A NOTE ON THE REPRESENTATION OF INTEGERS AS A SUM OF DISTINCT FIBONACCI NUMBERS

PIERO FILIPPONI
Fondazione Ugo Bordoni, Roma, Italy
(Submitted January 1985)

1. INTRODUCTION AND GENERALITIES

It is known that every positive integer can be represented uniquely as a finite sum of F-addends (distinct nonconsecutive Fibonacci numbers). A series of papers published over the past years deal with this subject and related problems [1, 2, 3, 4]. Our purpose in this note is to investigate some minor aspects of this property of the Fibonacci sequence. More precisely, for a given integer $k \geqslant 3$, we consider the set \mathcal{N}_{k} of all positive integers n less than F_{k} (as usual F_{k} and L_{k} are the $k^{\text {th }}$ Fibonacci and Lucas numbers, respectively), and for these integers we determine:
(i) the asymptotic value of the average number of F-addends;
(ii) the most probable number of F-addends;
($\mathrm{i} i \mathrm{i}$) the greatest number m_{k} of F-addends, selected from the set \mathcal{N}_{k}, and the integers representable as a sum of $m_{k} F$-addends.

Setting

$$
\begin{equation*}
m_{k}=[(k-1) / 2], \quad(k \geqslant 3) \tag{1}
\end{equation*}
$$

(here and in the following the symbol $[x]$ denotes the greatest integer not exceeding x) and denoting by $f(n, k)$ the number of F-addends the sum of which represents a generic integer $n \in \mathcal{N}_{k}$, we state the following theorems.

Theorem 1: $1 \leqslant f(n, k) \leqslant m_{k}$.
Proof: Since $F_{1}=F_{2}$ and since the F-addends are distinct, they can be chosen in the set $\mathscr{F}_{k} \stackrel{1}{=}\left\{F_{2}, F_{3}, \ldots, F_{k-1}\right\}$ the cardinality of which is $\left|\mathscr{F}_{k}\right|=k-2$. Moreover, since the F-addends are nonconsecutive Fibonacci numbers, they can be in number at most either $\left|\mathscr{F}_{k}\right| / 2$ (for $\left|\mathscr{F}_{k}\right|$ even) or $\left(\left|\mathscr{F}_{k}\right|+1\right) / 2$ (for $\left|\mathscr{F}_{k}\right|$ odd). Q.E.D.

Theorem 2: The number $N_{k, m}$ of integers belonging to \mathcal{N}_{k} which can be represented as a sum of $m F$-addends is given by

$$
N_{k, m}=\binom{k-m-1}{m} .
$$

Proof: Setting $M=\left|\mathscr{F}_{k}\right|=k-2$, it is evident that $N_{k, m}$ equals the number $B_{M, m}$ of distinct binary sequences of length M containing m nonadjacent l's and $M-m 0 ' s$. The number $B_{M, m}$ can be obtained by considering the string

$$
\left\{\begin{array}{lllllllll}
v & 0 & v & 0 & v & \cdots & v & 0 & v
\end{array}\right\}
$$

constituted by $M-m 0^{\prime}$ s and $M-m+1$ empty elements v, and by replacing, in all possible ways, m empty elements by $m 1^{\prime} s$:

$$
B_{M, m}=\binom{M-m+1}{m}
$$

Replacing M by $k-2$ in the above relation, the theorem is proved. Q.E.D.
From Theorem 2, we derive immediately the following
Remark:

$$
N_{k, m}= \begin{cases}k-2, & \text { for } m=1 \tag{2}\\ 0, & \text { for } m>m_{k}\end{cases}
$$

2. THE AVERAGE VALUE OF $f(n, k)$

In this section, we calculate the limit of the ratio between the average value of $f(n, k)$ and k as k tends to infinity.

