CONVERGENCE OF TRIBONACCI DECIMAL EXPANSIONS

RICHARD H. HUDSON
University of South Carolina, Columbia, SC 29208
(Submitted June 1985)

1. INTRODUCTION

Let F_{i} denote the Fibonacci sequence defined by
$F_{1}=F_{2}=1, F_{i}=F_{i-2}+F_{i-1}$, for $i \geqslant 3$;
that is, $1,1,2,3,5,8,13,21,34, \ldots$. In 1953 Fenton Stanc1iff [5] observed that

$$
\begin{equation*}
\sum_{i=1}^{\infty} 10^{-(i+1)} F_{i}=\frac{1}{89} . \tag{1}
\end{equation*}
$$

Since 1953 a number of authors including Wlodarski [8], Brousseau [1], Kohler [3], Winans [7], Long [5], Hudson and Winans [2], and Pin-Yen Lin [4] have investigated the convergence of Fibonacci decimal expansions,

$$
\sum_{i=1}^{\infty} 10^{-k(i+1)} F_{\alpha i}, \alpha \geqslant 1
$$

C. F. Winans first observed that

$$
\sum_{i=1}^{\infty} 10^{-(i+1)} F_{2 i}
$$

appears to converge to $1 / 71$ employing decimal approximation, since

$$
\frac{1}{71}=.014084507 \ldots
$$

and

$$
\begin{align*}
\sum_{i=1}^{10} 10^{-(i+1)} F_{2 i}= & .01 \tag{2}\\
& +.0003 \\
& +.00008 \\
& +.000021 \\
& +.0000055 \\
& +.00000144 \\
& +.000000377 \\
& +.0000000987 \\
& +.00000002584 \\
& +.000000006765 \\
& .010408448305
\end{align*}
$$

Convergence of (2) to $1 / 71$ was proved in [2], as were

$$
\sum_{i=1}^{\infty} 10^{-(i+1)} F_{2 i}=\frac{2}{59} \quad \text { and } \quad \sum_{i=1}^{\infty} 10^{-(i+1)} F_{3 i}=\frac{3}{31} .
$$

The purpose of this paper is to prove an analogous conjecture of Winans for tribonacci decimal expansions and to generalize this result to obtain convergents in cases where Winans found that decimal approximation failed to give even a clue to the correct convergent. As in the Fibonacci case, the convergents include coefficients that involve a fascinating, though more complicated, tribonacci-like recurrence relation; see Theorem 2 in Section 3.

2. PROOF OF WINAN'S CONJECTURE

Let T_{i} denote the tribonacci sequence defined by $T_{0}=0, T_{1}=1, T_{2}=1$, and

$$
\begin{equation*}
T_{i}=T_{i-3}+T_{i-2}+T_{i-1}, i \geqslant 3 \tag{3}
\end{equation*}
$$

that is, $0,1,1,2,4,7,13,24,44,81,149,274, \ldots$... Employing decimal approximation, Winans conjectured the following theorem which we now prove.

Theorem 1: Let T_{i} be defined as in (3). Then

$$
\begin{equation*}
\sum_{i=1}^{\infty} 10^{-k(i+2)} T_{i}=\frac{1}{10^{3 k}-10^{2 k}-10^{k}-1} \tag{4}
\end{equation*}
$$

Proof: Define $f(z)$ by

$$
\begin{equation*}
f(z)=\sum_{i=1}^{\infty} T_{i} z^{i} \tag{5}
\end{equation*}
$$

and note that since $T_{1}=T_{2}, T_{3}=T_{1}+T_{2}$, and $T_{i}=T_{i-1}+T_{i-2}+T_{i-3}$ for $i \geqslant 4$, we have

$$
\begin{aligned}
\left(1-z-z^{2}-z^{3}\right) f(z)=(1-z- & \left.z^{2}-z^{3}\right)\left(T_{1} z+T_{2} z^{2}+\cdots\right) \\
= & T_{1} z+\left(T_{2}-T_{1}\right) z^{2}+\left(T_{3}-T_{2}-T_{1}\right) z^{3}+\left(T_{4}-T_{3}-T_{2}-T_{1}\right) z^{4}+\cdots \\
& +\left(T_{n}-T_{n-1}-T_{n-2}-T_{n-3}\right) z^{n}+\cdots \\
= & T_{1} z+\left(T_{2}-T_{1}\right) z^{2}+\left(T_{3}-T_{2}-T_{1}\right) z^{3}=z .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
f(z)=\sum_{i=1}^{\infty} T_{i} z^{i}=\frac{z}{1-z-z^{2}-z^{3}} . \tag{6}
\end{equation*}
$$

