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1 INTRODUCTION 

We will enumerate the different m x m matrices Br(n)9 n = 1, 2, 3, ..., r = 1, 
29 3, ...s xns having elements from the set [09 1], where the allowed column 
vectors Bj and some conditions between elements b^j are specified. That is, 

CI: 

C2: 

bij 

b<J 

1 KJ 

= 1 =» 

and 

i = 05 

0 

bi+i3j = 09m>i>i9 

**-w 

ij 

rnj 

= 1 =>bn os 
= 1 = ^ m _ w = 0. 

The number of different matrices Br{n) is called xn and is the general term of 
a combinatorial sequence {xni n = ls 29 3S .. . } . The vector Bj = Pj is one of 
the p distinct column vectors in an m x p matrix P called the primitive matrix. 
The vector Pj is named in accordance with the following rules: 

1. The name of the zero vector is 0; the remaining vectors may be identi-
fied by the positions of lfs in them. 

2. The numbers in these names, if more than one, are conveniently given in 
increasing order with a bar placed over them. 

3. The dimension m of Bj is greater than or equal to the largest number 
in its name. 

EXAMPLES 

Name of Pj 

0 

1 

2 

~n 
13 

T23 

0 

1 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 

% 

0 . . . 

0 . . . 

0 . . . 

0 . . . 

1 0. . 

1 0 . 

0 

0 

0 

0 

. . 0 

. . 0 
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m 

1 

2 

3 

4 

Size 

Some Primitive Matrices P 

Under C2 

(0 1) 

(0 1 2) 

(0 1 13 2 3) 

(0 1 "13 14 2 24 3 4) 

m x Fm+2 

Unrestricted 

(0 1) 
(0 1 12 2) 

(0 1 Tl 123 l3 2 23 3) 
(0 1 12 123 1234 124 13 134 14 

234 "24 3 "34 4) 

m x 2m 

2 23 

Any figure consisting of a succession of like segments each of which is 
divided into m cells which can be occupied by either a 1 or a 0 under given 
conditions may be represented by a matrix Br(n) in which n is the number of 
segments in the figure. The cells in any segment must be numbered in a given 
way (1, 2, 3, . .., m) and correspond to the row numbers in Br(n). Figures in 
which only cells of like number in adjacent segments are adjacent are said to 
be regular. This adjacency condition (AC) is symbolized by bi •* bi. Figures 
in which at least one cell bij in the j t h segment is adjacent to more than one 
cell in the (j + l)st segment (bs,j + \9 bt,j + i> > • •) are said to be irregular. 
This AC is symbolized by bi •> bs, bt* 

Segment 
3 J + 1 

1 

2 

3 

1 

2 

3 

(a) Regular 
Figure 

Figure 1 

Consider a prism of n segments formed of segments of unit height on bases 
A or B (Figure 2). If the segments have equal bases A or B9 P = (0 1 2 3) is 
a possible primitive matrix and bi + bi. If the successive segments have bases 
that alternate between A and B, P may be unchanged but l-*2, 3;2->l;3-*-l. 

Condition 1 may be replaced by the more general condition C3: any two ad-
jacent cells, each from a different segment: cannot both contain the number 1. 

The matrix P has a companion matrix P in which the column Pj has a coun-
terpart "Pj in P obtained by applying the given AC9 bi •* bs> bt> ...5 to each 
number i in the name of Pj and ordering the resulting numbers without repeti-
tion. A bar is placed over these numbers to distinguish the columns of P. 
That is5 if P = (1 T2 "13" 2 3) in Figure 1(b), then P = (12 123 123 23 3). 

, . (see Fig. 1). 

Segment 
3 J + 1 

1 

2 

3 

1 

2 

3 

1 -> 1, 

2 + 2, 

3 + 3 

2 

3 

(b) Irregular 
Figure 
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Base A Base B 

Figure 2 

Define the (p+1) x 1 set matrix M(l) with elements consisting of sets of 
matrices such that 7^(1) = 09 the empty set9 and ^(1) = [Pi_1]9 where p + 1 > 
i > 1 and L is the (p+1) x (p+1) partitioned matrix 

L = 

where 0 is the p x 1 zero vector, U is (p+1) x 1 with u± = 03 and u^ = 1 if 
p + 1 > £ > 1. A matrix i£s called the kernels is p x p with K^ G [0S 1] and 
is a function of P and the given AC as described later. 

