ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN
Assistant Editors
GLORIA C. PADILLA and CHARLES R. WALL

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to DR. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

PROBLEMS PROPOSED IN THIS ISSUE

B-574 Proposed by Valentina Bakinova, Rondout Valley, NY
Let a_{1}, a_{2}, \ldots be defined by $\alpha_{1}=1$ and $\alpha_{n+1}=[\sqrt{s} n]$, where $s_{n}=\alpha_{1}+\alpha_{2}+$ $\cdots+a_{n}$ and $[x]$ is the integer with $x-1<[x] \leqslant x$. Find $\alpha_{100}, s_{100}, \alpha_{1000}$, and $s_{1000^{\circ}}$

B-575 Proposed by L.A. G. Dresel, Reading, England
Let R_{n} and S_{n} be sequences defined by given values $R_{0}, R_{1}, S_{0}, S_{1}$ and the recurrence relations $R_{n+1}=r R_{n}+t R_{n-1}$ and $S_{n+1}=s S_{n}+t S_{n-1}$, where r, s, t are constants and $n=1,2,3, \ldots$. Show that

$$
(r+s) \sum_{k=1}^{n} R_{k} S_{k} t^{n-k}=\left(R_{n+1} S_{n}+R_{n} S_{n+1}\right)-t^{n}\left(R_{1} S_{0}+R_{0} S_{1}\right) .
$$

B-576 Proposed by Herta T. Freitag, Roanoke, VA
Let $A=L_{2 m+3(4 n+1)}+(-1)^{m}$. Show that A is a product of three Fibonacci numbers for all positive integers m and n.

B-577 Proposed by Herta T. Freitag, Roanoke, VA
Let A be as in B-575. Show that $4 A / 5$ is a difference of squares of Fibonacci numbers.

B-578 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy
It is known (Zeckendorf's theorem) that every positive integer N can be represented as a finite sum of distinct nonconsecutive Fibonacci numbers and that this representation is unique. Let $a=(1+\sqrt{5}) / 2$ and $[x]$ denote the greatest integer not exceeding x. Denote by $f(N)$ the number of F-addends in the Zeckendorf representation for N. For positive integers n, prove that $f\left(\left[\alpha F_{n}\right]\right)=1$ if n is odd.

B-579 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy
Using the notation of $B-578$, prove that $f\left(\left[\alpha F_{n}\right]\right)=n / 2$ when n is even.

SOLUTIONS

A Specific Fibonacci-Like Sequence

B-550 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
Show that the powers of -13 form a Fibonacci-1ike sequence modulo 181 , that is, show that

$$
(-13)^{n+1} \equiv(-13)^{n}+(-13)^{n-1}(\bmod 181) \text { for } n=1,2,3, \ldots .
$$

Solution by L.A. G. Dresel, University of Reading, England
We have

$$
(-13)^{2}=169 \equiv-13+1(\bmod 181),
$$

and multiplying by $(-13)^{n-1}$ we obtain

$$
(-13)^{n+1} \equiv(-13)^{n}+(-13)^{n-1}(\bmod 181) \text { for } n=1,2,3, \ldots .
$$

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, Hans Kappus, L. Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jürgen Seiffert, Sahib Singh, Lawrance Somer, J. Suck, Tad White, and the proposer.

A Generalization

B-551 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
Generalize on Problem B-550.
Solution by Lawrence Somer, George Washington University, Washington, D.C.
A generalization would be: Let p be an odd prime. Let a and b be integers. Let x be a nonzero residue modulo p. Then

$$
x^{n+1} \equiv a x^{n}+b x^{n-1}(\bmod p) \text { for } n=1,2,3, \ldots,
$$

if and only if $x \equiv\left(\alpha \pm \sqrt{a^{2}+4 b}\right) / 2(\bmod p)$, where $\sqrt{a^{2}+4 b}$ is the least positive residue r such that $r^{2} \equiv a^{2}+4 b(\bmod p)$ if such a residue exists. This result is proved in [1].

