SOME COMBINATORIAL SEQUENCES

JOSEPH W. CREELY
31 Chatham Place, Vincetown, NJ 08088
(Submitted January 1983)

1. INTRODUCTION

We will enumerate the different $m \times m$ matrices $B_{r}(n), n=1,2,3, \ldots, r=1$, $2,3, \ldots, x_{n}$, having elements from the set $[0,1]$, where the allowed column vectors B_{j} and some conditions between elements $b_{i j}$ are specified. That is,

$$
\begin{aligned}
& \mathrm{C} 1: \quad b_{i j}=1 \Rightarrow b_{i, j-1}=0, \\
& \mathrm{C} 2: \quad b_{i j}=1 \Rightarrow\left\{\begin{array}{l}
b_{i-1, j}=0 \\
b_{i+1, j}=0, m>i>1,
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& b_{1 j}=1 \Rightarrow b_{2 j}=0, \\
& b_{m j}=1 \Rightarrow b_{m-1, j}=0 .
\end{aligned}
$$

The number of different matrices $B_{r}(n)$ is called x_{n} and is the general term of a combinatorial sequence $\left\{x_{n}: n=1,2,3, \ldots\right\}$. The vector $B_{j}=P_{j}$ is one of the p distinct column vectors in an $m \times p$ matrix P called the primitive matrix. The vector P_{j} is named in accordance with the following rules:
l. The name of the zero vector is 0 ; the remaining vectors may be identified by the positions of l's in them.
2. The numbers in these names, if more than one, are conveniently given in increasing order with a bar placed over them.
3. The dimension m of B_{j} is greater than or equal to the largest number in its name.

EXAMPLES

Name of P_{j}	P_{j}					
0	0	0	0	\ldots	0	
1	1	0	0	\ldots	0	
2	0	1	0	\ldots	0	
$\overline{12}$	1	1	0	\ldots	0	
$\overline{13}$	1	0	1	0	\ldots	0
$\overline{123}$	1	1	1	0	\ldots	0

m	Some Primitive Matrices P	
	Under C2	Unrestricted
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \left(\begin{array}{ll} 0 & 1 \end{array}\right) \\ & \left(\begin{array}{lll} 0 & 1 & 2 \end{array}\right) \\ & \left(\begin{array}{llll} 0 & 1 & \overline{13} & 2 \end{array}\right. \\ & \left(\begin{array}{llllll} 0 \end{array}\right. \\ & \left(\begin{array}{llllll} 13 & \overline{14} & 2 & \overline{24} & 3 & 4 \end{array}\right) \end{aligned}$	
Size	$m \times F_{m+2}$	$m \times 2^{m}$

Any figure consisting of a succession of like segments each of which is divided into m cells which can be occupied by either a 1 or a 0 under given conditions may be represented by a matrix $B_{r}(n)$ in which n is the number of segments in the figure. The cells in any segment must be numbered in a given way ($1,2,3, \ldots, m$) and correspond to the row numbers in $B_{r}(n)$. Figures in which only cells of like number in adjacent segments are adjacent are said to be regular. This adjacency condition $(A C)$ is symbolized by $b_{i} \rightarrow b_{i}$. Figures in which at least one cell $b_{i j}$ in the j th segment is adjacent to more than one cell in the $(j+1)^{\text {st }}$ segment $\left(b_{s, j+1}, b_{t, j+1}, \ldots\right)$ are said to be irregular. This $A C$ is symbolized by $b_{i} \rightarrow b_{s}, b_{t}, \ldots$ (see Fig. 1).

Figure 1
Consider a prism of n segments formed of segments of unit height on bases A or B (Figure 2). If the segments have equal bases A or $B, P=\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right)$ is a possible primitive matrix and $b_{i} \rightarrow b_{i}$. If the successive segments have bases that alternate between A and B, P may be unchanged but $1 \rightarrow 2,3 ; 2 \rightarrow 1 ; 3 \rightarrow 1$.

Condition 1 may be replaced by the more general condition C3: any two adjacent cells, each from a different segment cannot both contain the number 1.