Since $\left|1-z-z^{2}-z^{3}\right| \geqslant 1-|z|-\left|z^{2}\right|-\left|z^{3}\right|>0$ if $|z| \leqslant 1 / 2$, the function $f(z)$ is analytic in the disc $\{z \in C:|z| \leqslant 1 / 2\}$. Consequently, its power series expansion is absolutely convergent for all z with $|z| \leqslant 1 / 2$ and (6) holds if we replace z by any complex number with modulus less than or equal to $1 / 2$.

In particular, if we let $z=10^{-k}$ with $k \geqslant 1$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{\infty} T_{i} 10^{-k i}=\frac{10^{-k}}{1-10^{-k}-10^{-2 k}-10^{-3 k}}=\frac{10^{2 k}}{10^{3 k}-10^{2 k}-10^{k}-1} \tag{7}
\end{equation*}
$$

completing the proof of the conjecture of Winans.
Remark: Define an n-ary Fibonacci sequence by the recurrence relation
$T_{i, n}=T_{i-n-1, n}+T_{i-n-2, n}+\cdots+T_{i-1, n}>n \geqslant 2, i \geqslant n$.
Using the same method given in the proof of Theorem 1 , one obtains:

$$
\begin{equation*}
\sum_{i=1}^{\infty} 10^{-k(i+n-1)} T_{i, n}=\frac{1}{10^{n k}-10^{(n-1) k}-\cdots-1} \tag{9}
\end{equation*}
$$

This result was conjectured by Winans for tetrabonacci and pentabonacci expansions.

Numerical Examples: Analogous to (1), observed by Stancliff, we have from (7),

$$
\sum_{i=1}^{\infty} 10^{-(i+1)} T_{i}=\frac{1}{1000-100-10-1}=\frac{1}{889}
$$

Moreover, by (9), we have

$$
\sum_{i=1}^{\infty} 10^{-(i+1)} T_{i, 4}=\frac{1}{10000-1000-100-10-1}=\frac{1}{8889}
$$

and, in general (with the dots denoting $n-1$ eights),

$$
\sum_{i=1}^{\infty} 10^{-(i+1)} T_{i, n}=888 \ldots 89
$$

for an n-ary Fibonacci decimal expansion.

3. GENERALIZATION OF WINAN'S CONJECTURES

For $\alpha \geqslant 2$, Winans was unable to formulate a conjecture for the correct convergents for $\sum 10^{-k i} T_{\alpha i}$ even for $k=1, \alpha=2$. Once one establishes the correct convergent as we will in Theorem 3 of this section, one observes that $\sum 10^{-i} T_{2 i}$ does converge fairly rapidly to $110 / 689$. Indeed,

$$
\begin{aligned}
\sum_{i=1}^{10} 10^{-i} T_{\alpha i}= & .1 \\
& +.04 \\
& +.013 \\
& +.0044 \\
& +.00149 \\
& +.000504 \\
& +.0001705 \\
& +.00005768 \\
& . .159641693
\end{aligned}
$$

and $\frac{110}{689}=.159651699 \ldots$.
First, we require a theorem involving a recurrence relation for tribonacci numbers which is interesting in itself and essential to the goal of determining all convergents of

$$
\sum_{i=1}^{\infty} 10^{-k i} T_{\alpha i}, k \geqslant 1, \alpha \geqslant 1
$$

