THE L.ENGTH OF A TWO-NUMBER GAME
 JOSEPH W. CREELY
 31 Chatham Place, Vincentown, NJ 08088
 (Submitted July 1985)
 1. INTRODUCTION

Let D be an operator defined on a pair of integers

$$
A=\left(a_{1}, a_{2}\right), \alpha_{1} \geqslant \alpha_{2}>0,
$$

by

$$
D\left(a_{1}, a_{2}\right)= \begin{cases}\left(a_{2}, a_{1}-a_{2}\right), & 2 a_{2} \geqslant a_{1} \tag{1.1}\\ \left(a_{1}-a_{2}, a_{2}\right), & a_{1} \geqslant 2 a_{2} .\end{cases}
$$

Given any initial pair A_{0}, we obtain a sequence $\left\{A_{n}\right\}$ with $A_{n}=D A_{n-1}, n>0$. This sequence is called the "two-number game."

Definition 1.1: The length of the sequence $\left\{A_{n}\right\}$, denoted $L(A)$, is n such that $A_{n}=\left(a^{\prime}, 0\right)$ for some integer $a^{\prime}>0$.

Definition 1.2: The complement of A is $C A=\left(a_{1}, a_{1}-a_{2}\right)$.
It follows that $C^{2} A=A$ and
$D C A=D A$.
The effect of D on $\left(\alpha_{1}, a_{2}\right)$ is to reduce α_{1} by α_{2} and then arrange $\alpha_{1}-a_{2}$ and a_{2} in order of decreasing magnitude to form $D\left(\alpha_{1}, \alpha_{2}\right)$.

The number pair (α_{1}, α_{2}) may be replaced by a rectangle (α_{1}, α_{2}) of sides α_{1} and α_{2}. In such a case, $D\left(a_{1} \cdot a_{2}\right), C\left(a_{1} \cdot a_{2}\right)$, and $L\left(a_{1}, a_{2}\right)$ may be defined as above, but by replacing the comma with a dot. $D\left(\alpha_{1} \cdot \alpha_{2}\right)$ and $C\left(a_{1} \cdot a_{2}\right)$ are then rectangles. The length $L\left(\alpha_{1}, \alpha_{2}\right)$ is equal to the number of squares obtained by removing the largest square $\left(\alpha_{1} \cdot \alpha_{2}\right)$ from an end of ($\alpha_{1} \cdot \alpha_{2}$), then the largest square from an end of the remaining rectangle, and so on, until no squares remain. Therefore,

$$
\begin{equation*}
L\left(a_{1}, a_{2}\right)=L\left(a_{1}, a_{2}\right) . \tag{1.3}
\end{equation*}
$$

For example,

$$
\begin{aligned}
(5 \cdot 3) & =(3 \cdot 3)+(3 \cdot 2)=(3 \cdot 3)+(2 \cdot 2)+(2 \cdot 1) \\
& =(3 \cdot 3)+(2 \cdot 2)+(1 \cdot 1)+(1 \cdot 1)
\end{aligned}
$$

from which $L(5.3)=4$. See Figure 1 on page 175.
Replace $\left(\alpha_{1}, a_{2}\right)$ by the vector $A=\binom{\alpha_{1}}{a_{2}}$, and write D in matrix form:
5

FIGURE 1. $L(5.3)=L(5.2)=4, C(5.3)=(5.2)$

$$
D A=\left\{\begin{array}{l}
\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right) A, \quad 2 a_{2} \geqslant a_{1} \tag{1.4}\\
\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) A, \quad a_{1} \geqslant 2 \alpha_{2}
\end{array}\right.
$$

Then $D k A=k D A$ for $k>0$, and

$$
\begin{equation*}
L(k A)=L(A) . \tag{1.5}
\end{equation*}
$$

It follows from the definition that

$$
\begin{equation*}
L\binom{a_{1}+n \alpha_{2}}{a_{2}}=n+L\binom{a_{1}}{a_{2}}, n>0 \tag{1.6}
\end{equation*}
$$

