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1. INTRODUCTION AND DEFINSTSONS 

In [2], it was shown how to obtain the coordinates of a point in (real) 
three-dimensional Euclidean space as triple products of Fibonacci numbers. 

This was achieved as a development of two-dimensional ideas involving com-
plex numbers, though the three-dimensional extension was devoid of any depend-
ence on complex numbers. 

Here, we wish to enlarge these notions to more general recurrence-generated 
number sequences and then to generalize our result to ̂ -dimensional Euclidean 
space. To accomplish this objective, we will need to introduce a symbol £(£, 
m, n), originally defined in [2] in relation to Fibonacci numbers only. This 
symbol represents a number with three components which may be regarded as the 
coordinates of a point with respect to three rectangular Cartesian axes, x9 y , 
and 2, i.e., as Cartesian or "Euclidean" coordinates. 

First, we define the recurrence sequence {Un} by 

Un + 2 = PUn + l ~ ?Un> ^0 = °  • ̂ 1 = l <M > °> > d'1) 

where p and q are generally integers. 
Next, for positive integers £, m9 n9 let 

' G(l + 2 , m9 n) = pG(l + \9 m9 n) - qG(l9 m9 n) 
G(l9 m + 2 , n) = p £ ( £ , m + 1 , n) - qG{l9 m9 n) (1 .2 ) 

{G(l9 m9 n + 2) = pG(!L9 m9 n + 1) - qG{l9 m9 n) 
wi th 

'(7(0, 0 , 0) = (a , a , a ) , £ ( 1 , 0 , 0) = (bs 0 , 0 ) , G(09 1, 0) 
= (0 , b9 0 ) , 

G(09 0 , 1) = (0 , 0 , 2>), G ( l , 1, 0) = p(b9 b9 0 ) , G(l9 0 , 1) (1 .3 ) 
= p(b9 0 , 2 0 , 

[ £ ( 0 , 1, 1) = p ( 0 s b, b)9 G(l9 1, 1) = p2(b9 b9 b) 

a and b being integers. 

2, PROPERTIES OF g(&, re, n) 

Inductive proofs, with appeal to (1.1)-(1.3), readily establish the follow-
ing (cf. [2]): 

G(H9 0, 0) = UzG(l9 0, 0) - qU^^GiO, 0, 0) (2.1) 

GU, 1. 0) = [^£(1, 1, 0) - <7Z7£-1G(0, 1, 0) (2.2) 

(?(£, 7?7, 0) = £/wGa, 1, 0) - qUm_1G(l9 0, 0) (2.3) 
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G(H, 0 9 1) = UzG(l, 0 , 1) - qUz-.tfiO, 0 , 1) ( 2 . 4 ) 

G(l5 1 , 1) = UzG(l5 1 , 1) - qUt-tflO, 1 , 1) ( 2 . 5 ) 

G(l9 m, 1) = UmG(SL, 1 , 1) - qUm-iGa, 0 , 1) ( 2 . 6 ) 

£ ( £ * m, ri) = / 7 n £ ( £ , T??S 1) = qUn-xGVl, m9 0 ) ( 2 . 7 ) 

T h e n , 

G(l, m, n) = Un{UmGa, 1 , D ~ qUm_1G{l9 0 , 1 ) } - qUn_1{UmG{l, 1 , 0 ) 

- qVn^GU, 0 , 0 ) } by ( 2 . 3 ) , ( 2 . 6 ) , and ( 2 . 7 ) 

= UmUnGU, 1 . 1) - qUm_1UnGa9 0 , 1) - qUmUn^Ga9 1 , 0 ) 

+ q^-iUn^GVL, 0 5 0) 

= UnU^U^b, b, b) - pqUz_1(0, b, b)} ( 2 . 8 ) 

- qUmUn_1{pUz(b9 b9 0 ) - ^ ^ ( O , fc, 0 ) } 

-- qUz_1(a9 a , a)} by ( 2 . 1 ) , ( 2 . 2 ) , ( 2 . 4 ) , 
^ and ( 2 . 5 ) . 
F u r t h e r , 

UzUm+1Un+1 = Uz(pUm - qUm.1)(pUn - qUn-i) by ( 1 . 1 ) 

= p2UzUmUn - pqUzUmUn-! - pqUzUm-iUn + q2UzUm.1Un-i 

w i t h s i m i l a r e x p r e s s i o n s f o r Ui+iUmUn+i and Un-iUm+iUn* 
C o m p a r i n g ( 2 . 8 ) and ( 2 . 9 ) , we s e e t h a t t h e r i g h t - h a n d s i d e of ( 2 . 9 ) c o n -

t a i n s p r e c i s e l y t h o s e c o e f f i c i e n t s i n ( 2 . 8 ) of c o o r d i n a t e s e t s w i t h b i n t h e 
f i r s t p o s i t i o n , i . e . , i n t h e ^ - d i r e c t i o n . M i s s i n g i s t h e t e r m i n Ui-\Um-lUn-i• 

S i m i l a r r e m a r k s a p p l y t o Ui+iUmUn+i f o r b i n t h e s e c o n d p o s i t i o n , and t o 
Uz+1Um+iUn f o r b i n t h e t h i r d p o s i t i o n , of a c o o r d i n a t e s e t . 

