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1. INTRODUCTION 

The graphs considered here will be finite and will have no multiple edges. 
Let G be such a graph. A matching in G is a spanning subgraph whose components 
are nodes and edges only. We define a k-matching in G to be a matching with k 
edges. When the matching consists of edges only, it will be called a perfect 
matching. The number of perfect matchings in G will be denoted by y(G). The 
total number of matchings in G will be denoted by T(£). 

The following example illustrates the above definitions. 

(a) (b) (c) (d) (e) 

Figure 1 

(f) (g) (h) 

The graph G shown in Figure 1(a) has two perfect matchings [graphs (b) and (c)]. 
Therefore y(£) = 2 . G has four 1-matchings [graphs (d), (e), (f),and (g) ] and 
one O-matching [graph (h)]. Hence G has 7 matchings; i.e., T(G) = 7. 

By a polygonal chain Pk , we will mean the graph obtained by concatenat-
ing n fc-gons in such a manner that adjacent &-gons (cells) have exactly one 
edge in common. Also, for k > 3, no three cells have a common node. 

If the first and last cells (cells which are adjacent to exactly one other 
cell) of P.£ n axe joined together, so that they have exactly one edge in com-
mon, the "circular" structure obtained will be called a long polygonal chain 
Cfc n. n is called the length of the chain. Wot ice that in 0% n, every cell 
will be adjacent to exactly two cells. 

It is clear that different polygonal chains will result, according to the 
manner in which the cells are concatenated. For example, in the following dia-
gram we show four nonisomorphic versions of P5 ^. 

/N 
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Figure 2 
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Notice3 howevers that when k = 4 there is only one polygonal chain., P4 n. 
We can also define P^iTl as the graph obtained by joining the corresponding 
nodes of two equal paths with n nodes. We refer to one path as the upper path 
and the other as the lower path. The edges in the upper path will be called 
upper edges and those in the lower path will be called lower edges. 

We define the linear polygonal chain Sjiin (k > 3) to be the graph obtained 
from ?4)?2 as follows. If k is even, then every upper and lower edge is replaced 
by a path of length (k - 2)/2. If k is odds then every upper edge is replaced 
by a path of length (k - l)/2.? and every lower edge is replaced by a path of 
length (k - 3)/2. For n-evens S^in is obtained from P^s{n/2) by joining diag-
onally opposite nodes in a consistent direction. For n-oda% Sz.n is obtained 
from S3sTl + i by removing a node of valency 2. The long linear polygonal chain 
Lfc^n is analogously obtained from S^~n9 as Cfcsn is obtained from Pfcsn* 

Linear polygonal chains have been the subject of numerous investigations. 
Their matching polynomials were extensively investigated (see[l, 2S 3S 45 5]). 
Polygonal chains have also been called animals, and are special cases of the 
general animal defined in Harary and Palmer [7]. During investigations of the 
matching polynomials of linear polygonal chains, it was observed that the num-
ber of perfect matchings, and in some cases the total number of matchings? were 
Fibonacci numbers. These observations form the basis for this report. We re-
fer the reader to Harary [6] for the basic definitions in Graph Theory. 

2, PRELIMINARY RESULTS 

Let G be a graph and xy an edge in G joining nodes x and y. We can parti-
tion the perfect matchings in G into two classes: (i) those containing xy and 
(ii) those not containing xy. The perfect matchings in class (i) will be per-
fect matchings in the graph Gn obtained from G by removing nodes x and z/. 
Those in class (ii) will be perfect matchings in Gf, the graph obtained from G 
by deleting the edge xy. Thus we have the following lemma. 

Lemma 1: y(G) = y(Gr) + y(G"). 

Suppose that G consists of two components H and K. Then any perfect match-
ings in H and K can be combined to yield a perfect matching in G. Conversely, 
every perfect matching in G can be broken up into a perfect matching in H and 
a perfect matching in K. Hence we have the following result which generalizes 
the argument. 

Lemma 2: Let G be a graph consisting of r components H19 H2S .,., Hr. Then 

i = l 

It is clear that if G is a connected graph with an odd number of nodes, then 
G cannot have a perfect matching. 

