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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 =Fn+l +Fn> ^ = 0 , ^ = 1 
and 

Ln + 2 = Ln+1 + Lrc' L0 = 2* Ll = la 

PROBLEMS PROPOSED IN THIS ISSUE 

B~57^ Proposed by Valentina Bakinovaf Rondout Valley, NY 

Let a1 9 a2s ... be defined by ax = 1 and ccn + 1 = [vsn], where s.n = a1 + a2 + 
••• + an and [x] is the integer with x - 1 < [x] < x. Find a l 0 Q , siQQ> aiooo9 

and s 1 0 0 Q . 

B"575 Proposed by L. A. G. Dresel, Reading, England 

Let Rn and Sn be sequences defined by given values RQ5 R19 SQ9 5X and the 
recurrence relations Rn + 1 = vRn + tRn_1 and Sn+1 = sSn + t5 n. l s where r, s, t 
are constants and n = 15 2, 3, ... . Show that 

(r + e) Z V ^ " - " = (*„+A + Rnsn+1) - fi^s, + Vi>-
fc = l 

B-576 Proposed by Herta T. Freitag, Roanoke, VA 

Let A = -^2^ + 3(4n + i) + (_1)m- Show that A is a product of three Fibonacci 
numbers for all positive integers m and n. 

B-577 Proposed by Herta T. Freitag, Roanoke, VA 

Let A be as in B-575. Show that 4,4/5 is a difference of squares of Fibo-
nacci numbers. 
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B-578 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy 

It is known (Zeckendorf!s theorem) that every positive integer N can be 
represented as a finite sum of distinct nonconsecutive Fibonacci numbers and 
that this representation is unique. Let a = (1 + v5)/2 and [x] denote the 
greatest integer not exceeding x. Denote by f(N) the number of F-addends in 
the Zeckendorf representation for N. For positive integers n , prove that 
f([aFn]) = 1 if n is odd. 

B-579 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy 

Using the notation of B-578, prove that f([oFn]) = n/2 when n is even. 

SOLUTIONS 

A Specific Fibonacci-Like Sequence 

B-550 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Show that the powers of -13 form a Fibonacci-like sequence modulo 181, that 
iss show that 

(-13)n+1 = (-13)n + (-U)"1'1 (mod 181) forn = l, 2, 3, ... . 

Solution by L. A. G. Dresel, University of Reading, England 

We have 

(-13)2 = 169 = -13 + 1 (mod 181), 

and multiplying by (-IS)71"1 we obtain 

(-13)n+1 = (-13)n + (-13)n_1 (mod 181) forn = 1, 2, 3, ... . 

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, Hans Kappus, 
L. Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jurgen Seiffert, Sahib Singh, 
Lawrance Somer, J. Suck, Tad White, and the proposer. 

A Generalizat ion 

B-551 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Generalize on Problem B-550. 

Solution by Lawrence Somer, George Washington University, Washington, B.C. 

A generalization would be: Let p be an odd prime. Let a and b be integers. 
Let x be a nonzero residue modulo p. Then 

xn + 1 = axn + bx71"1 (mod p) for n = 1, 2, 3, .. . , 

if and only if x = (a ± Va2 + 4Z?)/2 (mod p), where Va2 + 4Z? is the least posi-
tive residue r such that r2 E a2 + 42? (mod p) if such a residue exists. This 
result is proved in [1], 
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Reference 

1. L. Somer. "The Fibonacci Group and a New Proof that Fp_,5/p) = 0 (mod p)." 
The Fibonaooi Quarterly 10, no, 4 (1972):345-348, 354/ 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Herta T. Freitag, C. Georghiou, 
Hans Kappus, L* Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jur gen Seiffert, 
Sahib Singh, J. Suck, Tad White, and the proposer. 

Permutations of 38765^3210 Divisible by 11 

B-552 Proposed by Philip L. Mana, Albuquerque, NM 

Let S be the set of integers n with 109 < n < 1010 and with each of the 
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 appearing (exactly once) in n. 

