PETER HAGIS, Jr.

Temple University, Philadelphia, PA 19122

(Submitted May 1985)

1. INTRODUCTION

In what follows, lower-case letters will be used to denote natural numbers, with p and q always representing primes. As usual, (c, d) will symbolize the greatest common divisor of c and d. If cd = n and (c, d) = 1, then d is said to be a unitary divisor of n. If $(c, d)^*$ denotes the greatest common unitary divisor of c and d, then d is said to be a bi-unitary divisor of n if cd = n and $(c, d)^* = 1$. The notion of a bi-unitary divisor was first introduced by Subbarao & Suryanarayana in 1971 (see [6]).

We shall symbolize by $\sigma(n)$, $\sigma^*(n)$, and $\sigma^{**}(n)$, respectively, the sums of the (positive) divisors, unitary divisors, and bi-unitary divisors of n. It is well known that $\sigma(p^a) = (p^{a+1} - 1)/(p - 1)$ and $\sigma^*(p^a) = (p^a + 1)$ and that both σ and σ^* are multiplicative functions. It is not difficult to verify that $\sigma^{**}(p^a) = \sigma(p^a)$ if a is odd and $\sigma^{**}(p^a) = \sigma(p^a) - p^{a/2}$ if a is even and that σ^{**} is multiplicative. It follows that $\sigma^{**}(n) = \sigma(n)$ if every exponent in the prime-power decomposition of n is odd and that $\sigma^{**}(n) = \sigma^*(n)$ if n is cubefree. It is also immediate that $\sigma^{**}(n)$ is even unless $n = 2^a$ or n = 1.

2. BI-UNITARY MULTIPERFECT NUMBERS

A number *n* is said to be perfect if $\sigma(n) = 2n$ and to be multiperfect if $\sigma(n) = kn$, where $k \ge 3$. Perfect and multiperfect numbers have been studied extensively. Subbarao & Warren [7] have defined *n* to be a unitary perfect number if $\sigma^*(n) = 2n$, and Wall [11] has defined *n* to be a bi-unitary perfect number if $\sigma^{**}(n) = 2n$. Five unitary perfect numbers have been found to date (see [10]), while Wall [11] has proved that 6, 60, and 90 are the *only* bi-unitary perfect numbers.

If $\sigma^*(n) = kn$, where $k \ge 3$, *n* is said to be a unitary multiperfect number. The properties of such numbers have been studied by Harris & Subbaro [4] and by Hagis [3]. It is known that, if *n* is a unitary multiperfect number, then $n \ge 10^{102}$ and *n* has at least 46 distinct prime factors (including 2). No unitary multiperfect numbers have, as yet, been found.

We shall state that n is a bi-unitary multiperfect number if $\sigma^{**}(n) = kn$, where $k \ge 3$. It is easy to show that every such number is even.

Theorem 1: There are no odd bi-unitary multiperfect numbers.

Proof: Suppose that $\sigma^{**}(n) = kn$, where $k \ge 3$, and

 $n = p_1^{a_1} p_2^{a_2} \dots p_g^{a_g}$, with $3 \le p_1 \le p_2 \le \dots \le p_g$.

Suppose, also, that $k = 2^{c}M$, where $2 \nmid M$ and $c \ge 0$. Since

$$\sigma^{**}(n) = \prod_{i=1}^{s} \sigma^{**}(p_i^{a_i})$$

and since $2 | \sigma^{**}(p_i^{a_i})$ for i = 1, 2, ..., s, we see that $s \leq c$. Also,

[May

144

$$2^{c} \leq 2^{c}M = k = \sigma^{**}(n)/n \leq \sigma(n)/n$$

$$= \prod_{i=1}^{s} \sigma(p_i^{a_i}) / p_i^{a_i} < \prod_{i=1}^{s} p_i / (p_i - 1) < 2^s \le 2^c.$$

This contradiction completes the proof.

Using the CDC CYBER 750 at the Temple University Computing Center a search was made for all bi-unitary multiperfect numbers less than 10^7 . The search required about 1.5 hours of computer time, and thirteen numbers were found, nine with k = 3 and four with k = 4. They, along with the three bi-unitary perfect numbers, are listed in Table 1.