Lemma 3: Let G- be a graph. If G has an odd number of nodes, then 

y(G) = o. 

Lemma 1 can be very useful for detecting the polygonal chains G for which 
y(G) is a Fibonacci number. We simply investigate the relations between y(GF) 
and y(Gn) and the chains of shorter lengths. Lemma 2 is useful when applying 
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Lemma 1, since the deletion of an edge from G might yield a disconnected graph. 
Lemma 3 is useful for reducing the number of graphs to be considered in appli-
cations of Lemma 1. 

We can use an argument similar to the one preceding Lemmas 1 and 2 to es-
tablish the following analogous results. 

Lemma k: T(G) = T(G') + T(G"). 

Lemma 5- If G consists of r components H-9 H , . .., Hr, then 

i = 1 

Lemmas 1 and 4 yield algorithms for counting perfect matchings and total 
number of matchings, respectively, in graphs. The algorithms consist of re-
peated applications of the lemmas until graphs Ei are obtained for which y(#^) 
and T(H^), respectively, can be written down. These algorithms will be referred 
to as reduction processes. When applying a reduction process, the graph Gr will 
be referred to as the edge-deleted graph. G" will be referred to as the node-
deleted graph. 

3. THE TRIVIAL CHAINS Sljn AND Z1>n 

We define P\jn to be a tree with nodes of valencies 1 and 2 only. This 
graph is also called the path or chain Pn. When the end-nodes of Pn are identi-
fied, the resulting graph Cx n is called the cycle or n-gon Gn. 

Let us apply Lemma 4 to the chain Pn by deleting an edge incident to a node 
of valency 1. Then Gr will contain two components, Pn_i and an isolated node 
P1. Therefore, 

T(G') = T(Pn_1) • TCP,) = T(Pn_1). 

G" will be the graph Pn_2* Therefore, 

T(G") = T(Pn_2). 

Hence, from Lemma 4, we get 

It is clear that T(P±) = 1 and x(P2) = 2 . We define T(PQ) = 1. Hence we have 
the following theorem. 

Theorem 1: The total number of matchings in the chains Pn form a Fibonacci 
sequence with initial values T(P Q) = TCP,) = 1. 

Let us apply Lemma 4 to the long chain Cn. In this case, Gr will be the 
graph Pn and Gn will be Pn_2* Hence we have 

T(C„) = T(P„) + T(Pn_2). 

Therefore, 

TC^.,) + T(Gn_2) = T(Pn-1) + T(Pn_3) + T(Pn_2) + T(Pn_,) 
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= [T(P„_1) + T(P„_2)] + [T(Pn.g) + T(PB_lt)] 

= T(Pn) + T(Pn_2) = T(Cn). 

Hence we have the following theorem. 

Theorem 2: The total number of matchings in the cycles Cn (n > 2) form a Fibo-
nacci sequence with initial values T(C ) = 4 and x(C. ) = 7. 

4. TRIANGULAR CHAINS 

For brevity of notation, we will denote the linear triangular chain £3 j n by 
Tn. The long triangular chain L$tn (n-even) will be denoted by Ln. The graphs 
Tn and L3 12 are shown below in Figures 3(a) and 3(b), respectively. 

(a) (b) 

Figure 3 

It can be verified that Tn contains n + 2 nodes and 2n+ 1 edges. Also Ln con-
tains n nodes and In edges. Therefore5 for odd n, Tn and Ln do not have perfect 
matchings. 

Let us apply the reduction process for perfect matchings to the graph Tn 
(n-even) by deleting the edge xy [see Figure 3(a)], Gf will be Tn_1 with the 
edge WX attached to it; G!t will be Tn_2. Now, any perfect matching in Gf must 
contain the edge WX since the node x will have valency 1. It follows that the 
edge zy must also be in every perfect matching of Gf. The rest of the perfect 
matching will be a perfect matching of Tn_h. Hence we get 

Y(G') = y(Tn_k). 
Also, 

y(G") = y(Tn_2). 