Choose c such that $a_{2} \mid\left(a_{1}-c\right)$ and $a_{1}>a_{2}>c>0$. Then,

$$
\binom{a_{1}}{a_{2}}=\binom{\frac{\left(a_{1}-c\right)}{a_{2}} a_{2}+c}{a_{2}}
$$

and from (1.6),

$$
\begin{equation*}
L\binom{a_{1}}{a_{2}}=\frac{a_{1}-c}{a_{2}}+L\binom{a_{2}}{c} . \tag{1.7}
\end{equation*}
$$

Now, $\left(\alpha_{1}-c\right) / \alpha_{2}$ is the greatest integer in a_{1} / α_{2}, since α_{2} divides $\alpha_{1}-c$ and $a_{2}>c>0$, so

$$
\frac{a_{1}-c}{a_{2}}=\left[\frac{a_{1}}{a_{2}}\right]
$$

where [x] represents the greatest integer function of x. Since c represents the quantity $a_{1}\left(\bmod a_{2}\right)$, Equation (1.7) may be written

$$
\left.L\binom{a_{1}}{a_{2}}=\left[\begin{array}{l}
a_{1} \tag{1.8}\\
a_{2}
\end{array}\right]+L\left(\begin{array}{cc}
a_{2} & \\
a_{1}(\bmod & a_{2}
\end{array}\right)\right) .
$$

This relation may be iterated as in the following example:

$$
L\binom{23}{5}=\left[\frac{23}{5}\right]+\left[\frac{5}{3}\right]+\left[\frac{3}{2}\right]+\left[\frac{2}{1}\right]=8
$$

Table 1 exhibits $L\binom{a_{1}}{a_{2}}$ for α_{1}, a_{2} equal to $1,2, \ldots, 15$.
TABLE 1. $L\binom{a_{1}}{a_{2}}$

$a_{2} a_{1}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2		1	3	2	4	3	5	4	6	5	7	6	8	7	9
3			1	4	4	2	5	5	3	6	6	4	7	7	5
4				1	5	3	5	2	6	4	6	3	7	5	7
5					1	6	5	5	6	2	7	6	6	7	3
6						1	7	4	3	4	7	2	8	5	4
7							1	8	6	6	6	6	8	2	9
8								1	9	5	6	3	6	5	9
9									1	10	7	4	7	7	4
10										1	11	6	7	5	3
11											1	12	8	7	7
12												1	13	7	5
13													1	14	9
14														1	15
15															

Let

$$
Q=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad C=\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right), \text { and } P=C Q=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

From (1.4), we have two forms of $D^{-1}: D_{0}^{-1}=Q$ and $D_{1}^{-1}=P . D^{-2}$ has 2^{2} forms, namely $Q^{2}, Q P, P Q$, and P^{2}. D^{-n} has 2^{n} forms called D_{j}^{-n} which are the terms in the expansion of $(Q+P)^{n}$, where P and Q do not commute. The 2^{n} numbers $j=0$, $1,2, \ldots, 2^{n}-1$ may be expressed uniquely in binary form using n digits so that each D_{j}^{-n} may be paired with a distinct binary number.

Definition 1.3: We choose to define D_{j}^{-n} as the product derived from the binary number j of n digits in which 0 is replaced by Q and 1 by P.

For example, if $j=3, n=4$, the binary form of j is $0 \quad 0 \quad 1$, so that $D_{3}^{-4}=Q^{2} P^{2}$.

It follows that $D^{-1} D^{-n}=D^{-n-1}$ and
$D_{i}^{-m} D_{j}^{-n}=D_{k}^{-m-n}$, where $k=2^{n} i+j$.
Note that D_{i}^{-m} and D_{j}^{-n} do not commute.

2. SEQUENCES OF VECTORS

Definition 2.1: If $\alpha_{1} \geqslant \alpha_{2}$, A is said to be proper, and if a_{1} and a_{2} are relatively prime, then A is said to be prime.