The matrix P has a companion matrix \bar{P} in which the column P_{j} has a counterpart \bar{P}_{j} in \bar{P} obtained by applying the given $A C, b_{i} \rightarrow b_{s}, b_{t}, \ldots$, to each number i in the name of P_{j} and ordering the resulting numbers without repetition. A bar is placed over these numbers to distinguish the columns of \bar{P}. That is, if $P=\left(\begin{array}{l}1 \overline{12} \overline{13} 23)\end{array}\right.$

Figure 2

Define the $(p+1) \times 1$ set matrix $M(1)$ with elements consisting of sets of matrices such that $m_{1}(1)=\emptyset$, the empty set, and $m_{i}(1)=\left[P_{i-1}\right]$, where $p+1 \geqslant$ $i>1$ and L is the $(p+1) \times(p+1)$ partitioned matrix

$$
L=\left(\begin{array}{cc}
& U^{T} \\
\hdashline 0 & K
\end{array}\right),
$$

where 0 is the $p \times 1$ zero vector, U is $(p+1) \times 1$ with $u_{1}=0$, and $u_{i}=1$ if $p+1 \geqslant i>1$. A matrix K, called the kernel, is $p \times p$ with $K_{i j} \in[0,1]$ and is a function of P and the given $A C$ as described later.

A special product is defined for L and a conforming set matrix generating another set matrix as a product.

$$
\begin{equation*}
L \cdot M(n-1)=M(n), n>1, \tag{1.1}
\end{equation*}
$$

hence

$$
\begin{equation*}
(L \cdot)^{n-1} M(1)=M(n) . \tag{1.2}
\end{equation*}
$$

The expression $\ell_{j i} m_{i}(n-1)\left(P_{j-1}\right)$ represents the result of augmenting each member of the set $m_{i}(n-1)$ by appending the vector P_{j-1} on the right if $\ell_{j i}=$ 1. If $\ell_{j i}=0$, this expression represents \emptyset.

$$
\begin{aligned}
& m_{1}(n)=\bigcup_{2}^{p+1} \ell_{1 i} m_{i}(n-1) \\
& m_{j}(n)=\bigcup_{2}^{p+1} \ell_{j i} m_{i}(n-1)\left(P_{j-1}\right), j>1
\end{aligned}
$$

Define $N(1)$ as the vector with $n_{1}(1)=0$ and $n_{j}(1)=1$ if $p+1 \geqslant j>1$. Let

$$
\begin{equation*}
\operatorname{LN}(n-1)=N(n), n>1 \tag{1.3}
\end{equation*}
$$

The sets $m_{j}(n), p+1 \geqslant j>1$ are disjoint, and their cardinality is unchanged by appending columns to their matrix elements. It can be shown by mathematical induction that $N(n)$ is a vector with $n_{1}(n)=x_{n-1}$ and that $n_{j}(n)$ is the number of matrices $B_{r}(n)$ having P_{j-1} for the nth column.

Let \mathbf{N}_{n} be the $p \times 1$ matrix with $\mathbf{n}_{i}(n)=n_{i+1}(n), p \geqslant i>1$, then

$$
\begin{equation*}
x_{n}=n_{1}(n+1)=\sum_{2}^{p+1} n_{i}(n)=\sum_{1}^{p} \mathbf{n}_{i}(n) . \tag{1.4}
\end{equation*}
$$

1986]

Example: Let $B_{r}(n)$ represent a $2 \times n$ matrix with $P=[0 \quad 1]$. If C 1 holds,

$$
\begin{aligned}
& k=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], \quad M(1)=\left[\begin{array}{c}
\emptyset \\
{[0]} \\
{[1]}
\end{array}\right], \quad N(1)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \text { and } L=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] . \\
& L M(n-1)=M(n) \\
& \text { so } M(1)=\left[\begin{array}{c}
\emptyset \\
{[0]} \\
{[1]}
\end{array}\right], N(1)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \\
& M(2)=\left[\begin{array}{c}
{[0,1]} \\
{[00,10]} \\
{[01]}
\end{array}\right], \\
& M(3)=\left[\begin{array}{c}
{[00,10,01]} \\
{[000,100,010]} \\
{[001,101]}
\end{array}\right], N(2)=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right], x_{1}=2, \\
& N(3)=\left[\begin{array}{l}
3 \\
3 \\
2
\end{array}\right], x_{2}=3, \\
& x_{n}=F_{n+2}
\end{aligned}
$$

Equation (1.3) imp1ies

$$
\begin{align*}
& K \mathbf{N}(n)=\mathbf{N}(n+1) \tag{1.5}\\
& K^{n} \mathbf{N}(1)=\mathbf{N}(n+1) \tag{1.6}
\end{align*}
$$

Let kernel K_{r} yield a value $n_{1}(n+1)=x_{r n}$, then if K_{1} and K_{2} yield $x_{1 n}=$ $x_{2 n}$ they are said to be virtually equivalent and $K_{1} \approx K_{2}$. Virtual equivalence is an equivalence relation.