Theorem 2: Let $T_{0}=0, T_{1}=1, T_{2}=1$, and let $T_{i}=T_{i-3}+T_{i-2}+T_{i-1}$ for $i \geqslant 3$. Define sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ by
$a_{i}=a_{i-1}+a_{i-2}+a_{i-3}$ for $i \geqslant 4 ; a_{1}=1, a_{2}=3, a_{3}=7$,
and
$b_{i}=b_{i-1}+b_{i-2}+b_{i-3}$ for $i \geqslant 4 ; b_{1}=b_{2}=1, b_{3}=-5$.
For every positive integer $\alpha \geqslant 1$,
$T_{3 \alpha+i}=a_{\alpha} T_{2 \alpha+i}+b_{\alpha} T_{\alpha+i}+T_{i} ; i \geqslant 0$.
Proof: Let β_{1}, β_{2}, and β_{3} be the distinct complex roots of $z^{3}-z^{2}-z-1=0$ so that
$\left(z-\beta_{1}\right)\left(z-\beta_{2}\right)\left(z-\beta_{3}\right)=z^{3}-z^{2}-z-1$.
Then there are constants u_{1}, u_{2}, and u_{3} such that
$T_{i}=u_{1} \beta_{1}^{i}+u_{2} \beta_{2}^{i}+u_{3} \beta_{3}^{i}$ for every $i \geqslant 0$ 。
Define
$A_{\alpha}=\beta_{1}^{\alpha}+\beta_{2}^{\alpha}+\beta_{3}^{\alpha}, B_{\alpha}=-\left[\beta_{1}^{\alpha} \beta_{2}^{\alpha}+\beta_{1}^{\alpha} \beta_{3}^{\alpha}+\beta_{2}^{\alpha} \beta_{3}^{\alpha}\right], C_{\alpha}=\left(\beta_{1} \beta_{2} \beta_{3}\right)^{\alpha}$.
Now, it is easily checked that
$\left(\beta_{1}^{\alpha}\right)^{3}-\left(\beta_{1}^{\alpha}+\beta_{2}^{\alpha}+\beta_{3}^{\alpha}\right)\left(\beta_{1}^{\alpha}\right)^{2}+\left[\left(\beta_{1} \beta_{2}\right)^{\alpha}+\left(\beta_{1} \beta_{3}\right)^{\alpha}+\left(\beta_{2} \beta_{3}\right)^{\alpha}\right] \beta_{1}^{\alpha}-\left(\beta_{1} \beta_{2} \beta_{3}\right)^{\alpha}$
$=\beta_{1}^{3 \alpha}-\beta_{1}^{3 \alpha}-\beta_{2}^{\alpha} \beta_{1}^{2 \alpha}-\beta_{3}^{\alpha} \beta_{1}^{2 \alpha}+\beta_{2}^{\alpha} \beta_{1}^{2 \alpha}+\beta_{3}^{\alpha} \beta_{1}^{2 \alpha}+\left(\beta_{2} \beta_{3} \beta_{1}\right)^{\alpha}-\left(\beta_{1} \beta_{2} \beta_{3}\right)^{\alpha}=0$,
and similarly for β_{2}^{α} and β_{3}^{α}, so that $\beta_{1}^{\alpha}, \beta_{2}^{\alpha}$, and β_{3}^{α} are the roots of the equation
$z^{3}-A_{\alpha} z^{2}-B_{\alpha} z-C_{\alpha}=0$.
Using (14), we obtain
$T_{i+3 \alpha}-A_{\alpha} T_{i+2 \alpha}-B_{\alpha} T_{i+\alpha}-C_{\alpha} T_{i}=0$.
From (13), it follows that
$A_{i}=A_{i-1}+A_{i-2}+A_{i-3}$ for every $i \geqslant 1$
[Since, for $\left.j=1,2,3, \beta_{j}^{i}=\beta_{j}^{i-1}+\beta_{j}^{i-2}+\beta_{j}^{i-3} \Leftrightarrow \beta_{j}^{i-3}\left(\beta_{j}^{3}-\beta_{j}^{2}-\beta_{j}-1\right)=0\right]$ and clearly
$C_{i}=1$ for every $i \geqslant 0$.
In particular, (13) implies that $\beta_{1} \beta_{2} \beta_{3}=1$, so that
$B_{\alpha}=-\left[\beta_{1}^{-\alpha}+\beta_{2}^{-\alpha}+\beta_{3}^{-\alpha}\right]$.
Replacing z by z^{-1} in (13), we obtain

