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1. INTRODUCTION AND GENERALITIES 

It is known that every positive integer can be represented uniquely as a 
finite sum of F-addends (distinct nonconsecutive Fibonacci numbers). A series 
of papers published over the past years deal with this subject and related 
problems [1, 2, 3, 4]. Our purpose in this note is to investigate some minor 
aspects of this property of the Fibonacci sequence. More precisely, for a 
given integer k ^ 3, we consider the set J/k of all positive integers n less 
than Fk (as usual Fk and Lk are the kth Fibonacci and Lucas numbers, respec-
tively), and for these integers we determine: 

(i) the asymptotic value of the average number of F-addends; 

(ii) the most probable number of F-addends; 

(iii) the greatest number mk of .F-addends, selected from the set J/-^, and 
the integers representable as a sum of mk F-addends. 

Setting 

mk = [(k - l)/2], (k > 3) (1) 

(here and in the following the symbol [x] denotes the greatest integer not ex-
ceeding x) and denoting by f(n9 k) the number of F-addends the sum of which 
represents a generic integer n G J/k , we state the following theorems. 

Theorem 1 : 1 < f(ji9 k) < mk. 

Proof: Since F1 = F2 and since the F-addends are distinct, they can be chosen 
in the set J^ = {F2, F3, ..., Fk_±] the cardinality of which is |j^| = k - 2. 
Moreover, since the F-addends are nonconsecutive Fibonacci numbers, they can 
be in number at most either | J^ | /2 (for \#k\ even) or (| &k \ + l.)/2 (for \#k\ 
odd). Q.E.D. 

Theorem 2: The number NkiTn of integers belonging to J/k which can be repre-
sented as a sum of m F-addends is given by 

Proof: Setting M = \&k\ = k - 2, it is evident that Nk m equals the number 
BMiTn of distinct binary sequences of length M containing m nonadjacent 1's and 
M - m 0*s. The number BM can be obtained by considering the string 

{v 0 v 0 v •-• v 0 v] 
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constituted by M - m Ofs and M - m + 1 empty elements v9 and by replacing, in 
all possible ways, m empty elements by 777 lfs: 

_ (M - m + 1\ 
*M'm ~ \ m ) ' 

Replacing M by k - 2 in the above relation, the theorem is proved. Q.E.D. 

From Theorem 2, we derive immediately the following 

Remark: 
(k - 2, for 777 = 1 

(2) Nk,m 

(k-

" I . . 
29 f o r 777 = 1 

f o r 777 > mk* 

2. THE AVERAGE VALUE OF f(n, k) 

In this section, we calculate the limit of the ratio between the average 
value of f(n9 k) and k as k tends to infinity. _ 

From Theorem 2, it is immediately seen that the average value f(n9 k) of 
the number of F-addends the sum of which represents the integers belonging to 
j¥k is given by 

nk x L 2 J 
(3) 

\j/k\m = l h m=l \ / 

Moreover, i t i s known [5] t h a t t he i d e n t i t y 
mk 
Z(k-m)NKm=Uk (4) 

m= 0 

h o l d s , where 

Uk = k l l Fm + 1Fk_m; (5) 
171= 0 

from ( 4 ) , the r e l a t i o n 

Uk = k T,Nk9m ~ E ^fc./n 
777= 0 m = 0 

is obtained from which, by virtue of the well-known representation of the Fibo-
nacci numbers as sums of binomial coefficients [6], we get 

mk 

Uk -kFk - £ mNktm. 

Consequent ly , we can w r i t e 
mk mk 

Y,rnNKm = E ^ f e , m - *** " Uk. (6) 
m = 0 m=l 

The numbers /Ĵ  defined by (5) satisfy the recurrence stated in the follow-
ing theorem. 
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Theorem 3: Uk = kFk ~ Uk_2> w i th U± = 1, U2 = 2 . 