Let Q_{r} represent a $p \times p$ permutation matrix, i.e., a square matrix whose elements in any row or column are all zero except for one element which is one. There are p ! such matrices and since $Q_{r} Q_{r}^{T}=I, Q_{r}^{T}=Q_{r}^{-1}$. From Equation (1.6), $K^{n-1} \mathrm{~N}(1)=\mathrm{N}(n)$ and, if K is replaced by $Q_{r} K Q_{r}^{-1}$,

$$
\left(Q_{r} K Q_{r}^{-1}\right)^{n-1} \mathrm{~N}(1)=Q_{r} K^{n-1} Q_{r}^{T} \mathrm{~N}(1)=Q_{r} K^{n-1} \mathrm{~N}(1)=Q_{r} \mathrm{~N}(n) .
$$

From Equation (1.4), $x_{n}=\sum_{1}^{p} n_{i}(n)$ for K and for $Q_{r} K Q_{n}^{T}$; the $\mathbf{n}_{i}(n)$ are summed in possibly a different order. The result is the same, so

$$
\begin{equation*}
Q_{r} K Q_{r}^{T} \approx K \tag{1.7}
\end{equation*}
$$

Let K_{r} be a $p_{r} \times p_{r}$ kernel, $r=1,2,3$, and define the direct sum

$$
K_{1} \oplus K_{2}=\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right]
$$

Permutation matrices Q_{s} and Q_{S}^{T} can be constructed so that

$$
Q_{s}\left(K_{1} \oplus K_{2}\right) Q_{s}^{T}=K_{2} \oplus K_{1}
$$

If $q_{i j} \in Q_{s}$, then $q_{i j}=1$ if

i	1	2	\cdots	p_{2}	$p_{2}+1$	$p_{2}+2$	\cdots	$p_{2}+p_{1}$
j	$p_{1}+1$	$p_{1}+2$	\cdots	$p_{1}+p_{2}$	1	2	\cdots	p_{1}

and $q_{i j}=0$ otherwise. Let $p_{1}=2$ and $p_{2}=3$, then

$$
Q_{s}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

From Equation (1.7),

$$
\begin{equation*}
K_{1} \oplus K_{2} \approx K_{2} \oplus K_{1} \tag{1.8}
\end{equation*}
$$

Define the direct product $K_{1} \times K_{2}$ as the partitioned matrix

$$
K_{1} \times K_{2}=\left[\begin{array}{llll}
k_{111} K_{2} & k_{112} K_{2} & \ldots & k_{11 p_{1}} K_{2} \\
k_{121} K_{2} & k_{122} K_{2} & \ldots & k_{12 p_{1}} K_{2} \\
\ldots \\
k_{1 p_{1} 1} K_{2} & k_{1 p_{1} K_{2} K_{2}} \ldots & k_{1 p_{1} p_{1}} K_{2}
\end{array}\right]
$$

in which $k_{1 r s} \in K_{1}$ and $k_{2 t u} \in K_{2}$.
Let

$$
k_{1 r_{s}} k_{2 t u}=\left\{\begin{array}{l}
k_{i v}^{\prime} \in K_{1} \times K_{2} \\
k_{j w}^{\prime \prime} \in K_{2} \times K_{1}
\end{array},\right.
$$

then

$$
\begin{equation*}
i=(r-1) p_{2}+t \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
j=(t-1) p_{1}+r \tag{b}
\end{equation*}
$$

From Equation (a),

$$
\begin{equation*}
t-1=(i-1) \bmod p_{2} \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
r-1=\left[\frac{i-1}{p_{2}}\right] \tag{d}
\end{equation*}
$$

in which $[x]$ represents the greatest integer in the number x. Substituting Equations (c) and (d) in (b),

$$
\begin{equation*}
j=p_{1}\left((i-1) \bmod p_{2}\right)+\left[\frac{i-1}{p_{2}}\right]+1 \tag{e}
\end{equation*}
$$