$$
\begin{aligned}
\left(\frac{1}{z}-\beta_{1}\right)\left(\frac{1}{z}-\beta_{2}\right)\left(\frac{1}{z}-\beta_{3}\right)=\frac{1}{z^{3}}- & \left(\beta_{1}+\beta_{2}+\beta_{3}\right)\left(\frac{1}{z^{2}}\right) \\
& +\left(\beta_{1} \beta_{2}+\beta_{1} \beta_{3}+\beta_{2} \beta_{3}\right)\left(\frac{1}{z}\right)-\beta_{1} \beta_{2} \beta_{3}
\end{aligned}
$$

so that $\beta_{1}+\beta_{2}+\beta_{3}=1$ and $\beta_{1} \beta_{2}+\beta_{1} \beta_{3}+\beta_{2} \beta_{3}=-1$.
On the other hand, we have, as $\beta_{1} \beta_{2} \beta_{3}=1$,

$$
\begin{aligned}
\left(\frac{1}{z}-\frac{1}{\beta_{1}}\right)\left(\frac{1}{z}-\frac{1}{\beta_{2}}\right)\left(\frac{1}{z}-\frac{1}{\beta_{3}}\right)= & \frac{1}{z^{3}}-\left(\frac{1}{\beta_{1}}+\frac{1}{\beta_{2}}+\frac{1}{\beta_{3}}\right)\left(\frac{1}{z^{2}}\right) \\
& +\left(\frac{1}{\beta_{3}}\left(\frac{1}{\beta_{1}}+\frac{1}{\beta_{2}}\right)+\frac{1}{\beta_{1} \beta_{2}}\right)\left(\frac{1}{z}\right)-1 \\
= & \frac{1}{z^{3}}+\frac{1}{z^{2}}+\frac{1}{z}-1
\end{aligned}
$$

so that $1 / \beta_{1}, 1 / \beta_{2}$, and $1 / \beta_{3}$ are roots of $(1 / z)^{3}+(1 / z)^{2}+(1 / z)-1=0$. However, $\beta_{2} \beta_{3}=1 / \beta_{1}, \beta_{1} \beta_{3}=1 / \beta_{2}$, and $\beta_{1} \beta_{2}=1 / \beta_{3}$, so we have

$$
B_{i}=-\left[\left(\frac{1}{\beta_{3}}\right)^{i}+\left(\frac{1}{\beta_{2}}\right)^{i}+\left(\frac{1}{\beta_{1}}\right)^{i}\right]
$$

Consequently,

$$
\begin{equation*}
B_{i}=-B_{i-1}-B_{i-2}+B_{i-3} \text { for } i \geqslant 3 \tag{19}
\end{equation*}
$$

if and only if

$$
\begin{aligned}
&-\left[\left(\frac{1}{\beta_{3}}\right)^{i}+\left(\frac{1}{\beta_{2}}\right)^{i}+\left(\frac{1}{\beta_{1}}\right)^{i}\right] \\
&=\left[\left(\frac{1}{\beta_{3}}\right)^{i-1}+\left(\frac{1}{\beta_{2}}\right)^{i-1}+\left(\frac{1}{\beta_{1}}\right)^{i-1}\right]+\left[\left(\frac{1}{\beta_{3}}\right)^{i-2}+\left(\frac{1}{\beta_{2}}\right)^{i-2}+\left(\frac{1}{\beta_{1}}\right)^{i-2}\right] \\
&-\left[\left(\frac{1}{\beta_{3}}\right)^{i-3}+\left(\frac{1}{\beta_{2}}\right)^{i-3}+\left(\frac{1}{\beta_{1}}\right)^{i-3}\right]
\end{aligned}
$$

But this is equivalent, since $\beta_{2} \beta_{2}+\beta_{1} \beta_{3}+\beta_{2} \beta_{3}=-1$, to

$$
-\left(\left(\left(\frac{1}{\beta_{3}}\right)^{i-3}+\left(\frac{1}{\beta_{2}}\right)^{i-3}+\left(\frac{1}{\beta_{1}}\right)^{i-3}\right)\left(\sum_{j=1}^{3}\left(\left(\frac{1}{\beta_{j}}\right)^{3}+\left(\frac{1}{\beta_{j}}\right)^{2}+\left(\frac{1}{\beta_{j}}\right)-1\right)\right)\right)=0,
$$

which is true in view of the fact that $1 / \beta_{1}, 1 / \beta_{2}, 1 / \beta_{3}$ are roots of

$$
\left(\frac{1}{z}\right)^{3}+\left(\frac{1}{z}\right)^{2}+\left(\frac{1}{z}\right)-1=0
$$

Finally, checking initial values, we observe from (16), (17), and (19) that $a_{\alpha}=A_{\alpha}, b_{\alpha}=B_{\alpha}$, and $C_{\alpha}=1$ for every $\alpha \geqslant 1$ completing the proof of Theorem 2 .