Proof: Using the well-known, i d e n t i t y Fs+t = Fs + 1Ft + Fs Ft_ 1 and s e t t i n g rn = s 9 
k - 772 = t9 we can w r i t e the i d e n t i t y 

•^fc = Fm+k-m = Fm + 1Fk_m + FmFk_m_ 1 

t hus g e t t i n g Fm + 1Fk_m = Fk ~ FmFk_m_v T h e r e f o r e , from ( 5 ) , we have 

tf* = X ^ " V*-*- i> = kFk ' E ^ - a i - i = *** ~kt2FmFk_m_r 
777= 0 7 7 7 = 0 7 7 7 = 1 

Setting r = m - 1, from the previous relation we obtain 

h=kFk ~ ^Fr + lFk-r-l = *** - ^ - 2 - Q-E-D. 
p= 0 

From Theorem 3 , the f u r t h e r e x p r e s s i o n of [A. i s immediately d e r i v e d : 

Uk = kFk _ (fc _ 2 ) F f e _ 2 + • • • + ( - l ) r a * ( * - 2 ^ . ^ 

777k 

i = 0 

where, as usual, 777 ̂ = [(k - l)/2]. 
Denoting by a and 3 the roots of the equation x2 - x - 1 = 0, the following 

theorem can be stated. 

Theorem hi f(n, k) is asymptotic to -. 
1 + or 

Proof: From (3) and (6), we can write 

f(n, k)/k = ( ^ V K ^ - Uk))/k 

and calculate the limit 

/ Uk\l Uk 
lim f(ns k) Ik = llmlk - -pr~)/k = lim 1 - 7-77-
k + ~ k+«>\ Fk)/ k + oo kFk 

which, from (7), can be rewritten as 

lim f(n3 k)/k = l±m(kFk - kFk + E (-l)*"1^ - 2i)F _2i )AkFk) . 

Finally, using the Binet form for Fk, we get 
mk 

E(-Di_1(fe - 2i)(ak-2i - 3fc-2i) 
_ i-l 

lim f(n, k)Ik = lim 
/c+co mk •̂*t» k(ak - 3fc) 

E(-l)t_:i(l - 2i/k)a.K-2i 

= lim — = ± (-iy-la-2i = * 0.2764. 
Q.E.D. ?c_>"" a* i-l 1 + a2 
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The behavior of f(n9 k) Ik versus k has been obtained using a computer cal-
culation and is shown in Figure 1 for 3 < k < 100, 

!<+-, 

- -

Ld 

' + " ' ^ 

k -— 

Figure 1. Behavior of f(n9 k)Ik versus k 

3« THE MOST PROBABLE VALUE OF f(n, k) 

In this section9 it is shown that the most probable number f(n9 k) of F~ 
addends the sum of which represents the integers belonging to yl^, can assume 
at most two (consecutive) values. The value of f(n9 k) for a given k together 
with the values of k for which two f(n9 k) ?s occur9 are worked out. 

From Theorem 2, it is immediately seen that f(n9 k) equals the value(s) of 
m which maximize the binomial coefficient %sOT; consequently let us investigate 
the behavior of the discrete function 

(":") 
(8) 

as n variesj looking for the value(s) nh of n which maximize it. It is evident 
that nh is the value(s) of n for which the inequalities 

and 

/h - n\ > (h - n + 1\ 
\ n ) " \ n - 1 I 

(h - n\ > Ih - n - 1\ 
\ n / V n + 1 . / 

(9) 

(10) 

are simultaneously verified. Using the factorial representation of the bino-
mial coefficients and omitting the intermediate steps for the sake of brevity, 
the inequality 

5nz (5h + l)n + h2 + 3h + 2 > 0 (11) 

i s ob ta ined from ( 9 ) ; t he r o o t s of the a s s o c i a t e equa t ion a r e 

