ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by A. P. HILLMAN

Assistant Editors GLORIA C. PADILLA and CHARLES R. WALL

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to DR. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_n and the Lucas numbers L_n satisfy

and

$$\begin{aligned} F'_{n+2} &= F'_{n+1} + F'_n, \ F'_0 &= 0, \ F'_1 &= 1 \\ \\ L_{n+2} &= L_{n+1} + L_n, \ L_0 &= 2, \ L_1 &= 1. \end{aligned}$$

PROBLEMS PROPOSED IN THIS ISSUE

B-574 Proposed by Valentina Bakinova, Rondout Valley, NY

Let a_1, a_2, \ldots be defined by $a_1 = 1$ and $a_{n+1} = \lfloor \sqrt{s_n} \rfloor$, where $s_n = a_1 + a_2 + \cdots + a_n$ and $\lfloor x \rfloor$ is the integer with $x - 1 < \lfloor x \rfloor \leq x$. Find $a_{100}, s_{100}, a_{1000}$, and s_{1000} .

B-575 Proposed by L.A.G. Dresel, Reading, England

Let R_n and S_n be sequences defined by given values R_0 , R_1 , S_0 , S_1 and the recurrence relations $R_{n+1} = rR_n + tR_{n-1}$ and $S_{n+1} = sS_n + tS_{n-1}$, where r, s, t are constants and $n = 1, 2, 3, \ldots$. Show that

$$(r + s)\sum_{k=1}^{n} R_{k}S_{k}t^{n-k} = (R_{n+1}S_{n} + R_{n}S_{n+1}) - t^{n}(R_{1}S_{0} + R_{0}S_{1}).$$

B-576 Proposed by Herta T. Freitag, Roanoke, VA

Let $A = L_{2m+3(4n+1)} + (-1)^m$. Show that A is a product of three Fibonacci numbers for all positive integers m and n.

B-577 Proposed by Herta T. Freitag, Roanoke, VA

Let A be as in B-575. Show that 4A/5 is a difference of squares of Fibonacci numbers.

1986]

277

ELEMENTARY PROBLEMS AND SOLUTIONS

B-578 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy

It is known (Zeckendorf's theorem) that every positive integer \mathbb{N} can be represented as a finite sum of distinct nonconsecutive Fibonacci numbers and that this representation is unique. Let $\alpha = (1 + \sqrt{5})/2$ and [x] denote the greatest integer not exceeding x. Denote by $f(\mathbb{N})$ the number of F-addends in the Zeckendorf representation for \mathbb{N} . For positive integers n, prove that $f([aF_n]) = 1$ if n is odd.

B-579 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy

Using the notation of B-578, prove that $f([aF_n]) = n/2$ when n is even.

SOLUTIONS

A Specific Fibonacci-Like Sequence

B-550 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

Show that the powers of -13 form a Fibonacci-like sequence modulo $181,\,{\rm that}$ is, show that

 $(-13)^{n+1} \equiv (-13)^n + (-13)^{n-1} \pmod{181}$ for $n = 1, 2, 3, \ldots$

Solution by L.A.G. Dresel, University of Reading, England

We have

 $(-13)^2 = 169 \equiv -13 + 1 \pmod{181}$,

and multiplying by $(-13)^{n-1}$ we obtain

 $(-13)^{n+1} \equiv (-13)^n + (-13)^{n-1} \pmod{181}$ for $n = 1, 2, 3, \ldots$

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, Hans Kappus, L. Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jürgen Seiffert, Sahib Singh, Lawrance Somer, J. Suck, Tad White, and the proposer.

A Generalization

B-551 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

Generalize on Problem B-550.

Solution by Lawrence Somer, George Washington University, Washington, D.C.

A generalization would be: Let p be an odd prime. Let a and b be integers. Let x be a nonzero residue modulo p. Then

 $x^{n+1} \equiv ax^n + bx^{n-1} \pmod{p}$ for $n = 1, 2, 3, \ldots$,

if and only if $x \equiv (a \pm \sqrt{a^2 + 4b})/2 \pmod{p}$, where $\sqrt{a^2 + 4b}$ is the least positive residue *r* such that $r^2 \equiv a^2 + 4b \pmod{p}$ if such a residue exists. This result is proved in [1].

[Aug.

278

Reference

1. L. Somer. "The Fibonacci Group and a New Proof that $F_{p-(5/p)} \equiv 0 \pmod{p}$." The Fibonacci Quarterly 10, no. 4 (1972):345-348, 354.

Also solved by Paul S.Bruckman, L.A.G. Dresel, Herta T.Freitag, C. Georghiou, Hans Kappus, L.Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jürgen Seiffert, Sahib Singh, J. Suck, Tad White, and the proposer.

Permutations of 9876543210 Divisible by 11

B-552 Proposed by Philip L. Mana, Albuquerque, NM

Let S be the set of integers n with $10^9 \le n \le 10^{10}$ and with each of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 appearing (exactly once) in n.