We will assume henceforth that A is a proper prime vector. It follows that $P A$ and $Q A$ are proper prime vectors, and hence $D^{-n} A$ in any of its forms is proper and prime.

Definition 2.2: Let $A(i, j)$ represent the vector A of length $i=L(A)$ as follows:

$$
\begin{aligned}
& A(1,0)=D A(2,0)=\binom{1}{1} \\
& A(2,0)=D^{0} A(2,0)=\binom{2}{1} \\
& A(3,0)=D_{0}^{-1} A(2,0)=\binom{3}{2} \\
& A(3,1)=D_{1}^{-1} A(2,0)=\binom{3}{1} \text { and if } i>2, j=0,1,2, \ldots, 2^{i-2}-1, \\
& A(i, j)=D_{j}^{-i+2} A(2,0)
\end{aligned}
$$

Consider the sequence $\left\{X_{n}=A(n+2, j), n=1,2, \ldots\right\}$, where
$X_{n}=D_{j}^{-n}\binom{2}{1}$ and $L\left(X_{n}\right)=n+2$.
If $j=0$, then
$X_{n}=Q^{n}\binom{2}{1}$ and $X_{n+2}-X_{n+1}-X_{n}=0$ from the identity $Q^{2}-Q-I=0$.
This identity may also be applied to cases where $j=2^{n-1}, 1$, and $2^{n-1}+1$ to yield the same recurrence relation. If $j=2^{n}-1$,

$$
X_{n}=P^{n}\binom{2}{1} \text { and } X_{n+2}-2 X_{n+1}+X_{n}=0 \text { from the identity } P^{2}-2 P+I=0
$$

This relation also holds for $j=2^{n-1}-1$, where $X_{n}=Q P^{n-1}\binom{2}{1}$.
Note that X is represented as a product of elements selected from the set (P, Q) and a vector $\binom{2}{1}$. Then $C X_{n}$ is X_{n} in which its first matrix (P or Q) is replaced by its complement $(Q$ or $P) . X_{n}$ and $C X_{n}$ have the same recurrence relations. See Table 2.

THE LENGTH OF A TWO-NUMBER GAME

TABLE 2. Sequences $\left\{X_{n}=A(n+2, j)\right\}$

j	X_{n}	Recurrence
0	$Q^{n}\binom{2}{1}=\binom{F_{n+3}}{F_{n}}$	$X_{n+2}-X_{n+1}-X_{n}=0$
2^{n-1}	$P Q^{n-1}\binom{2}{1}=\binom{F_{n+3}}{F_{n+1}}$	$X_{n+2}-X_{n+1}-X_{n}=0$
1	$Q^{n-1} P\binom{2}{1}=\binom{L_{n+1}}{L_{n}}$	$X_{n+2}-X_{n+1}-X_{n}=0$
$2^{n-1}+1$	$P Q^{n-2} P\binom{2}{1}=\binom{L_{n+1}}{L_{n-1}}$ if $n>1$	$X_{n+2}-X_{n+1}-X_{n}=0$
$2^{n}-1$	$P^{n}\binom{2}{1}=\binom{n+2}{1}$	$X_{n+2}-2 X_{n+1}+X_{n}=0$
$2^{n-1}-1$	$Q P^{n-1}\binom{2}{1}=\binom{n+2}{n+1}$	$X_{n+2}-2 X_{n+1}+X_{n}=0$

Let $K=\left(\begin{array}{ll}k_{11} & k_{12} \\ k_{21} & k_{22}\end{array}\right), X_{i}=\binom{x_{i 1}}{x_{i 2}}$, and $K X_{i}=X_{i+1}, i=0,1,2, \ldots$, so that $K^{n} X_{0}=X_{n}$.