A special product is defined for L and a conforming set matrix generating 
another set matrix as a product. 

L* Miri - 1) = M(n)9 n > 1, 

hence 

(L.)n_1M(l) = M(n), 

(1.1) 

(1.2) 

The expression Zjim^in- 1) (P̂ _-,_) represents the result of augmenting each 
member of the set m^(n- 1) by appending the vector P-_x on the right if 

If £ ^ 

m1(n) 

m A (n) 

05 this expression represents 0. 

P + i 

U KimM - i) 
2 

o . . -X / J ^ 

Define # (1 ) as t h e v e c t o r w i t h n1(l) = 0 and rij(l) 

LN(n - 1) = N(n)5 n > 1. 

1 if p + 1 > j > 1. Let 

(1.3) 

The sets mj(n)9 p + 1 > J > 1 are disjoints and their cardinality is un-
changed by appending columns to their matrix elements. It can be shown by 
mathematical induction that N(n) is a vector with n1 (n) = xn_1 and that rij (n) 
is the number of matrices Bv(ri) having Pj_1 for the nth column. 

Let Hn be the p x 1 matrix with n̂ (tt) = wi+1(n), p > i > 19 then 

P+1 P 
xn = n (w + 1) = Y* ni(n) = £ ni(n). 

2 1 
(1.4) 
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Example: Let Br(n) represent a 2 x n matrix with P = [0 1], If CI holds, 

k = 
1 1 

1 0 
, M(l) 

0 
[0] 

UL 
, Nil) = 

0 

1 

_!__ 
, and L = 

0 

0 

__0 

1 

1 

1 

1 
1 

0 

LM(n - 1) = M(n) and LN(n - 1) = i!7(n), 

M(l) 

M(2) = 

0 
[0] 

UL 
9 

[ 0 , 1] " 
[00 , 10] 

[01] _ 
9 

[00 , 10 , 01] 

[000, 100, 010] 

[ 0 0 1 , ] L01] 

tf(l) 

tf(2) = 

M(3) = 

Equation (1.3) implies 

ZN(n) = N(n + 1) 

Z"N(1) = N(n + 1). 

NO) = 

2, 

9 *&2 "" ' 

*„ = ^ 

(1.5) 

(1.6) 

Let kernel Kr yield a value n±(n + 1) = xrn9 then if Z]_ and Z2 yield xln = 
#2n they are said to be virtually equivalent and K\ * K2» Virtual equivalence 
is an equivalence relation. 

Let Qr represent a p x p permutation matrix, i.e., a square matrix whose 
elements in any row or column are all zero except for one element which is one. 
There are p! such matrices and since I, lT = n-1 

Zn_1N(l) = N(n) and, if K is replaced by QpKQ'19 

From Equation (1.6), 

w/s;1)""1^!) = yn-lnT\ N(l) „Kn lH{l) .N(n), 

From Equation (1.4), xn = Ẑ 1nt;(n) for K and for QrKQr; the n^(n) are summed in 
possibly a different order. The result is the same, so 

Let Kr be a pr X p kernel, 2» = 1, 2, 3, and define the direct sum 

"k1 0" 

(1.7) 

Zx © K2 
0 ^2j 

212 [Aug. 



SOME COMBINATORIAL SEQUENCES 

Permutation matrices Q_ and Q~t can be constructed so that 

If (7 e Qs, then <?.. = 1 if 
• v 

£ 

J 

1 

Pi + 1 

2 

Pi + 2 

P2 

Pi + P 2 

P 2 + 1 

1 

P2 + 2 

2 

Pi + P i 

Pi 

and g . . = 0 otherwise. Let px = 2 and p2 = 3, then 
•13 

0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
1 0 0 0 0 
0 1 0 0 0 

From Equat ion ( 1 . 7 ) , 

A]_ © A 2 * -̂-2 ® 1 °  

Define the direct product K1 x Z2 as the partitioned matrix 

^111^2 k112K2 ... ^npi^2 

£, x z9 

^12 1^2 K12 2Z2 . . . ^12p^ 2 

^lp11^2 ^•lp12^2 • ° ° klp^pK2 

in which fclrs £ Zx and &2£w E ^ 2 8 

Let 
(**, € *i X Z2 

Kirs K-ztu ~ \ 

then 

and 
£ = ( r - l ) p 2 + t 

j = (t - l ) p x + r. 