- (a) What is the smallest integer n is S with 11|n?
- (b) What is the probability that 11|n for a randomly chosen n in S?

Solution by L.A.G. Dresel, University of Reading, England

Let us number the digit positions 1 to 10 from left to right, and let P_1 denote the set of odd-numbered positions and P_2 the set of even-numbered positions. For a given $n \in S$, let Q_i be the set of digits occupying P_i , and let q_i be the sum of these digits, for i = 1, 2. Since each of the digits 0 to 9 appears exactly once in n, we have $q_1 + q_2 = 45$. But, for divisivility by 11, we require $q_1 \equiv q_2$ (mod 11), and therefore we must have $q_1 = 17$ or $q_1 = 28$.

(a) Let us assume that the first three digits of the smallest integer n in S which is divisible by 11 are 1, 0, 2, in that order. Then Q_1 contains the digits 1 and 2, and we find that $q_1 = 28$ is not achievable; furthermore, $q_1 = 17$ implies that Q_1 contains the digit 3 as well. Hence, the required smallest n is given by n = 1024375869.

(b) Let us enumerate all the sets V_k of five distinct digits with a sum equal to 17. There are exactly 11 such sets, namely:

0 1 2 5 9, 0 1 2 6 8, 0 1 3 4 9, 0 1 3 5 8, 0 1 3 6 7, 0 1 4 5 7, 0 2 3 4 8, 0 2 3 5 7, 0 2 4 5 6, 1 2 3 4 7, 1 2 3 5 6.

For each of these sets V_k (k = 1, 2, ..., 11), the remaining digits form a complementary set W_k with a sum equal to 28. In the case in which V_k contains the digit 0, there are 4 × 4! ways of placing the digits of V_k in P_1 , and 5! ways of placing the digits of W_k in P_2 , giving in all 4 × 4! × 5! different numbers of the form (V_k , W_k); but there are also 5! ways of placing W_k in P_1 , with 5! ways of placing V_k in P_2 , giving a further 5!×5! numbers of the form (V_k , W_k). Therefore, the total number of permutations of a particular pair V_k , W_k is 9 × 4! × 5!, and we obtain the same result if the digit 0 is contained in W_k instead of V_k . Now, the total number of integers in S is given by 9 × 9!, and of these we have 11 × 9 × 4! × 5! divisible by 11. Hence, the probability that 11|n is 11 × 4! × 5!/(9!), which simplifies to 11/126, and is slightly less than 1 in 11.

Also solved by Paul S. Bruckman, L. Kuipers, J. Suck, Tad White, and the proposer.

1986]

Lucas Summation

B-553 Proposed by D.L. Muench, St. John Fisher College, Rochester, NY

Find a compact form for $\sum_{i=0}^{2n} {2n \choose i} L_{i+1}^2$.

Solution by C. Georghiou, University of Patras, Greece

We have, for n > 0, with the help of the Binet formulas,

$$\begin{split} \sum_{i=0}^{2n} \binom{2n}{i} L_{i+1}^2 &= \sum_{i=0}^{2n} \binom{2n}{i} [\alpha^{2i+2} + \beta^{2i+2} - 2(-1)^i] \\ &= \alpha^2 (1 + \alpha^2)^{2n} + \beta^2 (1 + \beta^2)^{2n} \\ &= \alpha^2 (\alpha 5^{1/2})^{2n} + \beta^2 (\beta 5^{1/2})^{2n} \\ &= 5^n L_{2n+2}. \end{split}$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T. Freitag, Hans Kappus, L. Kuipers, Graham Lord, Bob Prielipp, Helmut Prodinger, Heinz-Jürgen Seiffert, Sahib Singh, J. Suck, Tad White, and the proposer.

Sum of Two Squares

B-554 Proposed by L. Cseh and I. Merenyi, Cluj, Romania

For all n in $Z^+ = \{1, 2, \ldots\}$, prove that there exist x and y in Z^+ such that

$$(F_{4n-1} + 1)(F_{4n+1} + 1) = x^2 + y^2.$$

Solution by Graham Lord, Princeton, NJ

Using the Binet formulas, we have

$$(F_{4n-1} + 1)(F_{4n+1} + 1) = (a^{4n-1} - b^{4n-1} + \sqrt{5})(a^{4n+1} - b^{4n+1} + \sqrt{5})/5$$

= $\{a^{8n} - 2(ab)^{4n} + b^{8n} + 2 - (a^2 + b^2)(ab)^{4n-1} - \sqrt{5}[(1 + a^2)a^{4n-1} - (1 + b^2)b^{4n-1}] + 5\}/5$
= $(a^{4n} - b^{4n})^2/5$
+ $\{2 + 3 + 5 + \sqrt{5}[a^{4n}(a - b) + b^{4n}(a - b)]\}/5$
= $F_{4n}^2 + L_{2n}^2$.

