix} \emptyset \\ [0] \\ [1] \end{bmatrix}, \quad N(1) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \text{ and } L = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$IM(n-1) = M(n) \qquad \text{and} \qquad LN(n-1) = N(n),$$

so
$$M(1) = \begin{bmatrix} \emptyset \\ [0] \\ [1] \end{bmatrix}, \qquad N(1) = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix},$$
$$M(2) = \begin{bmatrix} [0, 1] \\ [00, 10] \\ [01] \end{bmatrix}, \qquad N(2) = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \quad x_1 = 2,$$
$$M(3) = \begin{bmatrix} [00, 10, 01] \\ [000, 100, 010] \\ [001, 101] \end{bmatrix}, \qquad N(3) = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}, \quad x_2 = 3,$$
$$x_n = F_{n+2}.$$

Equation (1.3) implies

$$KN(n) = N(n+1)$$
 (1.5)

 $K^{n}N(1) = N(n+1).$ (1.6)

Let kernel K_n yield a value $n_1(n + 1) = x_{pn}$, then if K_1 and K_2 yield $x_{1n} = x_{2n}$ they are said to be *virtually equivalent* and $K_1 \approx K_2$. Virtual equivalence is an equivalence relation.

Let Q_r represent a $p \times p$ permutation matrix, i.e., a square matrix whose elements in any row or column are all zero except for one element which is one. There are p! such matrices and since $Q_p Q_p^T = I$, $Q_p^T = Q_p^{-1}$. From Equation (1.6), $K^{n-1}N(1) = N(n)$ and, if K is replaced by $Q_p K Q_p^{-1}$,

$$(Q_{r}KQ_{r}^{-1})^{n-1}\mathsf{N}(1) = Q_{r}K^{n-1}Q_{r}^{T}\mathsf{N}(1) = Q_{r}K^{n-1}\mathsf{N}(1) = Q_{r}\mathsf{N}(n).$$

From Equation (1.4), $x_n = \sum_{i=1}^{p} n_i(n)$ for *K* and for $Q_p K Q_p^T$; the $n_i(n)$ are summed in possibly a different order. The result is the same, so

$$Q_{p}KQ_{p}^{T} \approx K. \tag{1.7}$$

Let K_r be a $p_r \times p_r$ kernel, r = 1, 2, 3, and define the direct sum

 $K_1 \oplus K_2 = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}.$

[Aug.

212

so

Permutation matrices \boldsymbol{Q}_s and \boldsymbol{Q}_s^T can be constructed so that

$$Q_s(K_1 \oplus K_2)Q_s^T = K_2 \oplus K_1.$$

If $q_{ij} \in Q_s$, then $q_{ij} = 1$ if

i	1	2	• • •	p2	$p_2 + 1$	$p_2 + 2$	•••	$p_{2} + p_{1}$
j	$p_1 + 1$	$p_1 + 2$	• • •	$p_1 + p_2$	1	2	•••	p_1

and $q_{ij} = 0$ otherwise. Let $p_1 = 2$ and $p_2 = 3$, then

Q _s	=	0 0 1 0	0 0 0 1	1 0 0 0 0	0 1 0 0 0	0 0 1 0 0	•
		Γ_0	1	0	0	0_]	

From Equation (1.7),

$$K_1 \oplus K_2 \approx K_2 \oplus K_1. \tag{1.8}$$

Define the direct product \textit{K}_{1} \times \textit{K}_{2} as the partitioned matrix

,

$$K_{1} \times K_{2} = \begin{bmatrix} k_{111}K_{2} & k_{112}K_{2} & \dots & k_{11p_{1}}K_{2} \\ k_{121}K_{2} & k_{122}K_{2} & \dots & k_{12p_{1}}K_{2} \\ \dots & \dots & \dots \\ k_{1p_{1}1}K_{2} & k_{1p_{1}2}K_{2} & \dots & k_{1p_{1}p_{1}}K_{2} \end{bmatrix}$$

in which $k_{1rs} \in K_1$ and $k_{2tu} \in K_2$.