From Theorem 2, it is immediately seen that the average value $\bar{f}(n$, $k)$ of the number of F-addends the sum of which represents the integers belonging to \mathcal{N}_{k} is given by

$$
\begin{equation*}
\bar{f}(n, k)=\frac{1}{\left|N_{k}\right|} \sum_{m=1}^{m_{k}} m N_{k, m}=\frac{1}{F_{k}-1} \sum_{m=1}^{\left.\frac{k-1}{2}\right]} m\binom{k-m-1}{m} \tag{3}
\end{equation*}
$$

Moreover, it is known [5] that the identity

$$
\begin{equation*}
\sum_{m=0}^{m_{k}}(k-m) N_{k, m}=U_{k} \tag{4}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
U_{k}=\sum_{m=0}^{k-1} F_{m+1} F_{k-m} \tag{5}
\end{equation*}
$$

from (4), the relation

$$
U_{k}=k \sum_{m=0}^{m_{k}} N_{k, m}-\sum_{m=0}^{m_{k}} m N_{k, m}
$$

is obtained from which, by virtue of the well-known representation of the Fibonacci numbers as sums of binomial coefficients [6], we get

$$
U_{k}=k F_{k}-\sum_{m=0}^{m_{k}} m N_{k, m^{\bullet}}
$$

Consequently, we can write

$$
\begin{equation*}
\sum_{m=0}^{m_{k}} m N_{k, m}=\sum_{m=1}^{m_{k}} m N_{k, m}=k F_{k}-U_{k} \tag{6}
\end{equation*}
$$

The numbers U_{k} defined by (5) satisfy the recurrence stated in the following theorem.

Theorem 3: $U_{k}=k F_{k}-U_{k-2}$, with $U_{1}=1, U_{2}=2$.
Proof: Using the well-known identity $F_{s+t}=F_{s+1} F_{t}+F_{s} F_{t-1}$ and setting $m=s$, $k-m=t$, we can write the identity

$$
F_{k}=F_{m+k-m}=F_{m+1} F_{k-m}+F_{m} F_{k-m-1}
$$

thus getting $F_{m+1} F_{k-m}=F_{k}-F_{m} F_{k-m-1}$. Therefore, from (5), we have

$$
U_{k}=\sum_{m=0}^{k-1}\left(F_{k}-F_{m} F_{k-m-1}\right)=k F_{k}-\sum_{m=0}^{k-1} F_{m} F_{k-m-1}=k F_{k}-\sum_{m=1}^{k-2} F_{m} F_{k-m-1}
$$

Setting $r=m-1$, from the previous relation we obtain

$$
U_{k}=k F_{k}-\sum_{r=0}^{k-3} F_{r+1} F_{k-r-2}=k F_{k}-U_{k-2} \text {. Q.E.D. }
$$

From Theorem 3, the further expression of U_{k} is immediately derived:

$$
\begin{align*}
U_{k} & =k F_{k}-(k-2) F_{k-2}+\cdots+(-1)^{m_{k}}\left(k-2 m_{k}\right) F_{k-2 m_{k}} \\
& =\sum_{i=0}^{m_{k}}(-1)^{i}(k-2 i) F_{k-2 i} \tag{7}
\end{align*}
$$

where, as usual, $m_{k}=[(k-1) / 2]$.
Denoting by α and β the roots of the equation $x^{2}-x-1=0$, the following theorem can be stated.

Theorem 4: $\bar{f}(n, k)$ is asymptotic to $\frac{1}{1+\alpha^{2}}$.
Proof: From (3) and (6), we can write

$$
\bar{f}(n, k) / k=\left(\frac{1}{F_{k}-1}\left(k F_{k}-U_{k}\right)\right) / k
$$

and calculate the limit

$$
\lim _{k \rightarrow \infty} \bar{f}(n, k) / k=\lim _{k \rightarrow \infty}\left(k-\frac{U_{k}}{F_{k}}\right) / k=\lim _{k \rightarrow \infty} 1-\frac{U_{k}}{k F_{k}}
$$

which, from (7), can be rewritten as

$$
\lim _{k \rightarrow \infty} \bar{f}(n, k) / k=\lim _{k \rightarrow \infty}\left(k F_{k}-k F_{k}+\sum_{i=1}^{m_{k}}(-1)^{i-1}(k-2 i) F_{k-2 i}\right) /\left(k F_{k}\right) .
$$

Finally, using the Binet form for F_{k}, we get
Q.E.D.