1 = (5/z + 7 - A / A ) / 1 0 , 

2 = (5h + 7 + y/K)/109 

where A = 5h2 + lOh + 9. From (11), we have 

(12) 

n2 < n < n1. (13) 
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Analogously, from (10), we obtain the inequality 

5n2 - (5h - 3)n + h2 - 2h < 0S (14) 

from which the roots 

(n[ = (5h - 3 - i/ft)/10 
| n 2 ' = (5/z - 3 + vft)/10 

are derived. From (14), we have 

nx' < n < n'. (16) 

Since, for /z > 2, the inequality nx < n2' holds, the inequalities (13) and (16) 
are simultaneously verified within the interval [n'3 n ]. Therefore, we have 
n[ < fih < n1. Since nx - n^ = 1, the value 

nh = [«;] + 1 = [nj (17) 

is unique, provided that n' (and n.) is not an integer. If and only if n^ is 
an integer is the binomial coefficient (8) maximized by two consecutive values 
nh 1 and nh 2 of n; that is, 

( a * . i - * i . ( 1 7 , , 

Now we can state the following theorem. 

T, c ;, n [5k - 8 - (5k2 + 4)1 / 2 ] _,_ 1 Theorem 5: /(n, &) = ^ L J + 1. 

Proof: The proof is derived directly from (17), (17;)> and (15) after replac-
ing h by k - 1 and n by m in (8). Q.E.D. 

On the basis of (17f) and (15), we determine the values of k for which the 
quantity 

Rk = (5k - 8 - (5k2 + 4)1/2)/10 

is integral, i.e., the values of k for which two consecutive values of 777 maxi-
mize Nfc m thus yielding the following two values of f(n3 k)1 

(f^n, k) = Bk, (18) 

\f2(n, k) = Bk + 1. (18') 

Theorem 6: The most probable values of f(ns k) are both f1(n9 k) and f2(n, k), 
if and only if k = F , s = 1, 2, . . . . 

Proof: For Rk to be integral, the quantity 5k2 + 4 must necessarily be the 
square of an integer, i.e., the equation 

x2 - 5k2 = 4 (19) 

must be solved in integers. On the basis of [7, p. 100, pp. 197-198] and by 
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induction on r9 it is seen that, if {x1$ k±] is a pair of positive integers xs 
k with minimal x satisfying (19), then all pairs of positive integers {xr, kr] 
satisfying this equation are defined by 

(x± ± JskJ* 
xr ± /5kr = , v = 1, 2, . .. . (20) 

nr - 1 

Since it is found that x1 - 3 and k1 = 1, from (20), we can write 

Xyi + J5k„ = (3 + A ) P = 2a2i\ (21) 
2 p-i 

From (19) and (21), we get the re la t ion 

(5k2
r + 4 ) 1 / 2 = 2a2" - fikr 

from which, squaring both s ides , we obtain 

K = -= — — = -iz(^2r - «"2r) = F,„ • 
S5 a2r V5 

1 0(, — 1 1 , 2v - 2v \ 
~ ' 2r ' 

s=E(2Vt
1)^)»=5ii:ifvt

1)^,»-». 

Replacing k by F2r, Rk reduces to (£2r-i - 4)/5; therefore, to prove the 
theorem, it is sufficient to prove that, iff r is even, then the congruence 
L2r_1 = 4 (mod 5) holds. 

Using Binetfs form for Lr5 we obtain 

_ 1 + S 

where 
E ' 

t = i 

Therefore, we can write the following equivalent congruences, 

2"2(p-1)(l 4- S) = 4 (mod 5), 

1 + S = 22r (mod 5), 

1 E 22r (mod 5), 

which, for Fermatfs little theorem, hold iff v = 2s, s = 1, 2, . .. . QoE.D. 

4. THE INTEGERS REPRESENTABLE AS A SUM OF mk F-ADDENDS 

In this section, the set of all integers n e J/k which can be represented 
as a sum of mk F-addends [i.e., all integers such that f(n, k) = mk] is deter-
mined . 