1986]

If i, j, r, and t are replaced by v, w, s, and u, respectively, Equations (a)(e) still hold and Equation (e) becomes

$$
\begin{equation*}
w=p_{1}\left((v-1) \bmod p_{2}\right)+\left[\frac{v-1}{p_{2}}\right]+1 \tag{f}
\end{equation*}
$$

Consider a matrix Q where $q_{i j}=1$ if Equation (e) is satisfied and $q_{i j}=0$ otherwise. From Equation (a) if i is given, r and t are uniquely defined, and from Equation (b) j is uniquely defined. Conversely, if j is given, then i is uniquely defined. This implies that every row and column of Q has just one element l and all other elements are zero. Q is then a permutation matrix.

Consider the matrix Q^{\prime} where $q_{v \omega}^{\prime}=1$ if Equation (f) is satisfied and $q_{v w}^{\prime}=$ 0 otherwise. By a similar argument, Q^{\prime} is also a permutation matrix and since j and i may replace w and v, respectively, in Equation (f) to produce Equation (e), then we let $Q_{p}=Q^{\prime}=Q$ so that

$$
Q_{p}\left(K_{1} \times K_{2}\right) Q_{p}^{T}=K_{2} \times K_{1}
$$

From Equation (1.7),

$$
\begin{equation*}
K_{1} \times K_{2} \approx K_{2} \times K_{1} . \tag{1.9}
\end{equation*}
$$

For example, if $p_{1}=2$ and $p_{2}=3$,

$$
Q_{p}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Let

$$
K_{3}=K_{1} \oplus K_{2}=\left[\begin{array}{ll}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right] \text { and } \mathbf{N}_{3}(1)=\left[\begin{array}{l}
\mathrm{N}_{1}(1) \\
\mathbf{N}_{2}(1)
\end{array}\right]
$$

then

$$
K_{3}^{n-1}=\left[\begin{array}{ll}
K_{1}^{n-1} & 0 \\
0 & K_{2}^{n-1}
\end{array}\right]
$$

and, by Equation (1.6)

$$
\mathbf{N}_{3}(n)=\left[\begin{array}{l}
\mathbf{N}_{1}(n) \\
\mathbf{N}_{2}(n)
\end{array}\right]
$$

Applying Equation (1.4),

$$
\begin{equation*}
x_{3 n}=x_{1 n}+x_{2 n} \quad \text { if } K_{3}=K_{1} \oplus K_{2} . \tag{1.10}
\end{equation*}
$$

Suppose $K_{3}=K_{1} \times K_{2}$ with $\mathrm{N}_{3}(1)=\mathrm{N}_{1}(1) \times \mathrm{N}_{2}(1)$, a $p_{1} p_{2} \times 1$ matrix of 1 's. Then, by Equation (1.4), $x_{31}=x_{11} x_{21}$. Assume that $N_{3}(r)=N_{1}(r) \times N_{2}(r)$ for any $r>0$, then
$K_{3} \mathbf{N}_{3}(r)=\left(K_{1} \times K_{2}\right)\left(\mathbf{N}_{2}(r) \times \mathrm{N}_{1}(r)\right)=\sum_{j=1}^{p_{1}} k_{1 i j} n_{1 j i}(r) K_{2} \mathbf{N}_{2}(r), i=1,2, \ldots, p_{1}$,
or $K_{3} \mathrm{~N}_{3}(r)=K_{1} \mathrm{~N}_{1}(r) \times K_{2} \mathrm{~N}_{2}(r)$, and by Equation (1.5),

$$
\mathrm{N}_{3}(r+1)=\mathrm{N}_{1}(r+1) \times \mathrm{N}_{2}(r+1) .
$$

It follows by mathematical induction that $N_{3}(n)=N_{1}(n) \times N_{2}(n)$ for all n and, from Equation (1.4),

$$
\begin{equation*}
x_{3 n}=x_{1 n} x_{2 n} \text { if } K_{3}=K_{1} \times K_{2} . \tag{1.11}
\end{equation*}
$$

From definitions

$$
\begin{equation*}
\left(K_{1} \oplus K_{2}\right) \times K_{3}=\left(K_{1} \times K_{3}\right) \oplus\left(K_{2} \times K_{3}\right), \tag{1.12}
\end{equation*}
$$

32 virtual equivalences may be deduced using the commutative laws for \oplus and \times.