ELEMENTARY PROBLEMS AND SOLUTIONS

Reference

1. L. Somer. "The Fibonacci Group and a New Proof that $F_{p-(5 / p)} \equiv 0(\bmod p)$. " The Fibonacci Quarterly 10, no. 4 (1972):345-348, 354.

Also solved by Paul S. Bruckman, L. A. G. Dresel, Herta T. Freitag, C. Georghiou, Hans Kappus, L. Kuipers, Bob Prielipp, Helmut Prodinger, Heinz-Jürgen Seiffert, Sahib Singh, J. Suck, Tad White, and the proposer.

Permutations of 9876543210 Divisible by 11
B-552 Proposed by Philip L. Mana, Albuquerque, NM
Let S be the set of integers n with $10^{9}<n<10^{10}$ and with each of the digits $0,1,2,3,4,5,6,7,8,9$ appearing (exactly once) in n.
(a) What is the smallest integer n is S with $11 \mid n$?
(b) What is the probability that $11 / n$ for a randomly chosen n in S ?

Solution by L.A. G. Dresel, University of Reading, England

Let us number the digit positions 1 to 10 from left to right, and let P_{1} denote the set of odd-numbered positions and P_{2} the set of even-numbered positions. For a given $n \in S$, let Q_{i} be the set of digits occupying P_{i}, and let q_{i} be the sum of these digits, for $i=1,2$. Since each of the digits 0 to 9 appears exactly once in n, we have $q_{1}+q_{2}=45$. But, for divisivility by 11 , we require $q_{1} \equiv q_{2}(\bmod 11)$, and therefore we must have $q_{1}=17$ or $q_{1}=28$.
(a) Let us assume that the first three digits of the smallest integer n in S which is divisible by 11 are $1,0,2$, in that order. Then Q_{1} contains the digits 1 and 2 , and we find that $q_{1}=28$ is not achievable; furthermore, $q_{1}=$ 17 implies that Q_{1} contains the digit 3 as well. Hence, the required smallest n is given by $n=1024375869$ 。
(b) Let us enumerate all the sets V_{k} of five distinct digits with a sum equal to 17 . There are exactly 11 such sets, namely:

$$
\begin{aligned}
& 02348,02357,02456,12347,12356 .
\end{aligned}
$$

For each of these sets $V_{k}(k=1,2, \ldots, 11)$, the remaining digits form a complementary set W_{k} with a sum equal to 28 . In the case in which V_{k} contains the digit 0 , there are 4×4 ! ways of placing the digits of V_{k} in P_{1}, and 5! ways of placing the digits of W_{k} in P_{2}, giving in all 4×4 ! $\times 5$! different numbers of the form $\left(V_{k}, W_{k}\right)$; but there are also 5 ! ways of placing W_{k} in P_{1}, with 5 ! ways of placing V_{k} in P_{2}, giving a further $5!\times 5$! numbers of the form $\left(V_{k}, W_{k}\right)$. Therefore, the total number of permutations of a particular pair V_{k}, W_{k} is $9 \times 4!\times 5!$, and we obtain the same result if the digit 0 is contained in W_{k} instead of V_{k}. Now, the total number of integers in S is given by 9×9 !, and of these we have $11 \times 9 \times 4!\times 5!$ divisible by 11 . Hence, the probability that $11 \mid n$ is $11 \times 4!\times 5!/(9!)$, which simplifies to $11 / 126$, and is slightly less than 1 in 11 。

Also solved by Paul S. Bruckman, L. Kuipers, J. Suck, Tad White, and the proposer.