$$k_{1rs}k_{2tu} = \begin{cases} k_{iv}' \in K_1 \times K_2 \\ k_{jw}' \in K_2 \times K_1 \end{cases}$$

then

and

$$i = (r - 1)p_2 + t$$
 (a)

$$j = (t - 1)p_1 + r.$$
 (b)

From Equation (a),

$$t - 1 = (i - 1) \mod p_2$$
 (c)

and

$$p^{2} - 1 = \left[\frac{i-1}{p_{2}}\right], \tag{d}$$

in which [x] represents the greatest integer in the number x. Substituting Equations (c) and (d) in (b),

$$j = p_1((i - 1) \mod p_2) + \left[\frac{i - 1}{p_2}\right] + 1.$$
 (e)
213

1986]

If i, j, r, and t are replaced by v, w, s, and u, respectively, Equations (a)-(e) still hold and Equation (e) becomes

$$w = p_1((v - 1) \mod p_2) + \left[\frac{v - 1}{p_2}\right] + 1.$$
 (f)

Consider a matrix Q where $q_{ij} = 1$ if Equation (e) is satisfied and $q_{ij} = 0$ otherwise. From Equation (a) if i is given, r and t are uniquely defined, and from Equation (b) j is uniquely defined. Conversely, if j is given, then i is uniquely defined. This implies that every row and column of Q has just one element 1 and all other elements are zero. Q is then a permutation matrix.

Consider the matrix Q' where $q'_{vw} = 1$ if Equation (f) is satisfied and $q'_{vw} = 0$ otherwise. By a similar argument, Q' is also a permutation matrix and since j and i may replace w and v, respectively, in Equation (f) to produce Equation (e), then we let $Q_p = Q' = Q$ so that

$$Q_p(K_1 \times K_2)Q_p^T = K_2 \times K_1.$$

From Equation (1.7),

$$K_1 \times K_2 \approx K_2 \times K_1$$
.

For example, if $p_1 = 2$ and $p_2 = 3$,

	1	0	0	0	0	0	
	0	0	1	0	0	0	
o _	0	0	0	0	1	0	
$a_p =$	0	1	0	0	0	0	
	0	0	0	1	.0	0	
	Lo	0	0	0	0	1	

Let

$$K_3 = K_1 \oplus K_2 = \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix} \text{ and } \mathbf{N}_3(1) = \begin{bmatrix} \mathbf{N}_1(1) \\ \mathbf{N}_2(1) \end{bmatrix}$$

then

$$K_3^{n-1} = \begin{bmatrix} K_1^{n-1} & 0\\ 0 & K_2^{n-1} \end{bmatrix}$$

and, by Equation (1.6)

$$\mathbf{N}_{3}(n) = \begin{bmatrix} \mathbf{N}_{1}(n) \\ \mathbf{N}_{2}(n) \end{bmatrix}$$

Applying Equation (1.4),

$$x_{3n} = x_{1n} + x_{2n} \quad \text{if } K_3 = K_1 \oplus K_2. \tag{1.10}$$

Suppose $K_3 = K_1 \times K_2$ with $N_3(1) = N_1(1) \times N_2(1)$, a $p_1p_2 \times 1$ matrix of 1's. Then, by Equation (1.4), $x_{31} = x_{11}x_{21}$. Assume that $N_3(r) = N_1(r) \times N_2(r)$ for any r > 0, then

$$K_{3}N_{3}(r) = (K_{1} \times K_{2})(N_{2}(r) \times N_{1}(r)) = \sum_{j=1}^{r_{1}} k_{1ij} n_{1ji}(r)K_{2}N_{2}(r), i = 1, 2, ..., p_{1},$$
214
[Aug.

(1.9)

or $K_3N_3(r) = K_1N_1(r) \times K_2N_2(r)$, and by Equation (1.5),

$$N_{3}(r+1) = N_{1}(r+1) \times N_{2}(r+1).$$

It follows by mathematical induction that $N_3(n) = N_1(n) \times N_2(n)$ for all n and, from Equation (1.4),

$$x_{3n} = x_{1n}x_{2n} \quad \text{if } K_3 = K_1 \times K_2. \tag{1.11}$$

From definitions

$$(K_1 \oplus K_2) \times K_3 = (K_1 \times K_3) \oplus (K_2 \times K_3), \qquad (1.12)$$

32 virtual equivalences may be deduced using the commutative laws for \oplus and \times .