TABLE 1

The Bi-Unitary Perfect and Multiperfect Numbers Less than 10**7

1.	6	8	2.3	K	22	2
2.	60	88	2**2.3.5	K	-	2
3.	90	38	2.3**2.5	K	8	2
4.	120	3	2**3.3.5	k	82	3
5.	672	12	2**5.3.7	K	85	3
6.	2160	8	2**4.3**3.5	K	-	3
7.	10080	335	2**5.3**2.5.7	ĸ	8	3
8.	22848	8	2**6.3.7.17	K		3
9.	30240	8	2**5.3**3.5.7	k		4
10.	342720	8	2**6.3**2.5.7.17	k	8	3
11.	523776	10	2**9.3.11.31	k	58	3
12.	1028160	333	2**6.3**3.5.7.17	ĸ	88	4
13.	1528800	35	2**5.3.5**2.7**2.13	ĸ	8	3
14.	6168960	88	2**7.3**4.5.7.17	k	钃	4
15.	7856640	8	2**9.3**2.5.11.31	k	22	3
16.	7983360	88	2**8.3**4.5.7.11	k	22	4

3. BI-UNITARY AMICABLE NUMBERS

m and *n* are said to be amicable numbers if $\sigma(m) = \sigma(n) = m + n$. A history of these numbers may be found in [5]. If $\sigma^*(m) = \sigma^*(n) = m + n$, then *m* and *n* are said to be unitary amicable numbers (see [2]). Similarly, we shall say that *m* and *n* are bi-unitary amicable numbers if $\sigma^{**}(m) = \sigma^{**}(n) = m + n$.

Theorem 2: If (m; n) is a bi-unitary amicable pair, then m and n have the same parity.

Proof: Assume that m + n is odd. Then $\sigma^{**}(m)$ is odd, and it follows that $m = 2^{a}$. Similarly, $n = 2^{a}$, and we have a contradiction.

1987]

145

<u>Theorem 3</u>: Suppose that (m; n) is a bi-unitary amicable pair and that $m = 2^a M$ and $n = 2^b N$ where $M \equiv N \equiv 1 \pmod{2}$ and $\alpha < b$. If $\omega(M) = s$ and $\omega(M) = t$ [where $\omega(L)$ denotes the number of distinct prime factors of L], then $s \leq \alpha$ and $t \leq \alpha$.

Proof: If $p^c || M$, then $2 | \sigma^{**}(p^c)$, and we see that $2^s | \sigma^{**}(m)$. But,

 $\sigma^{**}(m) = m + n = 2^{a}(M + 2^{b-a}N) = 2^{a}K$ where K is odd,

and it follows that $s \leq a$. Similarly, $t \leq a$.

<u>Corollary 3.1</u>: If $(2M; 2^bN)$, where b > 1 and M and N are odd, is a bi-unitary amicable pair, then $M = p^c$ and $N = q^d$.

<u>Theorem 4.1</u>: Suppose that (m; n) is a bi-unitary amicable pair such that m = aM and n = aN where (a, M) = (a, N) = 1. If b is a natural number such that $\sigma^{**}(b)/b = \sigma^{**}(a)/a$ and (b, M) = (b, N) = 1, then (bM; bN) is a bi-unitary amicable pair.

Proof: $\sigma^{**}(bM) = \sigma^{**}(b)\sigma^{**}(M) = a^{-1}b\sigma^{**}(a)\sigma^{**}(M) = a^{-1}b\sigma^{**}(aM) = a^{-1}b(aM + aN) = bM + bN$. Similarly, $\sigma^{**}(bN) = bM + bN$.

The proofs of the next two theorems are similar to that of Theorem 4.1 and are, therefore, omitted.

<u>Theorem 4.2</u>: Suppose that (m; n) is a unitary amicable pair such that m = aMand n = aN where (a, M) = (a, N) = 1 and where M and N are cube-free. If

 $\sigma^{**}(b)/b = \sigma^{*}(a)/a$ and (b, M) = (b, N) = 1,

then (bM; bN) is a bi-unitary amicable pair.