2. EVALUATION OF K

Theorem 2.1: If C3 holds, and if \bar{P}_{i} and P_{j} have one or more numbers common in their names, then $k_{i j}=0$; if \bar{P}_{i} and P_{j} have no numbers common in their names, then $k_{i j}=1$.

Proof: From Equation (1.1), $L \cdot M(n-1)=M(n)$, and by renumbering elements,

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & \cdots & 1 \\
0 & k_{11} & k_{12} & \cdots & k_{1 p} \\
0 & k_{21} & k_{22} & \cdots & k_{2 p} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & k_{p 1} & k_{p_{2}} & \cdots & k_{p p}
\end{array}\right]\left[\begin{array}{c}
m_{0}(n-1) \\
m_{1}(n-1) \\
m_{2}(n-1) \\
\vdots \\
m_{p}(n-1)
\end{array}\right]=\left[\begin{array}{c}
m_{0}(n) \\
m_{1}(n) \\
m_{2}(n) \\
\vdots \\
m_{p}(n)
\end{array}\right] .
$$

Through multiplication,

$$
\begin{aligned}
& m_{0}(n)=\bigcup_{1}^{p} m_{i}(n-1)(\emptyset)=\bigcup_{1}^{p} m_{i}(n-1), \\
& m_{j}(n)=\bigcup_{1}^{p} k_{j i} m_{i}(n-1)\left(P_{j}\right), \quad j=1,2, \ldots, p,
\end{aligned}
$$

where $m_{i}(n-1)\left(P_{j}\right)$ represents the set $m_{i}(n-1)$ in which each element $B_{r}(n-1)$ has P_{i} as the terminal column and is augmented by the vector P_{j} to form a matrix $B_{r}^{\prime}(n)$. The last two columns of $B_{r}^{\prime}(n)$ are P_{i} and P_{j}. If P_{i} has one or more elements of value one adjacent to a like element in P_{j}, the name of \bar{P}_{i} must have one or more numbers in common with the name of P_{j}, and C3 implies $B_{r}^{\prime}(n) \notin m_{j}(n)$, hence $K_{i j}=0$. If \underline{P}_{i} has no elements of value one adjacent to a like element in P_{j}, the name of \bar{P}_{i} and the name of P_{j} must have no numbers in common and C3 implies $B_{r}^{\prime}(n) \in m_{j}(n)$, so $K_{i j}=1$.

Let $R=\bar{P}_{i}^{T} P_{j}=\left(r_{11}\right)$, a 1×1 matrix. Then
Corollary 2.1: If C 3 holds and $r_{11}=0, k_{i j}=1$; if $r_{11}>0, k_{i j}=0$.
Corollary 2.2: If Cl holds, K is symmetric.
Proof: If C1 holds, $P_{i}=\bar{P}_{i}$, so $R=\left(r_{11}\right)=R^{T}$ and $\bar{P}_{i}^{T} P_{j}=P_{i}^{T} P_{j}=P_{j}^{T} P_{i}=\bar{P}_{j}^{T} P_{i}$. By Corollary 2.1, if $r_{11}=0, k_{i j}=k_{j i}=1$; if $r_{11}>0, k_{i j}=k_{j i}=0$. Since
$r_{11} \geqslant 0, k_{i j}=k_{j i}$ and K is symmetric.
Corollary 2.3: If C 3 holds and $P_{i}=0$, then $k_{i j}=1$ for all $j ; P_{i} \neq 0$ implies $k_{i i}=0$.

Corollary 2.4: If C 3 holds, then K can have at most one row of 1 's.
Let $X=\left[x_{i}: i=1,2,3, \ldots, r\right], m \geqslant r>0$, be the set of all the different numbers appearing in the names of the columns of P and in the $A C$, and let $Y=\left[y_{i}=: i=1,2,3, \ldots, r\right]$ be any other set of r distinct numbers, then

Corollary 2.5: K is unchanged by replacing x_{i} by $y_{i}, i=1,2,3, \ldots, r$, in P and in the $A C$ under C3.