A c c o r d i n g l y , we h a v e e s t a b l i s h e d t h a t 

G{1, m, n) = (pZW,Um + 1Un + 1 - q3aUl.1Um_1Un_1, 

P2bUz + 1UmUn + 1 - q"aVl_^n.xVn^, (2.10) 

P2bUi+1Um + 1Un - q'aU.^U^^.,). 

Equation (2.10) gives the cooedinates of a point in three-dimensional Euclidean 
space in terms of numbers of the sequence {Un} * 

When p = 1, q = -1, Z? = 1, a = 0 in (1.1), we obtain the result for Fibo-
nacci numbers Fn given in [2], namely, 

Gil, m, n) = (F F F , F F F , F F F ). (2.11) 

Setting p = 2, q = -1, b = 1, a = 0 in (1.1), we have the Pell numbers Pn 

for which (2.10) becomes 

G{1, m, n) = (4P£Pm + 1Pn + 1, Wl + 1PmPn+1, 4P£ + 1Pm + 1P„). (2-12) 

Before concluding this section we observe that, say, (2.6) may be expressed 
in an alternative form as 

. £(£, m, 1) = UZG(1, /??, 1) - qUz_1(05 m, 1). (2.6) f 
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3. HIGHER-DSMENSiONAL SPACE 

Suppose we now extend the definitions in (1.1)—(1.3) to n dimensions in a 
natural way as follows. (The use of n here is not to be confused with its use 
in a different context in the symbol G in the previous section.) 

For the n variables %i (i = 1, 2, ..., ri) , we define 

u"ViA/,T"Zs Jo. j ^ 3 5 •••s & n) ~ pCr^A/^T'ls A/ps -~qs • • • 5 ^ n ) ~ Ẑ̂ 7" V.-~ i ' ^ o ' 3 9 • • • J ^7%) 

(j-\Xj-, , X / 2 ' ^ - 9 - ~ Q 9 • • • J •*> yj / = pL?"V-~-]9 A / p ' J - S A/q 5 • • • , 71' ~ ^ 7 ^ \ -~ ]_ 5 -& £ ' 3 ' " • • ' ^71' 

I Lf\ X/-| j A/OS ^ q 9 • • • J ?2 • LSLT \ Xj -j j •X-' o 9 -^ q 9 . » « , ^?Z 1 / ~ u l f y A c i j •~' o 9 « o j • • » , fij Yl) 

with (3'X) 

r£(0, 0, 0, ..., 0) = (a, a, a9 ... , a) 

£(1, 1, 1, ..., 1) = (b9 b, b9 .... 2>) (3.2) 
G( ) = pk( ~ . ) 

in which G( ) contains k + 1 lTs and n - (k + 1) 0*s, and ( — ) contains 
k + 1 b%s and n - (& + 1) 0's, in corresponding positions. 

Mutatis mutandis, similar but more complicated results to those obtained in 
the previous section now apply to (3.1) and (3.2). 

in particular, the result corresponding to (2.10) is 

G{ix, £2, £3,...,£M) = {pn-1WliUl2 + 1Uli + 1...Vln + 1 + U, 

P ^ ^ + i ^ ^ . + i . . . uln + 1 + u, ( 3 3 ) 

Pn-1buii + 1u!i2 + 1uZ3 + 1... uin + u) 
where, for visual and notational ease, we have written 

U = (-?)l,ayii.1yvl£/4j.1 ... Uln_x. (3.4) 

Clearly, (3.3) may represent the coordinates of a point in n-dimensional 
Euclidean space in terms of the numbers of the sequence {Un}. 

For Fibonacci numbers, [7=0, and (3.3) reduces to 

GJ(£1, £2, £3, .. . , ln) = (F^ Fi2+iFz3 + i - • • ^An+i» •e • > 

Likewise, for Pell numbers, U = 0 also, and (3.3) becomes 

G(i1, £2, £3,...,£n) = (2 P^ P£2 + 1P£3 + 1 . . . P^ + 1, ..., 

2n"1Pi1 + iPt2 + iP4j + i...P4 B). (3.6) 

It does not appear that any useful geometrical applications of an elemen-
tary nature can be deduced from the above results. 