The characteristic equation for k is $|y I-K|=0$ or $y^{2}-\left(k_{11}+k_{22}\right) y+|K|=0$.
By the Cayley-Hamilton theorem, $K^{2}-\left(k_{11}+k_{22}\right) K+|K| I=0$.
Multiply both sides of this equation on the right by $K^{n-2} X_{0}$, then $K^{n} X_{0}-\left(k_{11}+k_{22}\right) K^{n-1} X_{0}+|K| K^{n-2} X_{0}=0$.
From Equation $(2,1)$,
$X_{n}=\left(K_{11}+K_{22}\right) X_{n-1}-|K| X_{n-2}$,
a recurrence relation for X_{n}. We will assume here that
$X_{0}=\binom{x_{01}}{x_{02}}=\binom{a}{b}$.
The sequences $\left\{x_{n 1}\right\}$ and $\left\{x_{n_{2}}\right\}$ have been described by Horadam [1] as $\left\{\omega_{n}\right\}=\left\{w_{n}(a, b ; p, q)\right\}: w_{0}=a, w_{1}=b, w_{n}=p w_{n-1}-q w_{n-2}, n \geqslant 2$.
In either sequence, $p=\operatorname{tr}(K)$, the trace of K, and $q=|K|$.
We may substitute D_{j}^{-r} for K and $A(2,0)$ for X_{0} in (2.1) to yield a sequence with the property $L\left(X_{n}\right)=m n+2$. Let $D_{j}^{-r}=S_{1} S_{2} \ldots S_{r}$, where $S_{i} \in(P, Q)$. Note that any 2×2 matrices A and B have the property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$, so $\operatorname{tr}\left(S_{1} S_{2} \ldots S_{r}\right)=\operatorname{tr}\left(S_{2} S_{3} \ldots S_{r} S_{1}\right)$.
Therefore, p is the same for K equal to any cyclic product of the S_{i}. Since $|P|=1$ and $|Q|=-1$, $q=|K|=(-1)^{s}$, where s represents the number of S_{i} equal to Q. Consider the 178
example:

$$
D_{10}^{-5}=Q P Q P Q=\left(\begin{array}{ll}
7 & 3 \\
5 & 2
\end{array}\right) .
$$

There are five different cyclic products of the $S_{i}: j=5,9,10,18,20$. These form the sequences

$$
\left\{D_{j}^{-5 n} A(2,0)=X_{n}: n=0,1,2, \ldots\right\}
$$

having the recurrence relation

$$
X_{n}=9 X_{n-1}+X_{n-2}
$$

and satisfying $L\left(X_{n}\right)=5 n+2$. These sequences are exhibited in Table 3 .
TABLE 3. Related Sequences

j	D_{j}^{-5}	$\left\{X_{n}: n=0,1,2, \ldots\right\}$
5	$\left(\begin{array}{ll}7 & 5 \\ 3 & 2\end{array}\right)$	$\left\{\binom{2}{3},\binom{19}{8},\binom{173}{73}, \ldots\right\}$
9	$\left(\begin{array}{ll}8 & 3 \\ 3 & 1\end{array}\right)$	$\left\{\binom{2}{1},\binom{19}{7},\binom{173}{64}, \ldots\right\}$
10	$\left(\begin{array}{ll}7 & 3 \\ 5 & 2\end{array}\right)$	$\left\{\binom{2}{1},\binom{17}{12},\binom{155}{109}, \ldots\right\}$
18	$\left(\begin{array}{ll}4 & 7 \\ 3 & 5\end{array}\right)$	$\left\{\binom{2}{1},\binom{15}{11},\binom{137}{100}, \ldots\right\}$
20	$\left(\begin{array}{ll}5 & 7 \\ 3 & 4\end{array}\right)$	$\left\{\binom{2}{1},\binom{17}{10},\binom{155}{91}, \ldots\right\}$

REFERENCE

1. A. F. Horadam. "Basic Properties of a Certain Sequence of Numbers." The Fibonacci Quarterly 3, no. 3 (1965):161-76.