2. EVALUATION OF K

Theorem 2.1: If C3 holds, and if \overline{P}_i and P_j have one or more numbers common in their names, then $k_{ij} = 0$; if \overline{P}_i and P_j have no numbers common in their names, then $k_{ij} = 1$.

Proof: From Equation (1.1), $L \cdot M(n - 1) = M(n)$, and by renumbering elements,

$$\begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ 0 & k_{11} & k_{12} & \dots & k_{1p} \\ 0 & k_{21} & k_{22} & \dots & k_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & k_{p1} & k_{p2} & \dots & k_{pp} \end{bmatrix} \begin{bmatrix} m_0(n-1) \\ m_1(n-1) \\ m_2(n-1) \\ \vdots \\ m_p(n-1) \end{bmatrix} = \begin{bmatrix} m_0(n) \\ m_1(n) \\ m_2(n) \\ \vdots \\ m_p(n) \end{bmatrix}.$$

Through multiplication,

$$\begin{split} m_0(n) &= \bigcup_{1}^p m_i(n-1)(\emptyset) = \bigcup_{1}^p m_i(n-1), \\ m_j(n) &= \bigcup_{1}^p k_{ji}m_i(n-1)(P_j), \quad j = 1, 2, \dots, p, \end{split}$$

where $m_i(n-1)(P_j)$ represents the set $m_i(n-1)$ in which each element $B_r(n-1)$ has P_i as the terminal column and is augmented by the vector P_j to form a matrix $B'_r(n)$. The last two columns of $B'_r(n)$ are P_i and P_j . If P_i has one or more elements of value one adjacent to a like element in P_j , the name of \overline{P}_i must have one or more numbers in common with the name of P_j , and C3 implies $B'_r(n) \notin m_j(n)$, hence $K_{ij} = 0$. If \underline{P}_i has no elements of value one adjacent to a like element in P_j , the name of \overline{P}_i and the name of P_j must have no numbers in common and C3 implies $B'_r(n) \in m_j(n)$, so $K_{ij} = 1$.

Let $R = \overline{P}_i^T P_j = (r_{11})$, a 1×1 matrix. Then

Corollary 2.1: If C3 holds and $r_{11} = 0$, $k_{ij} = 1$; if $r_{11} > 0$, $k_{ij} = 0$.

Corollary 2.2: If Cl holds, K is symmetric.

Proof: If Cl holds, $P_i = \overline{P}_i$, so $R = (r_{11}) = R^T$ and $\overline{P}_i^T P_j = P_i^T P_j = P_j^T P_i = \overline{P}_j^T P_i$. By Corollary 2.1, if $r_{11} = 0$, $k_{ij} = k_{ji} = 1$; if $r_{11} > 0$, $k_{ij} = k_{ji} = 0$. Since 1986] $r_{11} \ge 0$, $k_{ij} = k_{ji}$ and K is symmetric.

Corollary 2.3: If C3 holds and $P_i = 0$, then $k_{ij} = 1$ for all j; $P_i \neq 0$ implies $k_{ii} = 0$.

Corollary 2.4: If C3 holds, then K can have at most one row of 1's.

Let $X = [x_i : i = 1, 2, 3, ..., r]$, $m \ge r > 0$, be the set of all the different numbers appearing in the names of the columns of P and in the AC, and let $Y = [y_i = : i = 1, 2, 3, ..., r]$ be any other set of r distinct numbers, then

Corollary 2.5: K is unchanged by replacing x_i by y_i , $i = 1, 2, 3, \ldots, r$, in P and in the AC under C3.

Definition: A proper K is a K in which there is at most one row of 1's.

Theorem 2.2: Every proper K may be derived from some P under C3 and AC.