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \bar{f}(n, k) / k=\lim _{k \rightarrow \infty} \frac{\sum_{i=1}^{m_{k}}(-1)^{i-1}(k-2 i)\left(\alpha^{k-2 i}-\beta^{k-2 i}\right)}{k\left(\alpha^{k}-\beta^{k}\right)} \\
& =\lim _{k \rightarrow \infty} \frac{\sum_{i=1}^{m_{k}}(-1)^{i-1}(1-2 i / k) \alpha^{k-2 i}}{\alpha^{k}}=\sum_{i=1}^{\infty}(-1)^{i-1} \alpha^{-2 i}=\frac{1}{1+\alpha^{2}} \approx 0.2764 .
\end{aligned}
$$

The behavior of $\bar{f}(n, k) / k$ versus k has been obtained using a computer calculation and is shown in Figure 1 for $3 \leqslant k \leqslant 100$.

Figure 1. Behavior of $\bar{f}(n, k) / k$ versus k

3. THE MOST PROBABLE VALUE OF $f(n, k)$

In this section, it is shown that the most probable number $\hat{f}(n, k)$ of $F-$ addends the sum of which represents the integers belonging to \mathscr{N}_{k}, can assume at most two (consecutive) values. The value of $\hat{f}(n, k)$ for a given k together with the values of k for which two $\hat{f}(n, k)$'s occur, are worked out.

From Theorem 2, it is immediately seen that $\hat{f}(n, k)$ equals the value(s) of m which maximize the binomial coefficient N_{k}, m; consequently let us investigate the behavior of the discrete function

$$
\begin{equation*}
\binom{n-n}{n} \tag{8}
\end{equation*}
$$

as n varies, looking for the value(s) \hat{n}_{h} of n which maximize it. It is evident that \hat{n}_{h} is the value(s) of n for which the inequalities
and

$$
\begin{equation*}
\binom{h-n}{n} \geqslant\binom{ n-n+1}{n-1} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\binom{h-n}{n} \geqslant\binom{ h-n-1}{n+1} \tag{10}
\end{equation*}
$$

are simultaneously verified. Using the factorial representation of the binomial coefficients and omitting the intermediate steps for the sake of brevity, the inequality

$$
\begin{equation*}
5 n^{2}-(5 h+7) n+h^{2}+3 h+2 \geqslant 0 \tag{11}
\end{equation*}
$$

is obtained from (9); the roots of the associate equation are

$$
\left\{\begin{array}{l}
n_{1}=(5 h+7-\sqrt{\Delta}) / 10, \tag{12}\\
n_{2}=(5 h+7+\sqrt{\Delta}) / 10,
\end{array}\right.
$$

where $\Delta=5 h^{2}+10 h+9$. From (11), we have

$$
\begin{equation*}
n_{2} \leqslant n \leqslant n_{1} . \tag{13}
\end{equation*}
$$

Analogously, from (10), we obtain the inequality

$$
\begin{equation*}
5 n^{2}-(5 h-3) n+h^{2}-2 h \leqslant 0, \tag{14}
\end{equation*}
$$

from which the roots

$$
\left\{\begin{array}{l}
n_{1}^{\prime}=(5 h-3-\sqrt{\Delta}) / 10 \tag{15}\\
n_{2}^{\prime}=(5 h-3+\sqrt{\Delta}) / 10
\end{array}\right.
$$

are derived. From (14), we have

$$
\begin{equation*}
n_{1}^{\prime} \leqslant n \leqslant n_{2}^{\prime} . \tag{16}
\end{equation*}
$$