Therefore, from Lemma 1, we get 

y(TJ = Y ( ? „ . 2 ) + Y f f ^ , ) . ( i) 
It can be confirmed that y(T2) = 2 and y(A-) = 3. We define T(TQ) to be 1. 

Hence we have the following theorem. 

Theorem 3: The number of perfect matchings in the triangular chains Tn (n-even) 
form a Fibonacci sequence with boundary values y(TQ) = 1 and y(T2) = 2. 

Let us apply the reduction process for perfect matchings to the graph Ln 
by deleting the edge bg [see Figure 3(b)]. Gf will be Ln with edge bg removed. 
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G" will be Ln with nodes b and g removed. Let us now apply the reduction pro-
cess to Gf by deleting edge bo. Let G2 be the edge-deleted graph. The graph 
G" obtained by deleting nodes b and c will be Tn_^> 

liG'D = y(.Tn_k). 

Apply the reduction process to G2 by deleting edge ac. The edge-deleted graph 
will be Tn_2° The node-deleted graph will be Tn _ 5 with an edge attached to a 
node of valency 2* Therefore, 

Y(G2') = l(Tn_2) + Y(Tn_6), 

Consider now the graph Gn. We can apply the reduction process by deleting 
edge ac. The edge-deleted graph Gf

z will be Tn _ 5 with an edge attached to a 
node of valency 2. Therefore, 

Y(G3') = Y(rM.6). 

The node-deleted graph will be Tn_^. Therefore, we get 

Y(G") = 2y(Tn_6). 

Hence, by adding the contributions of the final graphs, we obtain the follow-
ing lemma. 

Lemma 6: y(Ln) = j(Tn_2) + y(Tn_h) + 3y(Tn_e) (w-even and n > 4), with 

YCTQ) = 1, y(T2) = 2 , and y(T„) = 3. 

The above lemma yields: 

Y(^n_2) + JiLn_h) = Y(Tn_,) + Y(^-6) + 3Y(^„8) + Y ( ^ 6 ) 

+ y(Tn_Q) + 3Y(^„10) 

= [Y(^_,) + y(Tn.6)] + [Y(^n-6) + Y^n-e)] 

+ S C Y C ^ - S ) + Y(^n-io)] 

= Y O 7 ^ ) + Y C ^ ^ ) + 3y(Tn_6)9 using Equation (1) 

= y(Ln), from Lemma 6. 

Thus, we obtain the following result. 

Theorem k: The number of perfect matchings in the long triangular chains Ln 
(n-even) form a Fibonacci sequence with initial values y(LQ) = 4 (by conven-
tion), y(L2) = 2, and y(L^) = 6. 

5- CHAINS OF HIGHER ORDERS 

We will denote by G - S. the graph obtained from a graph G by removing a 
subset S = {vl9 v2, . .., z;̂ } of its nodes. When k is small, we will simply 
write G - Vj_ - v2 ~ 6B0 - t^ • 

Let Pr be the path with r nodes. By attaching Pr to a connected graph Gs 
we will mean that an end-node of Pr is identified with a node of G to form a 
graph Hr in which the subgraphs PP and £ are in the same component. We say Pr 
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is added to G when the two end-nodes of Pr are attached to different nodes of 
G. In this case 3 we assume that G has more than two nodes. The resulting 
graph will be denoted by Jr. The nodes of G used in the identification process 
will be called nodes of attachment. 

The following lemmas will be useful in the material of this section. 

Lemma "J: Let u be the node of attachment of Hr» Then 

'y(G - u) if r is even, 
y(Hr) 

Y(£) if v is oddo 

Proof: Apply the reduction process to Hr by deleting the edge of Pp incident 
to u» The result follows immediately. • 

Lemma 8: Let u and v be the nodes of attachment of Jr. Then 

'y(G) + y(G - u - v) if r is even, 

y(G - u) + y(G - v) if v is odd. 