From Theorem 2 and (1), the following corollary is immediately derived, 

Corollary 1: 
k/2s for even k5 

N, 
1, for odd t 

The following identities are used to prove Theorems 7 and 8. 
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h 

Identity 1: E FZj = F2h+i " 1-
j = 1 

Identity 2: £ ^2i+1 =
 F

2(h + 1) ~ 1-
J = l 

7 7 7 - 1 
Identity 3: E ^2j-+n = ̂ m+n-i ~ *n-i-

j =o 

The proofs of Identities 1, 2, and 3 are obtained by mathematical induction 
and are omitted here for the sake of brevity. 

Theorem ?: f(Fk - 1) = mk» 

Proof: (i) Even k. 

For even k9 we have mk = (k - 2)/2; it follows that k = 2(mk + 1 ) 
and, from Identity 2, 

mk 

K ^ = 1 

(ii) Odd k. 
For odd fc9 we have mk = (k - l)/2; it follows that & = 2(77?̂. + 1) 
and3 from Identity 1, 

mk 

* ^ = 1 

In both cases, Fk - 1 can be represented as a sum of mk F-addends• Q,E,D* 

From Theorem 7 and Corollary 1, it is evident that, for odd k9 the only 
integer n e yf^ such that /(n, k) = mk is n = F^ - 1. Moreover, it is seen 
that, for even k3 the integers n e J/-^ such that f(n9 k) = mk = (& - 2)/2 are 
fc/2 in number (î , - 1 inclusive); let us denote these integers by 

AKi> i = 1, 2, ..., &/2e 

Theorem 8: Aksi = Fk - Fk„2i - 1, <£ = 1, 2 , . . . , fe/2. 

Proof: For a given even k3 t he I n t e g e r s Ak ^ can be ob ta ined by means of the 
fo l lowing p r o c e d u r e : 

Ak.l = F2 + F» + FS + ••• + Fk-S + Fk-, + Fk-2 
Ak,2 = F2 + Fh + F6 + ••• + Fk_6 + Fk_h + (Fk_1) 

Ak,3 = F2 +F^ + Fs + ' • • + Fk-s + ( ^ - 3 + ^ - i ) 

Ak,k/2-2 = F2 + F , + (F7 + '•• + Fk-5 + Fk-3 + Fk-0 
Ak,k/2-i = Fz + (F5 + F7 + ••• + Fk_5 + Fk_3 + Fk_1) 
Ak,k/2 - CF3 + F5 + F7 + ••• + Fk_5 + Fk_3 + Fk_1) 
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The mechanism of choice of the F-addends from two disjoint subsets of #^ 
[namely, {F2t } and {F2t + 1}s t = 1, 2, . . . , (k - 2) /2] illustrated in the previ-
DUS table yields the following expression of Ak ^ 

k/2-i-l i-2 

k, i ~ J^ 2 + zr L* k~2i+ 2s+3* 

from which, by v i r t u e of I d e n t i t y 3 3 we o b t a i n 

A, = F - F + F ~ F 
^k%i ^ 2{k/2-i) + l 1 2(i-l)+k-2i+ 2 Lk-2i+2 

= Fk-2i+l - 1 + F k ~ Fk-2i+2 = Fk ~ Fk-2i ~ U Q - E ' D -

The following corollary is derived from Theorem 8, 

Corollary 2: Ak, ± = Fk_1 - 1, (22) 

(23) 

(24) 

Proof: Identities (22) and (24) are obtained directly from Theorem 8. Iden-
tity (23) requires some manipulations; that is9 

Ak,2 = Fk - Fk-, - l = Fk - (5Fk ~ 3^fe+1) - 1 
= -** + 3 ( ^ + 1 - Fk) - 1 = -Fk + 3Fk^ - 1 
= 2Fk.1 - Fk_2 - 1 = Fk_1 + Fk_3 - 1 = Lk_2 - 1. Q.E.D. 
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