From Equat ion ( a ) , 

t - 1 = (£ - 1) mod p2 

"i - r and 

2» - 1 

(1.8) 

(a) 

(b) 

(c) 

(d) 

in which [x] represents the greatest integer in the number x. Substituting 
Equations (c) and (d) in (b)5 

0 = Pi((^ ~ x) m o d P2) + L p2 . 
+ i . 
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If •£, j , p, and t are replaced by V, W, s, and u, respectively. Equations (a)-
(e) still hold and Equation (e) becomes 

p±((v - 1) mod p2) + m + i . (f) 

Consider a matrix Q where q^- = 1 if Equation (e) is satisfied and q^ = 0 
otherwise. From Equation (a) if i is given9 r and t are uniquely defined, and 
from Equation (b) J is uniquely defined. Conversely, if j is given, then i is 
uniquely defined. This implies that every row and column of Q has just one 
element 1 and all other elements are zero. Q is then a permutation matrix. 

Consider the matrix Q! where qf = 1 if Equation (f) is satisfied and qjw = 
0 otherwise. By a similar argument, Qr is also a permutation matrix and since 
j and -i may replace W and V, respectively, in Equation (f) to produce Equation 
(e), then we let Qp = Qf = Q so that 

From Equation (1.7), 

x K, 

K± x K2 •* i 

For example, if px 

(1.9) 

2 and p 2 = 3, 

Let 

% 

K3 

= 

1 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 

= K-^ © Ap 

0 
1 
0 
0 
0 
0 

= 
K 

__0 

0 
0 
0 
0 
1 
0 

1 

0 
0 
1 
0 
0 
0 

0 " 

* 2 _ 

0 
0 
0 
0 
0 
1_ 

• 

and N 3 ( l ) = 
MD 

_N2(1)_ 
then 

vn -1 
K? 

0 

and, by Equation (1.6) 

"N^n)' 
Nq(n) = 

_N2 (n) 

Applying Equation (1.4), 

Xln + X2n if Z 0 ^ ®K2. (1.10) 

Suppose Z 3 = K± x Z 2 with N3(l) = Nx(l) x N 2(l), a p±p2 x 1 matrix of lfs. 
Then, by Equation (1.4), x31 = %11x21> Assume that N3 (r) = h^ (r) X N 2 ( P ) for 
any r > 0, then 

Pi 
X 3 N 3 ( P ) = (Zx x Z2)(N2(p) x N X ( P ) ) = £ klidnldi(r)K2U2(r)9 i = 1, 2, .. . , P l , 

J ~" -L 
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or K3H3(r) = Z 1 N 1 ( P ) X K2H2(r), and by Equation (1.5), 

N 3 ( P + 1) = Nx(r + 1) x N 2 ( P + 1). 

It follows by mathematical induct ion tbat N^ (?z) = N-̂  (?2) x Jsĵ  (YI) for all ?2 and, 
from Equation (1.4)5 

X3n = *lnX2n i f KS = #1 X K2• C 1 ' 1 1 ) 

From definitions 

(Zx © Z2) x Z3 = (£3. x Z3) © (Z2 x K3)9 (1-12) 

32 virtual equivalences may be deduced using the commutative laws for © and x, 

2. EVALUATION OF K 

Theorem 2.1: If C3 holds, and_if P̂  and Pj have one or more numbers common in 
their names, then k;n- = 0 ; if Pn- and PJ have no numbers common in their names, 
then kij = 1. 