(a) What is the smallest integer n is S with 11 |n? 
(b) What is the probability that 11 In for a randomly chosen n in SI 

Solution by L. A. G. Dresel, University of Reading, England 

Let us number the digit positions 1 to 10 from left to rights and let P1 
denote the set of odd-numbered positions and P2 the set of even-numbered posi-
tions. For a given n e S, let Q^ be the set of digits occupying P.̂ , and let 
q- be the sum of these digits, for £ = 1, 2. Since each of the digits 0 to 9 
appears exactly once in ns we have q1 + q2 = 456 But, for divisivility by 11, 
we require q. E ^ (mod 11), and therefore we must have q1 = 17 or q1 = 28. 

(a) Let us assume that the first three digits of the smallest integer n in 
S which is divisible by 11 are 1, 0, 2S in that order. Then Q1 contains the 
digits 1 and 2, and we find that q± = 28 is not achievable; furthermore, q± = 
17 implies that Q1 contains the digit 3 as well. Hence, the required smallest 
n is given by n = 1024375869. 

(b) Let us enumerate all the sets Vk of five distinct digits with a sum 
equal to 17. There are exactly 11 such sets, namely: 

0 1 2 5 9, 0 1 2 6 8, 0 1 3 4 9, 0 1 3 5 8, 0 1 3 6 7, 0 1 4 5 7, 

0 2 3 4 8, 0 2 3 5 7, 0 2 4 5 6, 1 2 3 4 7, 1 2 3 5 6. 

For each of these sets Vk (k = 1, 2, ..., 11), the remaining digits form a com-
plementary set Wjt with a sum equal to 28. In the case in which Vk contains the 
digit 0, there are 4 x 4 ! ways of placing the digits of Vk in P1, and 5! ways 
of placing the digits of Wk in P2, giving in all 4 x 4! x 5! different numbers 
of the form (Vk, Wk); but there are also 5! ways of placing Wk in P±, with 5! 
ways of placing Vk in P , giving a further 5! x 5! numbers of the form (Vk, Wk). 
Therefore, the total number of permutations of a particular pair Vk 9 Wk is 
9 x 4 ! x 5!, and we obtain the same result if the digit 0 is contained in Wk 
instead of Vk. Now, the total number of integers in S is given by 9 x 9!, and 
of these we have 11 x 9 x 4!x5! divisible by 11. Hence, the probability that 
11 |n is 11 x 4! x 5!/(9!) , which simplifies to 11/126, and is slightly less than 
1 in 11. 

Also solved by Paul S* Bruckman, L. Kuipers, J. Suck, Tad White, and the pro-
poser . 
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Lucas Summation 

In i 2YI\ 
Find a compact form for ]T f . j£2 . 

B-553 Proposed by D. L. Muench, St. John Fisher College, Rochester, NY 

In 

E 
i = 0 

Solution by C. Georghiou, University of Patras, Greece 
We have, for n > 0, with the help of the Binet formulas, 

2n /o^\ In 
E (2/k2

+ 1 = E (2
7")[«2i+2 + e2i+2 - 2(-n<] 

a 2 ( l + a 2 ) 2 n + 6 2 (1 + 3 2 ) ' 
a2(o 

= 5 % 

= a 2 ( a 5 1 / 2 ) 2 n + 3 2 ( 3 5 1 / 2 ) 2 n 

J2n + 2 * 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T, 
Freitag, Hans Kappus, L. Kuipers, Graham Lord, Bob Prielipp, Helmut Prodinger, 
Heinz-Jurgen Seiffert, Sahib Singh, J. Suck, Tad White, and the proposer. 