Definition: A proper K is a K in which there is at most one row of 1 's.
Theorem 2.2: Every proper K may be derived from some P under $C 3$ and $A C$.
Proof: Given $k_{i j} \in[0,1]$. If a row K_{i} consists only of 1 's, it is named 0 and the remaining rows are named $1,2,3, \ldots, p-1$. If no such row exists, name the rows $1,2,3, \ldots, p$. Then P consists of columns P_{j} which are in the same sequence as the named rows of K and have the same names. Suppose K_{i} has an element $k_{i j}=0$, then the $A C$ must include $i \rightarrow j$; if $k_{i j}=1$, then $i \nrightarrow j$. Since K is proper, there is at most one row of l's which is named 0 . All columns of P have names which are unique.

The $A C$ under C3 may sometimes be simplified by changing the columns of P without altering K. Let d, e, and f represent three distinct cells in a segment B_{j} of $B_{r}(n)$ and let r, s, and $r \cup s$ represent sets of cells in B_{j+1} adjacent to d, e, and f, respectively. The adjacency conditions are represented by the set $[d \rightarrow r, e \rightarrow s, f \rightarrow r \cup s]$, and f may be replaced by $\overline{d e}$ in the names of P_{j} and in $A C$ forming P^{\prime} and the set $\overline{A C}=[d \rightarrow r, c \rightarrow s]$ which, by Theorem 2.1, yields the same K.

Example: Let

$$
K=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right] .
$$

By Theorem 2.2, K may be derived from $P=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right)$ under C3 with the $A C$

$$
\begin{aligned}
& 1 \rightarrow 1,2,3,4 \\
& 2 \rightarrow 1,2,3,4,5,6 \\
& 3 \rightarrow 1,2,3,4,5,6,7 \\
& 4 \rightarrow 1,2,3,4,6,7 \\
& 5 \rightarrow 2,3,5,6 \\
& 6 \rightarrow 2,3,4,5,6,7 \\
& 7 \rightarrow 3,4,6,7 .
\end{aligned}
$$

The $A C$ may be simplified as follows:

Consider：

$$
\begin{aligned}
& 1 \rightarrow 2,3,1,4 \\
& 2 \rightarrow 2,3,1,4,5,6 \\
& 5 \rightarrow 2,3,5,6
\end{aligned}
$$

We can then replace 2 by $\overline{15}$ ．Similarly we can replace 3 by $\overline{24}, 4$ by $\overline{17}$ ，and 6 by $\overline{57}$ ，so P becomes $P^{\prime}=\left(\begin{array}{lllll}1 & \overline{15} \quad \overline{157} & \overline{17} \quad 5 \quad \overline{57} & 7\end{array}\right)$ ．By renumbering in accor－ dance with Corollary 2．5，$P^{\prime}=\left(\begin{array}{lllll}1 & \overline{12} & \overline{123} & \overline{13} & 2\end{array} \overline{23} \quad 3\right)$ with

$$
A C=[1 \rightarrow 1 ; 2 \rightarrow 2 ; 3 \rightarrow 3]
$$

Further examples giving $P, A C, K, x_{n}$ ，and recurrence relations are：
非1 $P=\left(\begin{array}{ll}0 & 1\end{array}\right)$
$A C=[1 \rightarrow 1]$
$x_{n}=\{2,3,5,8,13, \ldots\}$
$x_{n+2}-x_{n+1}-x_{n}=0$
非2 $P=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$
$A C=[1 \rightarrow 1 ; 2 \rightarrow 2]$
$x_{n}=\{3,7,17,41,99,239, \ldots\}$
$x_{n+2}-2 x_{n+1}-x_{n}=0$
$K=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