<u>Theorem 4.3</u>: Suppose that (m; n) is an amicable pair such that m = aM and n = aN where (a, M) = (a, N) = 1 and where every exponent in the prime-power decomposition of M and N is odd. If

 $\sigma^{**}(b)/b = \sigma(a)/a$ and (b, M) = (b, N) = 1,

then (bM; bN) is a bi-unitary amicable pair.

A computer search among distinct natural numbers a and b such that $2 \le a$, $b \le 10^4$ yielded 667 cases where $\sigma^{**}(b)/b = \sigma^{**}(a)/a$, 1325 cases where $\sigma^{**}(b)/b = \sigma^{*}(a)/a$, and 673 cases where $\sigma^{**}(b)/b = \sigma(a)/a$.

Example 1: Since (8 • 17 • 41 • 179; 8 • 23 • 5669) is a bi-unitary amicable pair, and since

 $\sigma^{**}(144)/144 = \sigma^{**}(8)/8,$

it follows from Theorem 4.1 that $(144 \cdot 17 \cdot 41 \cdot 179; 144 \cdot 23 \cdot 5669)$ is also a bi-unitary amicable pair.

Example 2: Since $(135 \cdot 2 \cdot 19 \cdot 47; 135 \cdot 2 \cdot 29 \cdot 31)$ is a unitary amicable pair, and since

 $\sigma^{**}(2925)/2925 = \sigma^{*}(135)/135,$

it follows from Theorem 4.2 that $(2925 \cdot 2 \cdot 19 \cdot 47; 2925 \cdot 2 \cdot 29 \cdot 31)$ is a biunitary amicable pair.

[May

146

Example 3: Since $(47 \cdot 7 \cdot 19 \cdot 2663; 45 \cdot 11 \cdot 73 \cdot 479)$ is an amicable pair, and since

 $\sigma^{**}(450)/450 = \sigma(45)/45,$

it follows from Theorem 4.3 that $(450 \cdot 7 \cdot 19 \cdot 2663; 450 \cdot 11 \cdot 73 \cdot 479)$ is a bi-unitary amicable pair.

A search was made for all bi-unitary amicable pairs (m; n) such that m < nand $m \le 10^6$. The search required about five minutes on the CDC CYBER 750 and sixty pairs were found. These are listed in Table 2.

TABLE 2

The Bi-Unitary Amicable Pairs with Smallest Member Less than 10**6

1.	114 = 2.3.19	126 = 2.3**2.7
2.	594 = 2.3**3.11	846 = 2.3**2.47
з.	1140 = 2**2.3.5.19	1260 = 2**2.3**2.5.7
4.	3608 = 2**3.11.41	3952 = 2**4.13.19
5.	4698 = 2.3**4.29	5382 = 2.3**2.13.23
6.	5940 = 2**2.3**3.5.11	8460 = 2**2.3**2.5.47
7.	6232 = 2**3.19.41	6368 = 2 **5.199
8.	7704 = 2**3.3**2.107	8496 = 2**4.3**2.59
9.	9520 = 2**4.5.7.17	13808 = 2**4.863
10.	10744 = 2**3.17.79	10856 = 2**3.23.59
11.	12285 = 3**3.5.7.13	14595 = 3.5.7.139
12.	13500 = 2**2.3**3.5**3	17700 = 2**2.3.5**2.59
13.	41360 = 2**4.5.11.47	51952 = 2**4.17.191
14.	44772 = 2**2.3.7.13.41	49308 = 2**2.3.7.587
15.	46980 = 2**2.3**4.5.29	53820 = 2**2.3**2.5.13.23
16.	60858 = 2.3**3.7**2.23	83142 = 2.3**2.31.149
17.	62100 = 2**2.3**3.5**2.23	62700 = 2**2.3.5**2.11.19
18.	67095 = 3**3.5.7.71	71145 = 3**3.5.17.31
19.	67158 = 2.3**2.7.13.41	73962 = 2.3**2.7.587
20.	73360 = 2**4.5.7.131	97712 = 2**4.31.197
21.	79650 = 2.3**3.5**2.59	107550 = 2.3**2.5**2.239
22.	79750 = 2.5**3.11.29	88730 = 2.5.19.467
23.	105976 = 2**3.13.1019	108224 = 2**6.19,89
24.	118500 = 2**2.3.5**3.79	131100 = 2**2.3.5**2.19.23
25.	141664 = 2**5.19.233	153176 = 2**3.41.467
26.	142310 = 2.5.7.19.107	168730 = 2.5.47.359
27.	177750 = 2.3**2.5**3.79	196650 = 2.3**2.5**2.19.23