Since, for $h \geqslant 2$, the inequality $n_{1}<n_{2}^{\prime}$ holds, the inequalities (13) and (16) are simultaneously verified within the interval $\left[n_{1}^{\prime}, n_{1}\right.$]. Therefore, we have $n_{1}^{\prime} \leqslant \hat{n}_{h} \leqslant n_{1}$. Since $n_{1}-n_{1}^{\prime}=1$, the value

$$
\begin{equation*}
\hat{n}_{h}=\left[n_{1}^{\prime}\right]+1=\left[n_{1}\right] \tag{17}
\end{equation*}
$$

is unique, provided that n_{1}^{\prime} (and n_{1}) is not an integer. If and only if n_{1}^{\prime} is an integer is the binomial coefficient (8) maximized by two consecutive values $\hat{n}_{h, 1}$ and $\hat{n}_{h, 2}$ of n; that is,

$$
\left\{\begin{array}{l}
\hat{n}_{h, 1}=n_{1}^{\prime} \\
\hat{n}_{h, 2}=n_{1}^{\prime}+1=n_{1} .
\end{array}\right.
$$

Now we can state the following theorem.
Theorem 5: $\hat{f}(n, k)=\left[\frac{5 k-8-\left(5 k^{2}+4\right)^{1 / 2}}{10}\right]+1$.
Proof: The proof is derived directly from (17), (17'), and (15) after replacing h by $k-1$ and n by m in (8). Q.E.D.

On the basis of (17') and (15), we determine the values of k for which the quantity

$$
R_{k}=\left(5 k-8-\left(5 k^{2}+4\right)^{1 / 2}\right) / 10
$$

is integral, i.e., the values of k for which two consecutive values of m maximize $N_{k, m}$ thus yielding the following two values of $\hat{f}(n, k)$:

$$
\left\{\begin{array}{l}
\hat{f}_{1}(n, k)=R_{k}, \tag{18}\\
\hat{f}_{2}(n, k)=R_{k}+1 .
\end{array}\right.
$$

Theorem 6: The most probable values of $f(n, k)$ are both $\hat{f}_{1}(n, k)$ and $\hat{f}_{2}(n, k)$, if and only if $k=F_{4 s}, s=1,2, \ldots$.

Proof: For R_{k} to be integral, the quantity $5 k^{2}+4$ must necessarily be the square of an integer, i.e., the equation

$$
\begin{equation*}
x^{2}-5 k^{2}=4 \tag{19}
\end{equation*}
$$

must be solved in integers. On the basis of [7, p. 100, pp. 197-198] and by
induction on r, it is seen that, if $\left\{x_{1}, k_{1}\right\}$ is a pair of positive integers x, k with minimal x satisfying (19), then all pairs of positive integers $\left\{x_{r}, k_{r}\right\}$ satisfying this equation are defined by

$$
\begin{equation*}
x_{r} \pm \sqrt{5} k_{r}=\frac{\left(x_{1} \pm \sqrt{5} k_{1}\right)^{r}}{2^{r-1}}, r=1,2, \ldots . \tag{20}
\end{equation*}
$$

Since it is found that $x_{1}=3$ and $k_{1}=1$, from (20), we can write

$$
\begin{equation*}
x_{r}+\sqrt{5} k_{r}=\frac{(3+\sqrt{5})^{r}}{2^{r-1}}=2 \alpha^{2 r} \tag{21}
\end{equation*}
$$

From (19) and (21), we get the relation

$$
\left(5 k_{r}^{2}+4\right)^{1 / 2}=2 \alpha^{2 r}-\sqrt{5} k_{r}
$$

from which, squaring both sides, we obtain

$$
k_{r}=\frac{1}{\sqrt{5}} \frac{\alpha^{4 r}-1}{\alpha^{2 r}}=\frac{1}{\sqrt{5}}\left(\alpha^{2 r}-\alpha^{-2 r}\right)=F_{2 r} .
$$

Replacing k by $F_{2 r}, R_{k}$ reduces to ($\left.L_{2 r-1}-4\right) / 5$; therefore, to prove the theorem, it is sufficient to prove that, iff r is even, then the congruence $L_{2 r-1} \equiv 4(\bmod 5)$ holds.