Proof: From Equation (1.1), L • M(n - 1) = M(n), and by renumbering elements, 

[~0 1 1 

0 k11 k12 

0 fc21 fc22 

0 kpi kp2 

Through multiplication, 
P 

m0(n) = U^(w ~ 1)(0) = U^i(^ ~ 1)» 
l l 
P 
l 

where 777̂  (ft - l)(Pj) represents the set m^(n - 1) in which each element Br(n - 1) 
has P^ as the terminal column and is augmented by the vector Pj to form a 
matrix B^(ri) . The last two columns of B!

r(n) are P^ and Pj . If P̂- has one _or 
more elements of value one adjacent to a like element in Pj9 the name of P^ 
must have one or more numbers in common with the name of Pj , and C3 implies 
B'v(n) 0 m-j(n) , hence Z^-= 0. If P-i has no elements of value one adjacent to a 
like element in P j, the name of P^ and the name of Pj must have no numbers in 
common and C3 implies B^(n) e mAn) , so jf̂  • = 1. • 

Let R = ~PfPj = ( P 1 1 ) 9 a 1 x 1 matrix. Then 

Corollary 2.1: If C3 holds and rxl = 0 , /^ • = 1; if r n > 0, k^j = 0 . 

Corollary 2.2: If CI holds, K is symmetric. 

Proof: If CI holds, Pi = ~Pi3 so R = (P 1 X ) = i?̂  and P ^ = pfp j = P/P^ = P/P^ . 
By Corollary 2.1, if PX1 = 0, ktj = ?c ̂  = 1; if p n > 0, ^ ^ = kjt = 0. Since 

IP 
v2p 

w0(n - 1) 

m1(n - 1) 

m2(n - 1) 

m0(n) 

m1(n) 

m2(n) 

"-PP mAn - 1) mp(n) 
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p n ^ 0» ^-ij = kji an<3 % is symmetric. » 

Corollary 2.3: If C3 holds and P- = 0, then 
ka = 0. 

^^3 1 for all j; Pv ^ 0 implies 

Corollary 2.4: If C3 holds, then K can have at most one row of l's. 

Let X = [xi : i = 1,2,3, ..., r], m > r > 0, be the set of all the differ-
ent numbers appearing in the names of the columns of P and in the AC, and let 
Y ~ iUi = : t = lj 2, 3, ..., p] be any other set of p distinct numbers, then 

Corollary 2.5: K is unchanged by replacing i^ by ^ , i - 1,2, 3, ..., P, in P 
and in the AC under C3. 

Definition: A proper K is a K in which there is at most one row of l's. 

Theorem 2.2: Every proper K may be derived from some P under C3 and AC• 

Proof: Given k^ € [0, 1]. If a row Ki consists only of l's, it is named 0 
and the remaining rows are named 1, 2, 3, . . . , p - 1. If no such row exists, 
name the rows 1, 2, 3, . .., p. Then P consists of columns Pj which are in the 
same sequence as the named rows of K and have the same names. Suppose Ki has 
an element k^j = 0, then the AC must include i •> j; if k^j - 1, then i -A j. 
Since K is proper, there is at most one row of l's which is named 0. All col-
umns of P have names which are unique. • 

The AC under C3 may sometimes be simplified by changing the columns of P 
without altering K. Let d9 es and / represent three distinct cells in a seg-
ment Bj of Br(n) and let P, s, and P U S represent sets of cells in B-+1 adja-
cent to d, e9 and /, respectively. The adjacency conditions are represented by 
the set [d -*- P, e •+ s, f ->• r u s ] , and / may be replaced by de in the names of 
Pj and in AC forming Pf and the set AC = [d -+ v9 <? -> s] which, by Theorem 2.1, 
yields the same K. 

Example: Let 

K 

0 
0 
0 
0 
1 
1 
1 

0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 

1 
0 
0 
1 
0 
0 
1 

1 
0 
0 
0 
0 
0 
0 

1 
1 
0 
0 
1 
0 
0 

By Theorem 2.2, K may be derived from P = ( 1 2 3 4 5 6 7 ) under C3 with the AC 

1 -* 1, 2, 3, 4 
2 -> 1, 2, 3, 4, 5, 6 
3 + 1, 2, 3, 4, 5, 6, 7 
4 -> 1, 2, 3, 4, 6, 7 
5 -> 2, 3, 5, 6 
6 + 2 , 3 , 4, 5, 6, 7 
7 -> 3, 4, 6, 7. 

