DIFFERENCES BETWEEN SQUARES AND POWERFUL NUMBERS

CHARLES VANDEN EYNDEN
Illinois State University, Normal, IL 61761
(Submitted February 1985)

A number P is powerfut if, whenever a prime p divides P, then p also divides P. In [2] McDaniel proves that each nonzero integer can be written in infinitely many ways as the difference between two relatively prime powerful numbers. (Golomb [1] had conjectured that infinitely many integers could not be represented as the difference between powerful numbers.) An examination of McDaniel's paper shows that he actually proves that, if $n \not \equiv 2(\bmod 4)$, then n can be written in infinitely many ways as $S-P$, where S is a square, P is powerful, and $(S, P)=1$.

In this paper we take care of the case $n \equiv 2(\bmod 4)$, to prove
Theorem: If n is any nonzero integer, then n can be written in infinitely many ways as $n=S-P$, where S is a square, P is powerful, and $(S, P)=1$.

Proof: For compactness, we assume the reader is familiar with [2]. In Theorem 2 of that paper it is proved that if n is a positive integer and $n \not \equiv 2(\bmod 4)$ then $x^{2}-D y^{2}=n$ has infinitely many relatively prime solutions X, Y such that D divides Y. Clearly, each represents n in the desired way. The method of proof is to show that there exist integers D, p, q, x_{0}, and y_{0} such that

$$
\begin{align*}
& D>0 \text { and } D \text { is not a square, } \tag{1}\\
& p \text { and } q \text { satisfy } p^{2}-D q^{2}=n \text { and }(p, q)=1, \tag{2}\\
& x_{0} \text { and } y_{0} \text { satisfy } x^{2}-D y^{2}= \pm 1, \tag{3}\\
& \left(2 p y_{0}, D\right) \text { divides } q . \tag{4}
\end{align*}
$$

Although McDaniel assumes $n>0$ in the proof of his Theorem 2, the arguments he gives work just as well for negative values of n. Thus, only the case $n \equiv 2(\bmod 4)$ remains. Let $n=8 k \pm 2$ 。

Case 1. $n=8 k+2$ or $3 \nmid n$ 。
If $n=2$, then $D=7, p=3, q=1, x_{0}=8$, and $y_{0}=3$ can be checked to satisfy (1) through (4). Likewise, if $n=10$, then $D=39, p=7, q=1, x_{0}=$ 25 , and $y_{0}=4$ work.

Otherwise, we take $D=(2 k-1)^{2} \mp 2, p=2 k+1, q=1, x_{0}=D \pm 1$, and $y_{0}=2 k-1$. Since $n=2$ and $n=10$ have been excluded, we see that $D>1$ and D is odd. Conditions (2) and (3) are easily checked. Note that because p^{2} $D=n$, we have $p^{2}-D-4 p= \pm 2-4=-2$ or -6 . Since D is odd, $(p, D)=1$ or 3, with the latter a possibility only if we take the bottom signs. However, $(p, D)=3$ implies $3 \mid n$, contrary to our assumption. Thus, $(p, D)=1$. Also, $y_{0}^{2}-D= \pm 2$, so $\left(y_{0}, D\right)=1$. This proves (4).

Case 2: $n=8 k-2$ and $3 \mid n$.
We take $p=6 k-1, q=1, D=p^{2}-n=36 k^{2}-20 k+3, x_{0}=9 D-1$, and $y_{0}=3(18 k-5)$. It can be checked that $D>1$ and that D is strictly between
p^{2} and $(p-1)^{2}$ for any value of k. We calculate that $y_{0}^{2}-81 D=-18$, and so $x_{0}^{2}-D y_{0}^{2}=(9 D-1)^{2}-D(81 D-18)=1$, while (2) is immediate. Note that $3 \backslash p$ but $3 \mid n$, so $3 \nmid D$. Since D is odd, we see that $\left(y_{0}, D\right)=1$. Finally,

$$
3\left(p^{2}-D\right)-4 p=3 n-4 p=-2
$$

and so $(p, D)=1$ also.
To compute solutions to $S-P=n$, we can follow McDaniel and define integers x_{j}, y_{j} for $j>0$ by

$$
x_{j}+y_{j} \sqrt{D}=\left(x_{0}+y_{0} \sqrt{D}\right)^{c j}
$$

where $c=2$, then take

$$
S=\left(p x_{j}+D q y_{j}\right)^{2} \quad \text { and } \quad P=D\left(p y_{j}+q x_{j}\right)^{2},
$$

where j is any positive solution to $\left(c p y_{0}\right) j \equiv-q x_{0}(\bmod D)$. If $x_{0}^{2}-D y_{0}^{2}=+1$, however, such as in the present case and in McDaniel's treatment of the case $n=4 k+1$, sometimes a smaller solution may be found by taking $c=1$ in the above discussion. This gives a smaller solution when the least positive solution to $\left(p y_{0}\right) j \equiv-q x_{0}(\bmod D)$ is less than twice the least positive solution to $\left(2 p y_{0}\right) j \equiv-q x_{0}(\bmod D)$, and, in any case (when $x_{0}^{2}-D y_{0}^{2}=1$), more solutions are obtained this way. If $n=14$, for example, we generate solutions

$$
S=(5 x+11 y)^{2} \quad \text { and } \quad P=11(5 y+x)^{2}
$$

where x and y are defined so that

$$
x+y \sqrt{11}=(10+3 \sqrt{11})^{3+11 t} \text { or }(10+3 \sqrt{11})^{2(7+11 t)}, t \geqslant 0,
$$

depending on whether we take $c=1$ or 2 .
It has been proved by McDaniel [3] and Mollin and Walsh [4, 5] that every nonzero integer can be written in infinitely many ways as the difference of two relatively prime powerful numbers, neither of which is a square.

REFERENCES

1. S. W. Golomb. "Powerful Numbers." Amer. Math. Monthly 77 (1970):848-852.
2. Wayne L. McDanie1. "Representations of Every Integer as the Difference of Powerful Numbers." The Fibonacci Quarterly 20, no. 1 (1982):85-87.
3. Wayne L. McDaniel. "Répresentations comme la Différence des Nombres Puissants non Carrés." Comptes Rendus Mathematiques (Canada), February 1986.
4. R. A. Mollin \& P. G. Walsh. "On Powerful Numbers." J. Number Theory. To appear.
5. R. A. Mollin \& P. G. Walsh. "On Nonsquare Powerful Numbers." Submitted to The Fibonacci quarterly.