Using Binet's form for L_{x}, we obtain

$$
L_{2 r-1}=\frac{1+S}{2^{2(r-1)}}
$$

where

$$
S=\sum_{t=1}^{r-1}\binom{2 r-1}{2 t}(\sqrt{5})^{2 t}=5 \sum_{t=1}^{r-1}\binom{2 r-1}{2 t}(\sqrt{5})^{2(t-1)} .
$$

Therefore, we can write the following equivalent congruences,

$$
\begin{aligned}
& 2^{-2(r-1)}(1+S) \equiv 4(\bmod 5), \\
& 1+S \equiv 2^{2 r}(\bmod 5), \\
& 1 \equiv 2^{2 r}(\bmod 5),
\end{aligned}
$$

which, for Fermat's little theorem, hold iff $r=2 s, s=1,2, \ldots$ Q.E.D.

4. THE INTEGERS REPRESENTABLE AS A SUM OF $m_{k} F$-ADDENDS

In this section, the set of all integers $n \in \mathcal{N}_{k}$ which can be represented as a sum of $m_{k} F$-addends [i.e., all integers such that $f(n, k)=m_{k}$] is determined.

From Theorem 2 and (1), the following corollary is immediately derived.
Corollary 1:

$$
N_{k, m_{k}}= \begin{cases}k / 2, & \text { for even } k \\ 1, & \text { for odd } k\end{cases}
$$

The following identities are used to prove Theorems 7 and 8.

THE REPRESENTATION OF INTEGERS AS A SUM OF DISTINCT FIBONACCI NUMBERS
Identity 1: $\sum_{j=1}^{h} F_{2 j}=F_{2 h+1}-1$.
Identity 2: $\sum_{j=1}^{h} F_{2 j+1}=F_{2(h+1)}-1$.
Identity 3: $\sum_{j=0}^{m-1} F_{2 j+n}=F_{2 m+n-1}-F_{n-1}$.
The proofs of Identities 1, 2, and 3 are obtained by mathematical induction and are omitted here for the sake of brevity.

Theorem 7: $f\left(F_{k}-1\right)=m_{k}$.
Proof: (i) Even k 。
For even k, we have $m_{k}=(k-2) / 2$; it follows that $k=2\left(m_{k}+1\right)$ and, from Identity 2,

$$
F_{k}-1=F_{2\left(m_{k}+1\right)}-1=\sum_{i=1}^{m_{k}} F_{2 i+1}
$$

(ii) Odd k.

For odd k, we have $m_{k}=(k-1) / 2$; it follows that $k=2\left(m_{k}+1\right)$ and, from Identity 1 ,

$$
F_{k}-1=F_{2 m_{k}+1}-1=\sum_{i=1}^{m_{k}} F_{2 i}
$$

In both cases, $F_{k}-1$ can be represented as a sum of $m_{k} F$-addends. Q.E.D.
From Theorem 7 and Corollary 1 , it is evident that, for odd k, the only integer $n \in \mathcal{N}_{k}$ such that $f(n, k)=m_{k}$ is $n=F_{k}-1$. Moreover, it is seen that, for even k, the integers $n \in \mathcal{N}_{k}$ such that $f(n, k)=m_{k}=(k-2) / 2$ are $k / 2$ in number ($F_{k}-1$ inclusive); let us denote these integers by

$$
A_{k, i}, i=1,2, \ldots, k / 2 .
$$

Theorem 8: $\quad A_{k, i}=F_{k}-F_{k-2 i}-1, i=1,2, \ldots, k / 2$.
Proof: For a given even k, the integers $A_{k, i}$ can be obtained by means of the following procedure:

$$
\begin{array}{ll}
A_{k, 1} & =F_{2}+F_{4}+F_{6}+\cdots+F_{k-6}+F_{k-4}+F_{k-2} \\
A_{k, 2} & =F_{2}+F_{4}+F_{6}+\cdots+F_{k-6}+F_{k-4}+\left(F_{k-1}\right) \\
A_{k, 3} & =F_{2}+F_{4}+F_{6}+\cdots+F_{k-6}+\left(F_{k-3}+F_{k-1}\right) \\
\vdots \\
A_{k, k / 2-2} & =F_{2}+F_{4}+\left(F_{7}+\cdots+F_{k-5}+F_{k-3}+F_{k-1}\right) \\
A_{k, k / 2-1}=F_{2}+\left(F_{5}+F_{7}+\cdots+F_{k-5}+F_{k-3}+F_{k-1}\right) \\
A_{k, k / 2}=\left(F_{3}+F_{5}+F_{7}+\cdots+F_{k-5}+F_{k-3}+F_{k-1}\right)
\end{array}
$$

The mechanism of choice of the F-addends from two disjoint subsets of \mathscr{F}_{k} [namely, $\left\{F_{2 t}\right\}$ and $\left.\left\{F_{2 t+1}\right\}, t=1,2, \ldots,(k-2) / 2\right]$ illustrated in the previJus table yields the following expression of A_{k}, i^{\prime}

$$
A_{k, i}=\sum_{r=0}^{k / 2-i-1} F_{2+2 r}+\sum_{s=0}^{i-2} F_{k-2 i+2 s+3},
$$

from which, by virtue of Identity 3, we obtain

$$
\begin{aligned}
A_{k, i} & =F_{2(k / 2-i)+1}-F_{1}+F_{2(i-1)+k-2 i+2}-F_{k-2 i+2} \\
& =F_{k-2 i+1}-1+F_{k}-F_{k-2 i+2}=F_{k}-F_{k-2 i}-1 . \quad \text { Q.E.D. }
\end{aligned}
$$

The following corollary is derived from Theorem 8.
Sorollary 2: $\quad A_{k, 1}=F_{k-1}-1$,

$$
\begin{equation*}
A_{k, 2}=L_{k-2}-1, \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
A_{k, k / 2}=F_{k}-1 \tag{23}
\end{equation*}
$$

Proof: Identities (22) and (24) are obtained directly from Theorem 8. Identity (23) requires some manipulations; that is,

$$
\begin{aligned}
A_{k, 2} & =F_{k}-F_{k-4}-1=F_{k}-\left(5 F_{k}-3 F_{k+1}\right)-1 \\
& =-F_{k}+3\left(F_{k+1}-F_{k}\right)-1=-F_{k}+3 F_{k-1}-1 \\
& =2 F_{k-1}-F_{k-2}-1=F_{k-1}+F_{k-3}-1=L_{k-2}-1 . \quad \text { Q.E.D. }
\end{aligned}
$$

REFERENCES

. D. E. Daykin. "Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers." J. London Math. Soc. 35 (1960):143-160.
?. J. L. Brown, Jr. "Zeckendorf's Theorem and Some Applications." The Fibonacci Quarterly 2, no. 3 (1964):163-168.
3. D. A. Klarner. "Partitions of N into Distinct Fibonacci Numbers." The Fibonacci Quarterly 6, no. 4 (1968):235-243.
i. V. E. Hoggatt, Jr., \& M. Bicknell-Johnson. "Additive Partitions and Generalized Fibonacci Representations." The Fibonacci Quarterly 22, no. 1 (1984): 2-21.
;. Problem H-368. The Fibonacci Quarterly 22, no. 2 (1984):188.
;. A. Ghizzetti. Complementi ed Esercizi di Analisi Matematica. Rome: Veschi, 1972.
7. I. M. Vinogradov. Elements of Number Theory. New York: Dover, 1954.