The AC may be simplified as follows: 
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Consider: 

1 -> 2, 35 1, 4 
2 -> 2, 3, 1, 4S 59 6 
5 + 29 39 5, 6 

We can then replace 2 by 15. Similarly we can replace 3 by 24s 4 by 179 and 6 
by 57 9 so P becomes P' = (1 15 157 1_7_ 5 57 7) . By renumbering in accor-
dance with Corollary 2.5, Pr = (1 12 123 13 2 23 3) with 

AC = [1 •> 1; 2 -> 2; 3 -> 3]. 

Further examples giving Ps AC9 K5 xnS and recurrence relations are: 

1 l" #1 P = (0 1) 
AC = [1 •> 1] 
xn = {2S 39 59 89 13, 
&<*, A. r> ~~ &v> -i- n ~~ Xn — \J 

•} 
K 

1 0 

#2 

#3 

#4 

#5 

#6 

P = (0 1 2) 
AC = [1 -> 1; 2 -* 2] 
xn = {39 79 17, 41, 99, 239, 
x. n+2 2x. n + l ~ X., 0 

P = (1 2) 
AC = [1 -> 1, 2; 2 -> 1, 2] 
;rn = {29 0, 09 ...} 
xn + l = °  

P = (0 1 2) 
4C = [1 -> 1, 2; 2 + 1, 2] 
;un = {3, 59 11, 21, 43, 85, ... 
r̂c + 2 ~ Xn+1 ~ ^Xn = ^ 

P = (1 2 3 4 5) 
AC = [1 -> 3, 4, 5; 2 -> 2, 3, 4, 

3 -̂  1, 2; 4 •> 1, 2, 4; 
5 + 1 , 2 , 5] 

xn = {5, 10, 229 49, 112, 260, 
x. n + h 3x

n+3 + ^Xn+l + Xn 0 
. . } 

P = (0 1 2 3) 
AC = [1 ->• 1, 3; 2 ->_2, 3; 3 -> 1, 2, 3 
also P = (0 1 2 12) 
AC = [1 -* 1; 2 -> 2] 
^n = {4, 9, 25, 64, 169, 441, ...} 
x x 4x 

tt + 2 n + l « 0 

z = 

K = 

X 

1 
1 
1 

0 

0 

"l 
1 

_1 

"l 
1 
0 
0 
0 

1 
0 
1 

o" 
0_ 

1 

0 
0 

1 
0 
0 
0 
0 

1 
1 

0_ 

l"1 

0 
0__ 

0 
0 
1 
1 
1 

0 
0 
1 
0 
1 

o" 
0 
1 
1 
0 

1 
1 
1 
1 

1 
0 
1 
0 

1 
1 
0 
0 

1 
0 
0 
0 

Example #1 represents the sequence xn= Fn+2. Examples #2 and #4 represent 
sequences of Winthrop and Horadam [2], xn = Wn(l9 3; 2, -1) and Xn = Wn(l9 3; 
1, -2), respectively, where w (a, b; p, q) has WQ = a, w1 = b9 and wn = pwn_1 -
qwn_15 n > 2. Example #5 illustrates K3 = K1 0 i£2 with xn = Pn + 2 + Wn(l, 3; 
29 -1), and Example #6 illustrates Z3 = ̂  x Z2 with 2?n = (P n + 2) 2 in which two 
values for P and the corresponding AC are given. 
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3. RECURRENCE RELATIONS 

The characteristic function of K is f(y) - \yl - K\ and its characteristic 
equation is 

f(y) = E ^ = o. (3.1) 
o 

Theorem 3» 1 •' 
P 

0 

is a recurrence relation for the sequence {xn i n = 1, 2, 3, ...}. 

Proof: Apply the Cayley-Hamilton theorem to Equation (3.1), giving 

tc.K' = 0. 
o ^ 

Multiply each side of this on the right by Zn_1N(l), giving 

i>^n- l + iN(i) . 
o 

Then, by Equation (1.6), 

P 
£ ^N(n + i) = 0. 