非3 $P=\left(\begin{array}{ll}1 & 2\end{array}\right)$
$A C=[1 \rightarrow 1,2 ; 2 \rightarrow 1,2]$
$x_{n}=\{2,0,0, \ldots\}$
$x_{n+1}=0$
$K=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
$K=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
非 $\quad P=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$
$A C=[1 \rightarrow 1,2 ; 2 \rightarrow 1,2]$
$x_{n}=\{3,5,11,21,43,85, \ldots\}$
$K=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
$x_{n+2}-x_{n+1}-2 x_{n}=0$
$K=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$
$x_{n}=\{5,10,22,49,112,260, \ldots\}$
$x_{n+4}-3 x_{n+3}+3 x_{n+1}+x_{n}=0$
非 $\quad P=\left(\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right)$
$A C=[1 \rightarrow 1,3 ; 2 \rightarrow 2,3 ; 3 \rightarrow 1,2,3$
also $P=\left(\begin{array}{llll}0 & 1 & 2 & \overline{12}\end{array}\right)$
$A C=[1 \rightarrow 1 ; 2 \rightarrow 2]$
$x_{n}=\{4,9,25,64,169,441, \ldots\}$
$x_{n+4}-x_{n+3}-4 x_{n+2}-x_{n+1}+x_{n}=0$
Example 非 1 represents the sequence $x_{n}=F_{n+2}$ ．Examples $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 2 and 非 represent sequences of Winthrop and Horadam［2］，$x_{n}=w_{n}(1,3 ; 2,-1)$ and $x_{n}=w_{n}(1,3$ ； $1,-2)$ ，respectively，where $w(a, b ; p, q)$ has $w_{0}=a, w_{1}=b$ ，and $w_{n}=p w_{n-1}-$ $q w_{n-1}, n \geqslant 2$ ．Example 非5 illustrates $K_{3}=K_{1} \oplus K_{2}$ with $x_{n}=F_{n+2}+w_{n}(1,3$ ； 2，－1），and Example 非 illustrates $K_{3}=K_{1} \times K_{2}$ with $x_{n}=\left(F_{n+2}\right)^{2}$ in which two values for P and the corresponding $A C$ are given．

3. RECURRENCE RELATIONS

The characteristic function of K is $f(y)=|y I-K|$ and its characteristic equation is

$$
\begin{equation*}
f(y)=\sum_{0}^{p} c_{i} y^{i}=0 . \tag{3.1}
\end{equation*}
$$

Theorem 3.1:

$$
\sum_{0}^{p} c_{i} x_{n+i}=0
$$

is a recurrence relation for the sequence $\left\{x_{n}: n=1,2,3, \ldots\right\}$.
Proof: Apply the Cayley-Hamilton theorem to Equation (3.1), giving

$$
\sum_{0}^{p} c_{i} K^{i}=0
$$

Multiply each side of this on the right by $K^{n-1} N(1)$, giving

$$
\sum_{0}^{p} c_{i} K^{n-1+i} \mathrm{~N}(1) .
$$

Then, by Equation (1.6),

$$
\sum_{0}^{p} c_{i} \mathbf{N}(n+i)=0
$$

Multiply on the left by U^{T}, a $1 \times p$ matrix with $\mathbf{u}_{1 i}=1$, giving

$$
\sum_{0}^{p} c_{i} \sum_{0}^{p} n_{j}(n+i)=0
$$

and by Equation (1.4),

$$
\sum_{0}^{p} c_{i} x_{n+i}=0
$$

This is a recurrence relation for the sequence $\left\{x_{n}: n=1,2,3, \ldots\right\}$.
Corollary 3.1: If the characteristic equation of K is

$$
(y-d) \sum_{0}^{p-1} c_{i} y^{i}=0
$$

and if $K-d I$ is nonsingular, then

$$
\sum_{0}^{p-1} c_{i} x_{n+i}=0
$$

is a recurrence relation for $\left\{x_{n}: n=1,2,3, \ldots\right\}$.

Proof: By the Cayley-Hamilton theorem,

$$
(K-d I) \sum_{0}^{p-1} c_{i} K^{i}=0
$$

If $K-d I$ is nonsingular, apply its inverse to both sides of the equation, so

$$
\sum_{0}^{p-1} c_{i} x^{i}=0
$$

Proceed as in Theorem 3.1 to show that $\sum_{0}^{p-1} c_{i} x_{n+i}=0$ is the desired recurrence
relation.
Note that if $N(1)$, in which $n_{i 1}=1$, were defined as some other vector of size $p \times 1$, the new sequence $\left\{x_{n}\right\}$ would still possess the same recurrence relation.