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, L. Kuipers, Bob Prielipp, Heinz-Jürgen Seiffert, Sahib Singh, J. Suck, Tad White, C. S. Yang & J. F. Wang, and the proposers.

[Aug.

Sum of Three Squares

B-555 Proposed by L. Cseh and I. Merenyi, Cluj, Romania

For all n in Z^+ , prove that there exist x, y, and z in Z^+ such that

$$(F_{2n-1} + 4)(F_{2n+5} + 1) = x^2 + y^2 + z^2.$$

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI

We shall show that:

(1)
$$(F_{2n-1} + 4)(F_{2n+5} + 1) = F_{2n+2}^2 + F_{n+3}^2 + (L_{n+3} - F_{n-2})^2$$
 if *n* is even

and

(2)
$$(F_{2n-1} + 4)(F_{2n+5} + 1) = F_{2n+2}^2 + (3F_{n+2})^2 + (F_{n+2} + F_{n+1})^2$$
 if *n* is odd.

[The results referred to below (I_{24} , I_{18} , etc.) can be found on pages 56 and 59 of *Fibonacci and Lucas Numbers* by Verner E. Hoggatt, Jr., Houghton-Mifflin Company, Boston, 1969.]

We begin by establishing the following preliminary results.

Lemma:
$$F_{2n-1}F_{2n+5} = F_{2n+2}^2 + 4$$
.
Proof: $F_{2n-1}F_{2n+5} = F_{(2n+2)-3}F_{(2n+2)+3} = F_{2n+2}^2 + F_3^2$ [by I_{19}] = $F_{2n+2}^2 + 4$.
Corollary: $(F_{2n-1} + 4)(F_{2n+5} + 1) = F_{2n+2}^2 + 4F_{2n+5} + F_{2n-1} + 8$.

(1) It suffices to prove that

$$\begin{split} 4F_{4k+5} + F_{4k-1} + 8 &= F_{2k+3}^2 + (L_{2k+3} - F_{2k-2})^2, \\ F_{2k+3}^2 + (L_{2k+3} - F_{2k-2})^2 &= (F_{2k+3}^2 + F_{2k-2}^2) - 2L_{2k+3}F_{2k-2} + L_{2k+3}^2 \\ &= 5F_{4k+1} - 2(F_{4k+1} - 5) + (L_{4k+6} - 2) \\ & [by \ I_{19}, \ I_{24}, \ and \ I_{18}, \ respectively] \\ &= 3F_{4k+1} + (F_{4k+6} + 2F_{4k+5}) + 8 \\ &= 3F_{4k+1} + (3F_{4k+5} + F_{4k+4}) + 8 \\ &= 4F_{4k+5} + (3F_{4k+1} - F_{4k+3}) + 8 \\ &= 4F_{4k+5} - (F_{4k+3} - 3F_{4k+1}) + 8 \\ &= 4F_{4k+5} - (F_{4k} - F_{4k+1}) + 8 \\ &= 4F_{4k+5} + F_{4k-1} + 8. \end{split}$$

(2) It suffices to prove that

$$4F_{4k+3} + F_{4k-3} + 8 = (3F_{2k+1})^2 + (F_{2k+1} + L_{2k})^2.$$

1986]

281

$$\begin{split} (3F_{2k+1})^2 + (F_{2k+1} + L_{2k})^2 &= 2(5F_{2k+1}^2) + 2F_{2k+1}L_{2k} + L_{2k}^2 \\ &= 2(L_{4k+2} + 2) + 2(F_{4k+1} + 1) + (L_{4k} + 2) \\ & [by \ I_{17}, \ I_{21}, \ and \ I_{15}, \ respectively] \\ &= 2L_{4k+2} + L_{4k} + 2F_{4k+1} + 8 \\ &= 2(F_{4k+3} + F_{4k+1}) + (F_{4k} + 2F_{4k-1}) \\ &\quad + 2F_{4k+1} + 8 \\ &= 2F_{4k+3} + 4F_{4k+1} + F_{4k} + 2F_{4k-1} + 8 \\ &= 3F_{4k+3} + 2F_{4k+1} + 2F_{4k-1} + 8 \\ &= 3F_{4k+3} - (F_{4k+2} - F_{4k+1}) + 2F_{4k-1} + 8 \\ &= 4F_{4k+3} - (F_{4k} - F_{4k-1}) + F_{4k-1} + 8 \\ &= 4F_{4k+3} - (F_{4k-1} - F_{4k-1}) + F_{4k-1} + 8 \\ &= 4F_{4k+3} + (F_{4k-1} - F_{4k-2}) + 8 \\ &= 4F_{4k+3} + F_{4k-3} + 8. \end{split}$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Graham Lord, and the proposers.

***\$**

• ;

282

.