Multiply on the left by U , a 1 x p matrix with u ^ = 1, giving 

P P 

0 0 

and by Equation (1.4), 

P 

o 

This is a recurrence relation for the sequence {xn in = 1, 2, 3, ...}. • 

Corollary 3-1• If the characteristic equation of K is 

P-1 

(2/ - d) E^yi = o 

o 

and if K - dl is nonsingular, then 
p-i 

E c.x x. = 0 
0 

is a recurrence relation for {xn : n = 1, 2, 3, ...}. 
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Proof: By the Cayley-Hamilton theorem5 

(X - dD^CiK* = 0. 
o 

If K - dl is nonsingular, apply its inverse to both sides of the equation, so 

p-l 
X > ^ = 0. 
o 

P-l 
Proceed as in Theorem 3.1 to show that E °ix

n+i ~ 0 i-s t n e desired recurrence 
relation. • 0 

Note that if N(l), in which n^x = 1, were defined as some other vector of 
size px 1, the new sequence {xn} would still possess the same recurrence rela-
tion. 

Let 

fd(y) = ! ^ - o 

represent the cha rac t e r i s t i c equation for Kj i J = 19 29 3. 

Theorem 3-2: If Z3 = K1 ® K29 a recurrence r e l a t ion for the sequence {x3n : n = 
1, 2, 3, . . . } i s 

Pi + P2 

E E 
0 q+ v= i 

C 1 rr C OY>% lq^2rlAj3(n+l) 0 . 

Proof: E ^3;# 
i/J - K± 

0 z/J - K2 

\yl - Z j j z / J - K2 

then 

Pi P2 

E °iqyq HQiryr> 
0 0 

'3i E *i 
q + r = ̂  

q° 2r 

and5 from Theorem 3.1, the recurrence relation for the sequence {xSn : n = 1, 2, 
3, ...} is 

Pi + P2 
Z^ 2^ .Cl^c2p^3(n + i) 0. 
0 ? + r= i 

Corollary 3.2: If K3 = 2K1, the recurrence relation for x3n is 

Pi 
E^li^n + i = 0-
0 

Consider the direct product K3 = K± x Z2. Let Zx be partitioned into four 
square matrices. 

ii ^ 

h A Kx x X2 A x K A x x 
^ 3 2 it 2 
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Let Q = yl - Z3, then 

~yl - A1 x K2 12 x Z2 

-A3 x Z2 yl - Ak x Z2J 

Multiply the top row of Q by 04 3 x K2)(yl - A1 x K2) 1 and add this to the sec-
ond row [1]5 then 

\yl - A± x z2 -42 x z2 

I 0 yl - Ak x Z 2- 043 x Z2)(z/J-^1 x K2)~1(A2 x Z2) 

If i4x and ;43 commute, then 

|g| = \(yl ~ A± x Z2)(z/J - ̂  x Z 2 ) - (A3 x Z 2)U 2 x Z 2)| = 0 

is the characteristic equation for Z . This reduces to 

\y2I - y(A± + Ah) x Z2 + 04,^ - ̂ 2 ) x Z 2| = 0. (3.2) 

The r e c u r r e n c e r e l a t i o n fo r t he sequence {x^ : n = 1, 2 , 3 , . . . } may then b 
de r ived i f Z 1 and Z2 a r e known. 

Example: Let K1 = 
Ai A2 

A3 A , 
where Zn A = A H1 H2 

From Equat ion ( 3 . 2 ) , t he c h a r a c t e r i s t i c equa t i on i s 

1 

1 

1 

0 
and Ah = 0 . 

1 ^ - K3 y * - y 

1 1 1 1 
1 0 1 0 
1 1 0 0 
1 0 0 0 

4 2 2 1 
2 2 1 1 
2 1 2 1 
1 1 1 1 

yB - y7 - 132/6 - 8y5 + 2 0 ^ + Sy3 - I3y2 + y + 1 = 0. 

The r e c u r r e n c e r e l a t i o n for the sequence {xn = (-^n + 2 ) } I s 

xn + 8 ~ xn + 7 ~ ^ ^ n + 6 ~ ^ w + 5 + ^ O ^ + i* + &Xn + 3 ~ ^Xn + 2 + xn + l + xn ~ ®' 
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