Proof: Given $k_{ij} \in [0, 1]$. If a row K_i consists only of 1's, it is named 0 and the remaining rows are named 1, 2, 3, ..., p - 1. If no such row exists, name the rows 1, 2, 3, ..., p. Then P consists of columns P_j which are in the same sequence as the named rows of K and have the same names. Suppose K_i has an element $k_{ij} = 0$, then the AC must include $i \rightarrow j$; if $k_{ij} = 1$, then $i \neq j$. Since K is proper, there is at most one row of 1's which is named 0. All columns of P have names which are unique.

The AC under C3 may sometimes be simplified by changing the columns of P without altering K. Let d, e, and f represent three distinct cells in a segment B_j of $B_r(n)$ and let r, s, and $r \cup s$ represent sets of cells in B_{j+1} adjacent to d, e, and f, respectively. The adjacency conditions are represented by the set $[d \rightarrow r, e \rightarrow s, f \rightarrow r \cup s]$, and f may be replaced by \overline{de} in the names of P_j and in AC forming P' and the set $\overline{AC} = [d \rightarrow r, c \rightarrow s]$ which, by Theorem 2.1, yields the same K.

Example: Let

	0	0	0	0	1	1	1	
	0	0	0	0	0	0	1	
	0	0	0	0	0	0	0	
K =	0	0	0	0	1	0	0	•
	1	0	0	1	0	0	1	
	1	0	0	0	0	0	0	
	1	1 -	0	0	1	0	0	

By Theorem 2.2, K may be derived from $P = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$ under C3 with the AC

The AC may be simplified as follows:

[Aug.

Consider:

$$1 \rightarrow 2, 3, 1, 4$$

2 \rightarrow 2, 3, 1, 4, 5, 6
5 \rightarrow 2, 3, 5, 6

We can then replace 2 by $\overline{15}$. Similarly we can replace 3 by $\overline{24}$, 4 by $\overline{17}$, and 6 by $\overline{57}$, so *P* becomes $P' = (1 \ \overline{15} \ \overline{157} \ \overline{17} \ 5 \ \overline{57} \ 7)$. By renumbering in accordance with Corollary 2.5, $P' = (1 \ \overline{12} \ \overline{123} \ \overline{13} \ 2 \ \overline{23} \ 3)$ with

 $AC = [1 \rightarrow 1; 2 \rightarrow 2; 3 \rightarrow 3].$

Further examples giving P, AC, K, x_n , and recurrence relations are:

#1	$P = (0 \ 1)$ $AC = [1 \rightarrow 1]$ $x_n = \{2, 3, 5, 8, 13,\}$ $x_{n+2} - x_{n+1} - x_n = 0$	K =	$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	1 0_			
#2	$P = (0 \ 1 \ 2)$ $AC = [1 \rightarrow 1; 2 \rightarrow 2]$ $x_n = \{3, 7, 17, 41, 99, 239, \ldots\}$ $x_{n+2} - 2x_{n+1} - x_n = 0$	K =	$\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$	1 0 1	1 1 0		
#3	$P = (1 \ 2)$ $AC = [1 \rightarrow 1, 2; 2 \rightarrow 1, 2]$ $x_n = \{2, 0, 0,\}$ $x_{n+1} = 0$	K =	0 0	0 0_			
#4	$P = (0 \ 1 \ 2)$ $AC = [1 \rightarrow 1, 2; 2 \rightarrow 1, 2]$ $x_n = \{3, 5, 11, 21, 43, 85,\}$ $x_{n+2} - x_{n+1} - 2x_n = 0$	K =	$\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	1 0 0	1 0 0_		
#5	$P = (1 \ 2 \ 3 \ 4 \ 5)$ $AC = [1 \rightarrow 3, 4, 5; 2 \rightarrow 2, 3, 4, 5; 3 \rightarrow 1, 2; 4 \rightarrow 1, 2, 4; 5 \rightarrow 1, 2, 5]$ $x_n = \{5, 10, 22, 49, 112, 260, \ldots\}$ $x_{n+4} - 3x_{n+3} + 3x_{n+1} + x_n = 0$	K =	$\begin{bmatrix} 1\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}$	1 0 0 0	0 0 1 1 1	0 0 1 0 1	0 0 1 1 0
#6	$P = (0 \ 1 \ 2 \ 3)$ $AC = [1 \rightarrow 1, \ 3; \ 2 \rightarrow 2, \ 3; \ 3 \rightarrow 1, \ 2, \ 3$ also $P = (0 \ 1 \ 2 \ 12)$ $AC = [1 \rightarrow 1; \ 2 \rightarrow 2]$ $x_n = \{4, \ 9, \ 25, \ 64, \ 169, \ 441, \ \ldots\}$ $x_{n+4} - x_{n+3} - 4x_{n+2} - x_{n+1} + x_n = 0$	<u>K</u> =	$\begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$	1 0 1 0	1 1 0 0	1 0 0 0_	