Let

$$
f_{j}(y)=\sum_{0}^{p_{j}} c_{j q} y^{q}=0
$$

represent the characteristic equation for $K_{j}: j=1,2,3$.
Theorem 3.2: If $K_{3}=K_{1} \oplus K_{2}$, a recurrence relation for the sequence $\left\{x_{3 n}: n=\right.$ $1,2,3, \ldots\}$ is

$$
\sum_{0}^{p_{1}+p_{2}} \sum_{q+r=i} c_{1 q} c_{2 r} x_{3(n+1)}=0
$$

Proof: $\quad \sum_{0}^{p_{3}} c_{3 i} y^{i}=\left|\begin{array}{cc}y I-K_{1} & 0 \\ 0 & y I-K_{2}\end{array}\right|=\left|y I-K_{1}\right|\left|y I-K_{2}\right|$ $=\sum_{0}^{p_{1}} c_{1 q} y^{q} \sum_{0}^{p_{2}} c_{2 r} y^{r}$,
then

$$
c_{3 i}=\sum_{q+r=i} c_{1 q} c_{2 r}
$$

and, from Theorem 3.1, the recurrence relation for the sequence $\left\{x_{3 n}: n=1,2\right.$, $3, \ldots\}$ is

$$
\sum_{0}^{p_{1}+p_{2}} \sum_{q+r=i} c_{1 q} c_{2 r} x_{3(n+i)}=0
$$

Corollary 3.2: If $K_{3}=2 K_{1}$, the recurrence relation for $x_{3 n}$ is

$$
\sum_{0}^{p_{1}} c_{1 i} x_{n+i}=0
$$

Consider the direct product $K_{3}=K_{1} \times K_{2}$. Let K_{1} be partitioned into four square matrices.

$$
K_{1}=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right], \quad K_{1} \times K_{2}=\left[\begin{array}{ll}
A_{1} \times K_{2} & A_{2} \times K_{2} \\
A_{3} \times K_{2} & A_{4} \times K_{2}
\end{array}\right]
$$

Let $Q=y I-K_{3}$, then

$$
Q=\left[\begin{array}{cc}
y I-A_{1} \times K_{2} & -A_{2} \times K_{2} \\
-A_{3} \times K_{2} & y I-A_{4} \times K_{2}
\end{array}\right]
$$

Multiply the top row of Q by $\left(A_{3} \times K_{2}\right)\left(y I-A_{1} \times K_{2}\right)^{-1}$ and add this to the second row [1], then

$$
|Q|=\left|\begin{array}{cc}
y I-A_{1} \times K_{2} & -A_{2} \times K_{2} \\
0 & y I-A_{4} \times K_{2}-\left(A_{3} \times K_{2}\right)\left(y I-A_{1} \times K_{2}\right)^{-1}\left(A_{2} \times K_{2}\right)
\end{array}\right|
$$

If A_{1} and A_{3} commute, then

$$
|Q|=\left|\left(y I-A_{1} \times K_{2}\right)\left(y I-A_{4} \times K_{2}\right)-\left(A_{3} \times K_{2}\right)\left(A_{2} \times K_{2}\right)\right|=0
$$

is the characteristic equation for K_{3}. This reduces to

$$
\begin{equation*}
\left|y^{2} I-y\left(A_{1}+A_{4}\right) \times K_{2}+\left(A_{1} A_{4}-A_{3} A_{2}\right) \times K_{2}^{2}\right|=0 \tag{3.2}
\end{equation*}
$$

The recurrence relation for the sequence $\left\{x_{3 n}: n=1,2,3, \ldots\right\}$ may then be derived if K_{1} and K_{2} are known.
Example: Let $K_{1}=\left[\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right]$ where $K_{2}=A_{1}=A_{2}=A_{3}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $A_{4}=0$.
From Equation (3.2), the characteristic equation is

$$
\left|y I-K_{3}\right|=\left|y^{2} I-y\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
4 & 2 & 2 & 1 \\
2 & 2 & 1 & 1 \\
2 & 1 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right|=0
$$

or

$$
y^{8}-y^{7}-13 y^{6}-8 y^{5}+20 y^{4}+8 y^{3}-13 y^{2}+y+1=0
$$

The recurrence relation for the sequence $\left\{x_{n}=\left(F_{n+2}\right)^{3}\right\}$ is

$$
x_{n+8}-x_{n+7}-13 x_{n+6}-8 x_{n+5}+20 x_{n+4}+8 x_{n+3}-13 x_{n+2}+x_{n+1}+x_{n}=0 .
$$

REFERENCES

1. F. R. Gantemacher. The Theory of Matrices, Vol. I. New York: Chelsea Publishing Company, 1959.
2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3, no. 3 (1965):161.

$\diamond \diamond \diamond \diamond$