Harman [2] noted that if, in his case for Fibonacci numbers, the three ex-
pressions in (1.2) are combined, then the value of G(& + 2, m + 2, n + 2) is 
given by the sum of the values of the symbol G at the eight vertices of the 
cube diagonally below that point. Similar comments apply to our more general 
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expressions (1,2) with corresponding observations for the extension to n dimen-
sions entailed in (3.1) in connection with the 2n vertices of a "hypercube." 

By this statement, we mean that when, say, n = 3, (1.2) gives 

G(i + 2, m + 2, n + 2) = p3G{l + 1, m + 1, n + 1) - p2q{G{l + 1, m + 1, n) 

+ G(H + 1, 777, n + 1) + £(£, m + 1, n + 1)} 

+ p<72{£(£ + 1, m, n) + £(£, m + l , n ) 

+ £(£, 777, n + l)}~q3G{l, m, n). (3.7) 

In the case of Fibonacci numbers, p3 = -p2q = pq2 = -q3 = 1. For Pell num-
bers, p3 = 8, -p2q = 4, pg2 = 2, -<73 = 1. 

4. CONCLUDING REMARKS 

Consider briefly now the two-dimensional aspect of the results in the pre-
ceding section, i.e., the case n = 2. (Evidently, when n = 1, we merely get 
the numbers Un strung out on the number axis.) 

Writing £1 = £, £2 = m5 we find that the truncated forms corresponding to 
(3.1)-(3.7) are, respectively, 

with 

' G(i + 2, m) = pG{l + 1, m) - <?£(£, m), 

. £(£, ?7? + 2) = p£(£, 77? + 1) - ^7(£, m) , 
(4.1) 

whence: 

£(0, 0) = (a, a), G(l, 0) = (/3, 0), 
« 0 5 1) = (0, b)9 G(l, 1) = P(b, b), (4.2) 

GU, m) = (pM/,^ + 1 + a[/£.A„l5 P^£ + A + ̂ M ^ ^ (4.3) 
Ga, m) = (̂ ^ + 1. ̂ ,+ 1 ^ ) for {Fn}9 (4.5) 

£(£, 777) = (ZPzPm + 1, 2PZ + 1PJ for {Pn}9 (4.6) 

G(i + 2, ;?? + 2) = p2G{l + 1 , m + 1) - pq£(£ + 1, TT?) 
- p^^(£, 7?? + 1) + q2G(is 777). (4.7) 

Obvious simplifications of (4.7) apply for Fibonacci and Pell numbers. 

Some of the above results, for Fibonacci numbers in the real Euclidean 
plane, should be compared with the corresponding results in the complex (Gaus-
sian) plane obtained in [2]. The present authors [5] have studied the conse-
quences in the complex plane of a natural generalization of the material in 
[2]. Harman [2], when advancing the innovatory features of his approach, ack-
nowledges the earlier work of [1] and [3], and relates his work to theirs. It 
might be noted in passing that the introductory comments on quaternions in [3] 
have been investigated by other authors, e.g., [4]. One wonders whether an 
application of quaternions to extend the above theory on complex numbers might 
be at all fruitful. 

From the structure provided by the complex Fibonacci numbers, some inter-
esting classical identities involving products are derivable ([2] and [5]). 
Hopefully, these might give a guide to identities involving triple products of 
Fibonacci numbers, as conjectured in [2], and products in more general recur-
rence-generated number systems, as herein envisaged. 

1986] 369 



EUCLIDEAN COORDINATES AS GENERALIZED FIBONACCI NUMBER PRODUCTS 

REFERENCES 

1. G. Berzsenyi. "Gaussian Fibonacci Numbers." The Fibonacci Quarterly 15, 
no. 3 (1977):233-236. 

2. C. J. Harman. "Complex Fibonacci Numbers." The Fibonacci Quarterly 19, 
no. 1 (1981):82-86. 

3. A. F. Horadam. "Complex Fibonacci Numbers and Fibonacci Quaternions." 
Amer. Math. Monthly 68 (1961):455-459. 

4. A. L. Iakin. "Generalized Quaternions of Higher Order." The Fibonacci 
Quarterly 15, no. 4 (1977):343-346. 

5. S. Pethe & A. F. Horadam. "Generalized Gaussian Fibonacci Numbers." Bull. 
Aust. Math. Soc. 33, no. 1 (1986):37-48. 

• <>•<>• 

370 [Nov. 