ELEMENTARY PROBLEMS AND SOLUTIONS

Lucas Summation

B-553 Proposed by D. L. Muench, St. John Fisher College, Rochester, NY
Find a compact form for $\sum_{i=0}^{2 n}\binom{2 n}{i} L_{i+1}^{2}$.
Solution by C. Georghiou, University of Patras, Greece
We have, for $n>0$, with the help of the Binet formulas,

$$
\begin{aligned}
\sum_{i=0}^{2 n}\binom{2 n}{i} L_{i+1}^{2} & =\sum_{i=0}^{2 n}\binom{2 n}{i}\left[\alpha^{2 i+2}+\beta^{2 i+2}-2(-1)^{i}\right] \\
& =\alpha^{2}\left(1+\alpha^{2}\right)^{2 n}+\beta^{2}\left(1+\beta^{2}\right)^{2 n} \\
& =\alpha^{2}\left(\alpha 5^{1 / 2}\right)^{2 n}+\beta^{2}\left(\beta 5^{1 / 2}\right)^{2 n} \\
& =5^{n} L_{2 n+2} .
\end{aligned}
$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T. Freitag, Hans Kappus, L. Kuipers, Graham Lord, Bob Prielipp, Helmut Prodinger, Heinz-Jürgen Seiffert, Sahib Singh, J. Suck, Tad White, and the proposer.

Sum of Two Squares
B-554 Proposed by L. Cseh and I. Merenyi, Cluj, Romania
For all n in $Z^{+}=\{1,2, \ldots\}$, prove that there exist x and y in Z^{+}such that

$$
\left(F_{4 n-1}+1\right)\left(F_{4 n+1}+1\right)=x^{2}+y^{2} .
$$

Solution by Graham Lord, Princeton, NJ
Using the Binet formulas, we have

$$
\begin{aligned}
\left(F_{4 n-1}+1\right)\left(F_{4 n+1}+1\right)= & \left(a^{4 n-1}-b^{4 n-1}+\sqrt{5}\right)\left(a^{4 n+1}-b^{4 n+1}+\sqrt{5}\right) / 5 \\
= & \left\{a^{8 n}-2(a b)^{4 n}+b^{8 n}+2-\left(a^{2}+b^{2}\right)(a b)^{4 n-1}\right. \\
& \left.-\sqrt{5}\left[\left(1+a^{2}\right) a^{4 n-1}-\left(1+b^{2}\right) b^{4 n-1}\right]+5\right\} / 5 \\
= & \left(a^{4 n}-b^{4 n}\right)^{2} / 5 \\
& +\left\{2+3+5+\sqrt{5}\left[a^{4 n}(a-b)+b^{4 n}(a-b)\right]\right\} / 5 \\
= & F_{4 n}^{2}+L_{2 n}^{2} .
\end{aligned}
$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, L. Kuipers, Bob Prielipp, Heinz-Jürgen Seiffert, Sahib Singh, J. Suck, Tad White, C. S. Yang \& J. F. Wang, and the proposers.

Sum of Three Squares

B-555 Proposed by L. Cseh and I. Merenyi, Cluj, Romania
For all n in Z^{+}; prove that there exist x, y, and z in z^{+}such that

$$
\left(F_{2 n-1}+4\right)\left(F_{2 n+5}+1\right)=x^{2}+y^{2}+z^{2}
$$

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI
We shall show that:

$$
\begin{equation*}
\left(F_{2 n-1}+4\right)\left(F_{2 n+5}+1\right)=F_{2 n+2}^{2}+F_{n+3}^{2}+\left(L_{n+3}-F_{n-2}\right)^{2} \text { if } n \text { is even } \tag{1}
\end{equation*}
$$

and
(2) $\left(F_{2 n-1}+4\right)\left(F_{2 n+5}+1\right)=F_{2 n+2}^{2}+\left(3 F_{n+2}\right)^{2}+\left(F_{n+2}+F_{n+1}\right)^{2}$ if n is odd.
[The results referred to below (I_{24}, I_{18}, etc.) can be found on pages 56 and 59 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr., Houghton-Mifflin Company, Boston, 1969.]