Example #1 represents the sequence $x_n = F_{n+2}$. Examples #2 and #4 represent sequences of Winthrop and Horadam [2], $x_n = w_n(1, 3; 2, -1)$ and $x_n = w_n(1, 3; 1, -2)$, respectively, where w (a, b; p, q) has $w_0 = a$, $w_1 = b$, and $w_n = pw_{n-1} - qw_{n-1}$, $n \ge 2$. Example #5 illustrates $K_3 = K_1 \oplus K_2$ with $x_n = F_{n+2} + w_n(1, 3; 2, -1)$, and Example #6 illustrates $K_3 = K_1 \times K_2$ with $x_n = (F_{n+2})^2$ in which two values for P and the corresponding AC are given.

1986]

3. RECURRENCE RELATIONS

The characteristic function of K is f(y) = |yI - K| and its characteristic equation is

$$f(y) = \sum_{0}^{p} c_{i} y^{i} = 0.$$
(3.1)

Theorem 3.1:

$$\sum_{0}^{p} c_{i} x_{n+i} = 0$$

is a recurrence relation for the sequence $\{x_n : n = 1, 2, 3, \ldots\}$.

Proof: Apply the Cayley-Hamilton theorem to Equation (3.1), giving

$$\sum_{0}^{p} c_{i} K^{i} = 0.$$

Multiply each side of this on the right by $K^{n-1}N(1)$, giving

$$\sum_{0}^{p} c_i \mathbf{K}^{n-1+i} \mathsf{N}(1).$$

Then, by Equation (1.6),

$$\sum_{0}^{p} c_i \mathbf{N}(n+i) = 0.$$

Multiply on the left by \mathbf{U}^{T} , a 1 × p matrix with \mathbf{u}_{1i} = 1, giving

$$\sum_{0}^{p} c_{i} \sum_{0}^{p} \mathbf{n}_{j}(n + i) = 0,$$

and by Equation (1.4),

$$\sum_{0}^{p} c_i x_{n+i} = 0.$$

This is a recurrence relation for the sequence $\{x_n : n = 1, 2, 3, ...\}$. **Corollary 3.1**: If the characteristic equation of *K* is

$$(y - d) \sum_{0}^{p-1} c_i y^i = 0$$

and if K - dI is nonsingular, then

$$\sum_{0}^{p-1} c_i x_{n+i} = 0$$

is a recurrence relation for $\{x_n : n = 1, 2, 3, \ldots\}$.

[Aug.

Proof: By the Cayley-Hamilton theorem,

$$(K - dI) \sum_{0}^{p-1} c_i K^i = 0.$$

If K - dI is nonsingular, apply its inverse to both sides of the equation, so

$$\sum_{0}^{p-1} c_i x^i = 0.$$

Proceed as in Theorem 3.1 to show that $\sum_{0}^{p-1} c_i x_{n+i} = 0$ is the desired recurrence relation.

Note that if N(1), in which $n_{i1} = 1$, were defined as some other vector of size $p \times 1$, the new sequence $\{x_n\}$ would still possess the same recurrence relation.

Let

$$f_{j}(y) = \sum_{0}^{p_{j}} c_{jq} y^{q} = 0$$

represent the characteristic equation for $K_j: j = 1, 2, 3$.