TABLE 2—continued

<i>i</i> .	
28. 185368 = 2**3.17.29.47	203432 = 2**3.59.431
29. 193392 = 2**4.3**2.17.79	195408 = 2**4.3**2.23.59
30. 217840 = 2**4.5.7.389	26/600 = 2**4.5**2.719
31. 241024 = 2**7.7.269	309776 = 2**4.19.1019
32. 298188 = 2**2.3**3.11.251	306612 = 2**2.3**3.17.167
33. 308220 = 2**2.3.5.11.467	365700 = 2**2.3.5**2.23.53
34. 308992 = 2**8.17.71	332528 = 2**4.7.2969
35. 356408 = 2**3.13.23.149	399592 = 2**3.199.251
36. 399200 = 2**5.5**2.499	419800 = 2**3.5**2.2099
37. 415264 = 2**5.19.683	446576 = 2**4.13.19.113
38. 415944 = 2**3.3**2.53.109	475056 = 2**4.3**2.3299
39. 462330 = 2.3**2.5.11.467	548550 = 2.3**2.5**2.23.53
40. 545238 = 2.3**3.23.439	721962 = 2.3**2.19.2111
41. 600392 = 2**3.13.23.251	6 69688 = 2**3.97.863
42. 608580 = 2**2.3**3.5.7**2.23	831420 = 2**2.3**2.5.31.149
43. 609928 = 2**3.11.29.239	686072 = 2**3.191.449
44. 624184 = 2**3.11.41.173	691256 = 2**3.71.1217
45. 627440 = 2**4.5.11.23.31	865552 = 2**4.47.1151
46. 635624 = 2**3.11.31.233	712216 = 2**3.127.701
47. 643336 = 2**3.29.47.59	652664 = 2**3.17.4799
48. 669900 = 2**2.3.5**2.7.11.29	827700 = 2**2.3.5**2.31.89
49. 671580 = 2**2.3**2.5.7.13.41	739620 = 2**2.3**2.5.7.587
50. 699400 = 2**3.5**2.13.269	774800 = 2**4.5**2.13.149
51. 726104 = 2**3.17.19.281	796696 = 2**3.53.1879
52. 785148 = 2**2.3.7.13.719	827652 = 2**2.3.7.59.167
53. 796500 = 2**2.3**3.5**3.59	1075500 = 2**2.3**2.5**3.23
54. 815100 = 2**2.3.5**2.11.13.19	932100 = 2**2.3.5**2.13.23
55. 818432 = 2**8.23.139	844768 = 2**5.26399
56. 839296 = 2**7.79.83	874304 = 2**6.19.719
57. 898216 = 2**3.11.59.173	980984 = 2**3.47.2609
58. 930560 = 2**8.5.727	1231600 = 2**4.5**2.3079
59. 947835 = 3**3.5.7.17.59	1125765 = 3**3.5.31.269
60. 998104 = 2**3.17.41.179	1043096 = 2**3.23.5669

148

.

.

.

.

[May

4. BI-UNITARY ALIQUOT SEQUENCES

The function s^{**} is defined by $s^{**}(n) = \sigma^{**}(n) - n$, the sum of the bi-unitary aliquot divisors of n. $s^{**}(1) = 0$ and we define $s^{**}(0) = 0$. A t-tuple of distinct natural numbers $(n_0; n_1; \ldots; n_{t-1})$ with $n_i = s^{**}(n_{i-1})$ for i = 1, 2, ..., t - 1 and $s^{**}(n_{t-1}) = n_0$ is called a bi-unitary t-cycle. A bi-unitary l-cycle is a bi-unitary perfect number; a bi-unitary 2-cycle is a bi-unitary amicable pair. All of the bi-unitary t-cycles with t > 2 and smallest member less than 10^5 are listed in Table 3.