Sum of Two Squares 

B-55^ Proposed by L. Cseh and I. Merenyi, Cluj, Romania 

For all n in Z+ = {l, 2, ...}, prove that there exist x and y in Z+ such 
that 

Solution by Graham Lord, Princeton, NJ 

Using the Binet formulas, we have 

(*V„-i + D(^„+i + 1) = (a*"'1 ~ i ^ ' 1 + /5)(a^+1 - b*n+1 + 75)/5 

= {a8n - 2(ab)hn + b8n + 2 - (a2 + b2)(ab)'ln'1 

- /5[(1 + a 2 ) ^ *" 1 - (1 + b2)^"-1] + 5}/5 

= (a1"1 - bl,n)2/5 

+ {2+3+ 5 + J5[a*n{a - b) + bhn(a - b)]}/5 

= F2 + L2 

hn 2n 
Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, L. Kuipers, 
Bob Prielipp, Heinz-Jurgen Seiffert, Sahib Singh, J. Suck, Tad White, C. S. 
Yang & Ja F. Wang, and the proposers. 
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Sum of Three Squares 

B-555 Proposed by L. Cseh and J. Merenyi, Cluj, Romania 

For all n in Z+, prove that there exist x, y, and z in Z+ such that 

{F2n_x +4)(F2„+5 + 1) =*2 + y 2 + 32. 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

We shall show that: 

(1) {F2n_x + 4)(F2n+5 + 1) - F2
2n+2 + F2

+3 + (Ln+S - Fn_2)2 if n is even 

and 

(2) <*,„_, + 4)(F2rj+5 + 1) = F\n+2 + (3Fn + 2)2+ (Fn+2 + F n + 1 ) 2 if n is odd. 

[The results referred to below {I2hs i"i85 etc.) can be found on pages 56 and 59 
of Fibonacci and Lucas Numbers by VernerE. Hoggatt, Jr., Houghton-Mifflin Com-
pany, Boston, 1969.] 

We begin by establishing the following preliminary results. 

Lemma: F2n_1F2n+5 = F2
2n+2 + 4. 

Proof: F2n_1F2n+5 = F(2„ + 2)_3f(2n+2) + 3 = F2
2n+2 + F\ [by J19] = F2

2n+2 + 4. 

Corollary: {F2n_x + 4)(F2n+5 + 1) - F2
2n+Z + 4F2n+5 + F2n^ + 8. 

(1) It suffices to prove that 

^Fhk+5 + Fkk-1 + 8 = F2k+3 + (L2fc+3 ~ F2k-2^> ' 

F2fc+3 + (-L2k+3 ~ F2k-2^> = (-F2k+3 + F2k-2> ~ 2L2k+3F2k-2 + L2k+3 

= 5 P „ + 1 - 2(F,k+1 - 5) + (Lhk+e - 2) 
[by J 1 9 , I2h, and Iig, r e s p e c t i v e l y ] 

= 3F^k+1 + (3Fhk+5 +Fhk+h) + 8 

= « V k + 5
 + ( 3 F ^ + i - ^ k + s ) + 8 

= ^ f c + s - <*Vfc+3 " 3 ^ f e + i > + 8 

= ^ , k + 5 - (Fhk - Fhk+1) + 8 

4*V*+5 + *V*-i + 

(2) It suffices to prove that 

^ k + 3 + Fkk-3 + 8 " ( 3 ^ 2 k + l ) 2 + (?2fe + l + £ 2 * > 2 -
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OF2k+1)2 + (F2k+1 + Lzk)2 = 2(5F2
2k+1) + 2F2k+1L2k + h\k 

= 2 0 ^ + 2 + 2) + Z(Fkk+1 + 1) + (L,k + 2) 

[by I17, I 2 1 J and I15* r e s p e c t i v e l y ] 

= 2 £ ^ + 2 + Lhk + 2Fhk+1 + 8 

= 2(Fhk+3 + Fhk+1) + (Fhk + 2Fhk_1) 

+ 2Fhk+1 + 8 

= 2F,k+3 + ^ f c + i + ^ + 2*V*-i + 8 

= 3 ^ , + 3 + 2^k + 1 + 2 ^ _ x + 8 

= ^Fkk+3 " ( ^ f e + 2 "" *\fe + l ) + 2 i ^ & - l + 8 

= ^ + 3 + (^fc-1 - *V*-2> + 8 

= ^ f e + 3 + Fhk-3 + 8 ' 

.Also solved by Paul S. Bruckman, L. A. G. Dresel, Graham Lord, and the proposers. 
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