Proof: The result follows easily by applying the reduction process by deleting 
an edge incident to one of the nodes of attachment and then using Lemma 7= • 

The edges of P4 which join nodes of the upper and lower paths are called 
link edges, and the corresponding nodes are called link nodes. A terminal edge 
is a link edge which is incident to link nodes of valency 2. Alsos we denote 
the nth Fibonacci number by Fn: Fn = Fn_1 + Fn_25 F0 = F1 = 1. 

Theorem 5'- For ns m3 k > 1, 

( 0 Y(^4fe+2sn) = n -h l9 

0 0 y&hKn) = Fn+15 

( i i i ) y(S2k+it2m + 0 = ° 

Proof: 
(i) Apply Lemma 8 to 5 4 H 2 s n . In this case r is even. We get 

YC^fc+z.*) = Y(^4fe+2,n-i) + Y ^ i ) , (2) 

where B± is the graph S^+ 2, n - 2 with P2fc attached to the ends of a terminal 
edge. Using Lemma 75 with r even, we get y(B±) = y(B2), where B2 is S^+2,n-3 
with P2fc attached to the ends of a terminal edge. By repeated applications of 
the lemma, we get y(B±) = 1. Therefore5 from Equation (2), 

Y(^4^-F2sn) = y(SUk+2,n-D + L» 

But Y(^4fe+2sl) = Y(^47<+2) = 2°  Therefore9 we have 

*Y(^4k+2,n) = « + 1-

(II) Apply Lemma 8 to S^ n . Again r is even, so we get 
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where A is ̂ 4A:,n-2» with ?2fe-l attached to the ends of a terminal edge. Using 
Lemma 7, with v odd, we get 

Hence, from Equation (3), we obtain 

T(^4^,n) = Y(^4/c,n-l) + YGS 4fc, n - 2/ • 

Clearly y(5 4 ^ j l ) = 2 = F 2 and j(S^k, 2 ) = 3 = F3 . Therefore, we define 

Y(^4fe,o) = 1 = ̂ i-

Hence, from Equation (3), we have 

Y(^4/c,n ) = Fn + 1-

(iii) It can be easily verified that S2k+ l,2m + l has an oa"d number of nodes 
[2(2mk+k - m + 1) + 1], Hence, the result follows from Lemma 3. 

(iv) First, we will label (in order) the link edges of S2k+l,2m with 1, 
2, 3, ..., 2m + 1, beginning with a terminal edge. Let us apply the reduction 
process to S2k+i,2m by deleting an even labelled link edge. The graph G" will 
contain two components; A, consisting of S2k+i,i with the chains Pk and Pk_1 
attached to the ends of a terminal edge, and B, consisting of S2k+l3j with Pk 
and Pfc_i attached to the ends of a terminal edge. Clearly, i + j = 2m - 2 and 
both i, and j will be even. It can be easily confirmed that A will contain 
2-ik + 2k - t - 1 nodes. Since this is odd, for all even values of i9 we get 

y U ) = y(B) = 0 =̂> y(£") = 0. 

Hence, no perfect matching contains an even (labelled) link edge. It follows 
that 

Y(S2k+l,2m) = Y(#m)» 

where Rm is the polygonal chain P^k,m obtained from P^t m by replacing each up-
per edge with 2k edges and each lower edge with 2k - 2 edges. 

Apply Lemma 8 to Rm, This gives 

y(Rm) = Ytfm-i) + Y(5), (4) 

where B i s the graph Rm_ 2 wi th P2fc a n d P2k-2 a t t a c h e d t o t h e ends of a t e r m i -
n a l edge . Hence, by an a n a l y s i s s i m i l a r to t h a t used in e s t a b l i s h i n g ( i ) , we 
ge t 

y(Rm) = m + 1 = y(S2k+l,2mh m 

We now give bounds for general polygonal chains comprising (2k 4- l)-gons. 