We begin by establishing the following preliminary results.
Lemma: $\quad F_{2 n-1} F_{2 n+5}=F_{2 n+2}^{2}+4$.
Proof: $\quad F_{2 n-1} F_{2 n+5}=F_{(2 n+2)-3} F_{(2 n+2)+3}=F_{2 n+2}^{2}+F_{3}^{2}\left[\right.$ by $\left.I_{19}\right]=F_{2 n+2}^{2}+4$.
Corollary: $\quad\left(F_{2 n-1}+4\right)\left(F_{2 n+5}+1\right)=F_{2 n+2}^{2}+4 F_{2 n+5}+F_{2 n-1}+8$ 。
(1) It suffices to prove that

$$
\begin{aligned}
4 F_{4 k+5}+F_{4 k-1}+8=F_{2 k+3}^{2} & +\left(L_{2 k+3}-F_{2 k-2}\right)^{2} . \\
F_{2 k+3}^{2}+\left(L_{2 k+3}-F_{2 k-2}\right)^{2}= & \left(F_{2 k+3}^{2}+F_{2 k-2}^{2}\right)-2 L_{2 k+3} F_{2 k-2}+L_{2 k+3}^{2} \\
= & 5 F_{4 k+1}-2\left(F_{4 k+1}-5\right)+\left(L_{4 k+6}-2\right) \\
& {\left[b y I_{19}, I_{24}, \text { and } I_{18}, \text { respectively }\right] } \\
= & 3 F_{4 k+1}+\left(F_{4 k+6}+2 F_{4 k+5}\right)+8 \\
= & 3 F_{4 k+1}+\left(3 F_{4 k+5}+F_{4 k+4}\right)+8 \\
= & 4 F_{4 k+5}+\left(3 F_{4 k+1}-F_{4 k+3}\right)+8 \\
= & 4 F_{4 k+5}-\left(F_{4 k+3}-3 F_{4 k+1}\right)+8 \\
= & 4 F_{4 k+5}-\left(F_{4 k}-F_{4 k+1}\right)+8 \\
= & 4 F_{4 k+5}+F_{4 k-1}+8 .
\end{aligned}
$$

(2) It suffices to prove that

$$
4 F_{4 k+3}+F_{4 k-3}+8=\left(3 F_{2 k+1}\right)^{2}+\left(F_{2 k+1}+L_{2 k}\right)^{2} .
$$

$$
\begin{aligned}
\left(3 F_{2 k+1}\right)^{2}+\left(F_{2 k+1}+L_{2 k}\right)^{2}= & 2\left(5 F_{2 k+1}^{2}\right)+2 F_{2 k+1} I_{2 k}+L_{2 k}^{2} \\
= & 2\left(L_{4 k+2}+2\right)+2\left(F_{4 k+1}+1\right)+\left(I_{4 k}+2\right) \\
& {\left[b y I_{17}, I_{21}, \text { and } I_{15}, \text { respective1y }\right] } \\
= & 2 L_{4 k+2}+I_{4 k}+2 F_{4 k+1}+8 \\
= & 2\left(F_{4 k+3}+F_{4 k+1}\right)+\left(F_{4 k}+2 F_{4 k-1}\right) \\
& +2 F_{4 k+1}+8 \\
= & 2 F_{4 k+3}+4 F_{4 k+1}+F_{4 k}+2 F_{4 k-1}+8 \\
= & 3 F_{4 k+3}+2 F_{4 k+1}+2 F_{4 k-1}+8 \\
= & 4 F_{4 k+3}-\left(F_{4 k+2}-F_{4 k+1}\right)+2 F_{4 k-1}+8 \\
= & 4 F_{4 k+3}-\left(F_{4 k}-F_{4 k-1}\right)+F_{4 k-1}+8 \\
= & 4 F_{4 k+3}+\left(F_{4 k-1}-F_{4 k-2}\right)+8 \\
= & 4 F_{4 k+3}+F_{4 k-3}+8
\end{aligned}
$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Graham Lord, and the proposers.