TABLE 3

The Bi-Unitary t-Cycles with t > 2 and First Member Less than 10**5

t = 4

(162;174;186;198), (1026;1374;1386;1494), (1620;1740;1860;1980),

(10098;15822;19458;15102), (10260;13740;13860;14940),

(41800;51800;66760;83540), (51282;58158;62802;76878)

t = 6

(12420;16380;17220;23100;26820;18180)

t = 13

<6534;8106;10518;10530;17694;11826;13038;14178;16062;16074;12726;</pre>

11754;7866)

It is not difficult to modify Theorems 4.1, 4.2, 4.3 so that one can obtain "new" bi-unitary t-cycles from known t-cycles (see [1]), unitary t-cycles (see [8] and [9]), and bi-unitary t-cycles. For example, since

 $\sigma^{**}(20)/20 = \sigma^{**}(2)/2,$

it follows from Table 3 that

(100980; 158220; 194580; 151020) and (512820; 581580; 628020; 768780)

are bi-unitary 4-cycles.

The bi-unitary aliquot sequence $\{n_i\}$ with leader n is defined by

 $n_0 = n, n_1 = s^{**}(n_0), n_2 = s^{**}(n_1), \dots, n_i = s^{**}(n_{i-1}), \dots$

Such a sequence is said to be *terminating* if $n_k = 1$ for some index k (so that $n_i = 0$ for i > k). This will occur if $n_{k-1} = p$ or p^2 . A bi-unitary aliquot sequence is said to be *periodic* if there is an index k such that $(n_k; n_{k+1}; \ldots; n_{k+t-1})$ is a bi-unitary *t*-cycle. A bi-unitary aliquot sequence which is neither terminating nor periodic is (obviously) *unbounded*. Whether or not unbounded bi-unitary aliquot sequences exist is an open question. I would conjecture that such sequences do exist.

An investigation was made of all bi-unitary aliquot sequences with leader $n \leq 10^5$. About 2.5 hours of computer time was required. 69045 sequences were found to be terminating; 15560 were periodic (6477 ended in l-cycles, 5556 in

2-cycles and 3527 in t-cycles with t > 2); and in 15395 cases an $n_k > 10^{12}$ was encountered and (for practical reasons) the sequence was terminated with its behavior undetermined. The "first" sequence with unknown behavior has leader $n_0 = 2160$. $n_{306} = 1,301,270,618,226$ is the first term of this sequence which exceeds 10¹².

REFERENCES

- 1. J. Alanen. "Empirical Study of Aliquot Series." MR 133/72, 1972, Mathematisch Centrum, Amsterdam.
- P. Hagis, Jr. "Unitary Amicable Numbers." Math. Comp. 25 (1971):915-18.
 P. Hagis, Jr. "Lower Bounds for Unitary Multiperfect Numbers." The Fibonacci Quarterly 22 (1984):140-43.
- 4. V.C. Harris & M.V. Subbarao. "Unitary Multiperfect Numbers." Notices of the A.M.S. 21 (1972):A-435.
- 5. E. J. Lee & J. S. Madachy. "The History and Discovery of Amicable Numbers." J. Recr. Math. 5 (1972), Part I:77-93; Part II:153-73; Part III:231-49.
- 6. M. V. Subbarao & D. Suryanarayana. "Arithmetical Functions Associated with the Bi-Unitary Divisors of an Integer." Notices of the A.M.S. 18 (1971), Abstract 71T-A241:946.
- 7. M. V. Subbarao & L. J. Warren. "Unitary Perfect Numbers." Canad. Math. Bull. 9 (1966):147-53.
- 8. H. J. J. te Riele. "Unitary Aliquot Sequences." MR 139/72, 1972, Mathematisch Centrum, Amsterdam.
- 9. H. J. J. te Riele. "Further Results on Unitary Aliquot Sequences." NW 2/73, 1973, Mathematisch Centrum, Amsterdam.
- 10. C.R. Wall. "The Fifth Unitary Perfect Number." Canad. Math. Bull. 18 (1975):115-22.
- 11. C.R. Wall. "Bi-Unitary Perfect Numbers." Proceedings of the A.M.S. 33 (1972): 39-42.