Theorem 3.2: If $K_3 = K_1 \oplus K_2$, a recurrence relation for the sequence $\{x_{3n} : n = 1, 2, 3, \ldots\}$ is

$$\begin{aligned} \sum_{0}^{p_{1}+p_{2}} \sum_{q+r=i} c_{1q} c_{2r} x_{3(n+1)} &= 0. \\ \text{Proof:} \quad \sum_{0}^{p_{3}} c_{3i} y^{i} &= \begin{vmatrix} yI - K_{1} & 0 \\ 0 & yI - K_{2} \end{vmatrix} &= |yI - K_{1}| |yI - K_{2}| \\ &= \sum_{0}^{p_{1}} c_{1q} y^{q} \sum_{0}^{p_{2}} c_{2r} y^{r}, \end{aligned}$$
then

$$c_{3i} = \sum_{q+r=i} c_{1q} c_{2r}$$

and, from Theorem 3.1, the recurrence relation for the sequence $\{x_{3n}: n = 1, 2, \dots, n = 1, \dots, n$ 3, ...} is

$$\sum_{0}^{p_{1}+p_{2}} \sum_{q+r=i}^{c_{1q}c_{2r}} x_{3(n+i)} = 0. \quad \blacksquare$$

Corollary 3.2: If $K_3 = 2K_1$, the recurrence relation for x_{3n} is

$$\sum_{0}^{p_{1}} c_{1i} x_{n+i} = 0.$$

Consider the direct product $K_3 = K_1 \times K_2$. Let K_1 be partitioned into four square matrices.

$$K_{1} = \begin{bmatrix} A_{1} & A_{2} \\ A_{3} & A_{4} \end{bmatrix}, \quad K_{1} \times K_{2} = \begin{bmatrix} A_{1} \times K_{2} & A_{2} \times K_{2} \\ A_{3} \times K_{2} & A_{4} \times K_{2} \end{bmatrix}.$$

1986]

Let $Q = yI - K_3$, then

$$Q = \begin{bmatrix} yI - A_1 \times K_2 & -A_2 \times K_2 \\ -A_3 \times K_2 & yI - A_4 \times K_2 \end{bmatrix}.$$

Multiply the top row of Q by $(A_3 \times K_2)(yI - A_1 \times K_2)^{-1}$ and add this to the second row [1], then

$$Q| = \begin{vmatrix} yI - A_1 \times K_2 & -A_2 \times K_2 \\ 0 & yI - A_4 \times K_2 - (A_3 \times K_2)(yI - A_1 \times K_2)^{-1}(A_2 \times K_2) \end{vmatrix}.$$

If A_1 and A_3 commute, then

$$|Q| = |(yI - A_1 \times K_2)(yI - A_4 \times K_2) - (A_3 \times K_2)(A_2 \times K_2)| = 0$$

is the characteristic equation for K_3 . This reduces to

$$\left|y^{2}I - y(A_{1} + A_{4}) \times K_{2} + (A_{1}A_{4} - A_{3}A_{2}) \times K_{2}^{2}\right| = 0.$$
(3.2)

The recurrence relation for the sequence $\{x_{3n}: n = 1, 2, 3, \ldots\}$ may then be derived if K_1 and K_2 are known.

Example: Let $K_1 = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$ where $K_2 = A_1 = A_2 = A_3 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and $A_4 = 0$. From Equation (3.2), the characteristic equation is

$$|yI - K_3| = \begin{vmatrix} y^2 I - y \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = 0$$

or

$$y^8 - y^7 - 13y^6 - 8y^5 + 20y^4 + 8y^3 - 13y^2 + y + 1 = 0.$$

The recurrence relation for the sequence $\{x_n = (F_{n+2})^3\}$ is

$$x_{n+8} - x_{n+7} - 13x_{n+6} - 8x_{n+5} + 20x_{n+4} + 8x_{n+3} - 13x_{n+2} + x_{n+1} + x_n = 0.$$

REFERENCES

- 1. F. R. Gantemacher. The Theory of Matrices, Vol. I. New York: Chelsea Pub-
- lishing Company, 1959. 2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3, no. 3 (1965):161.

[Aug.