Theorem 6: For m5 k > 1, m + 1 < y(P2k+i32m^ ^ -̂ m + i* 

Proof: Let us construct P2k+i,2m fr° m P4,2m by replacing the first pair of 
upper and lower edges with Pk + l and P^ , respectively, the second pair by Pk and 
Pk+l> respectively, the third pair by Pk+ x and Pk, respectively, and so on. 
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As we have shown above [(iii) of Theorem 5], no even link edge can belong to a 
perfect matching. Therefore, we can remove all the even labelled edges to ob-
tain a graph which contains the same number of perfect matchings as P2k + i 2 ' 
In this case, the graph will be S ^k m. Therefore, 

Y(p2k+l,2m) = Y ( S 4 ^ ) =
 Fm + 1> by (ii) o f Theorem 5. (5) 

When P2k+l,2m i s t h e graph S2k+ls2mS we get 

Y(P2fe+l,2m) = YCS2fc+i,2m) =
 m + l s hj ( ± ) ° f T h e o r e m 5' 

It can be seen from the proof of Theorem 5(iv) that, in the general case, the 
minimum value of y(B) in (4) is 1 and the maximum value is y(P2k+ l, 2m- 2) » a n d 

the result follows. • 

The following theorem is the long-chain analogue of Theorem 5. 

Theorem 7: For k > 1, m > 2, and n > 3, 

(ii 

(iii 

(iv 

(v 

Y(£4fc+2sn) = 4> 

Y(-^4/c,2m) = Y(^4fe,2m-l) + Y^fc, 2/TZ - 3 > + 2 = F2/K 

y(L^ki2m + l) =y(shki2m) +yis^ki2m_l) 

l(L2k+ l,2m-l) = °» 

Y(L2fe+l,2W) = 4' 

F2m+ 1 + ^2m 

+ ^ 2 / 7 ? - 2 

1 ' 

+ 25 

Proof: 

(i) It can be easily confirmed that no perfect matching in L^k+2in can 
contain a link edge. Therefore, 

Y0&4*+2,n> = Y W ) = *> 

where i4 is the graph consisting of two disjoint cycles each with 2kn nodes. 

(ii) and (iii), k > 1: Apply the reduction process of L^kiT by deleting 
the second upper edge (counting from the edge adjacent to a link edge) of a 
cell. Continue to apply the reduction process in the same nammer to both G' 
and G,r, but this time using the corresponding lower edge. The four resulting 
graphs will be the following:: (1) Ar_ ls consisting of the graphs SAk,r-i with 
P2 attached to each end of a terminal edge and P2\-2 attached to the ends of 
the other terminal edge; (2) Br_ l9 consisting of the graph S^.r-i w i t h p2 a n d 

P]<-2 attached to its two upper terminal nodes and Pik-i attached to the other 
end of the terminal edge adjacent to an edge of Pk-2 (note that Br_ y will occur 
twice); and (3) Dr_ l9 the graph ShkjT_i with the odd chain P2k„3 attached to 
the ends of a terminal edge. 

It can be confirmed that: 

1. YWr-l) = Y(S4fc,r-3); 
^1 if p is even, 

2. Y(Sr-l) =\ 
(.0 if v is odd; 

3. Y(»P-I) = yis^^.x)-
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For k = 1, the reduction process can be applied by deleting any upper edge. 
The graphs corresponding to Ar-.\> BP„ i, and Dv-\ will be SiijCtr^\9 £>4ktr-3 with 
P2 attached to the two upper terminal nodes9 and S^k p_3, respectively. Hence, 
for k > 19 we get 

T(L4fe,p) = Y(^4A:SP-I) + Y(^4^,r-3) + 6 > 

2 if r is even, 

0 if r is odd. 

The results (ii) and (iii) then follow from Theorem 5(ii). 

(iv) It can easily be verified that L2k + i 2m + 1 ̂ a s a n oc^ num^er °f nodes. 
Therefore, the result follows. 

(v) This is similar to Theorem 5(iv). • 

Theorem 8: For m > 2 and k > 1, 4 < y(C2k+li2m) < 2(Fm + Fm_ 2 ) . 

Proof: The proof is similar to that of Theorem 6. It follows by applying the 
reduction process to C2k+ \i2rn > then using Equation (5) and Thoerem 7(v). • 

Note that Theorems 3 and 4 are special cases of Theorems 6 and 8, respec-
tively, when k = 1. 
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