Using Theorem 2, we can now easily establish our main result, from which convergents of all tribonacci expansions of the form $\sum 10^{-k i} T_{\alpha i}, \alpha \geqslant 1, k \geqslant 1$, may be calculated. Clearly, this contains Theorem 1 as the special case $\alpha=k$ $=1$. However, we note that the proof of the following theorem does not appear to generalize trivially to n-ary Fibonacci expansions, $n>3$, because of its dependence on Theorem 2.

Theorem 3: Let $\left\{T_{i}\right\},\left\{a_{i}\right\}$, and $\left\{b_{i}\right\}$ be defined as in Theorem 2. Then

$$
\begin{equation*}
\sum_{i=1}^{\infty} 10^{-k i} T_{\alpha i}=\frac{T_{\alpha} \cdot 10^{2 k}+\left(T_{2 \alpha}-a_{\alpha} T_{\alpha}\right) \cdot 10^{k}}{10^{3 k}-a_{\alpha} \cdot 10^{2 k}-b_{\alpha} \cdot 10^{k}-1} \tag{20}
\end{equation*}
$$

iff the denominator is nonnegative.
Proof: Define $F(z)$ by

$$
\begin{equation*}
F(z)=\sum_{i=1}^{\infty} T_{\alpha i} z^{i}, \alpha \geqslant 1 \tag{21}
\end{equation*}
$$

and observe that

$$
\begin{aligned}
& \left(1-\alpha_{\alpha} z-b_{\alpha} z^{2}-z^{3}\right)\left(T_{\alpha} z+T_{2 \alpha} z^{2}+T_{3 \alpha} z^{3}+\cdots\right) \\
& =T_{\alpha} z+\left(T_{2 \alpha}-a_{\alpha} T_{\alpha}\right) z^{2}+\left(T_{3 \alpha}-T_{2 \alpha} a_{\alpha}-T_{\alpha} b_{\alpha}\right) z^{3}+\text { terms of higher degree. }
\end{aligned}
$$

Using (12), it is easily seen that the coefficients of all powers of z greater than 2 vanish. Hence,

$$
F(z)=\frac{T_{\alpha} z+\left(T_{2 \alpha}-a_{\alpha} T_{\alpha}\right) z^{2}}{1-a_{\alpha} z-b_{\alpha} z^{2}-z^{3}}
$$

Let $\gamma_{1}^{\alpha}, \gamma_{2}^{\alpha}$, and γ_{3}^{α} be the roots of
$1-a_{\alpha} z-b_{\alpha} z^{2}-z^{3}=0$.
We begin by showing that exactly one of the roots of (22) is real. Indeed, it suffices to consider the case $\alpha=1$. For, assume that one of $\gamma_{1}^{\alpha}, \gamma_{2}^{\alpha}, \gamma_{3}^{\alpha}$, say γ_{1}, is nonreal and that all of $\gamma_{1}^{\alpha}, \gamma_{2}^{\alpha}, \gamma_{3}^{\alpha}$ are real. Clearly, $Q\left(\gamma_{1}^{\alpha}\right)$ is a proper subfield of $Q\left(\gamma_{1}\right)$, so that $\operatorname{deg}\left(Q\left(\gamma_{1}^{\alpha} / Q\right)\right)<3$ and divides 3; that is, it is 1. Consequently, γ_{1}^{α} is an algebraic integer lying in Q. Indeed, it is a unit because it is a root of $1-\alpha_{\alpha} z-b_{\alpha} z^{2}-z^{3}=0$, so that $\gamma_{1}^{\alpha}= \pm 1$. Thus, γ_{1} is a root of unity, which is clearly impossible.

It is now easy to show that (22) has exactly one positive real root when $\alpha=1$. Let $f(z)=1-z-z^{2}-z^{3}$ and observe that $f^{\prime}(z)=-1-2 z-3 z^{2}<0$ for all real z since $f^{\prime \prime}(z)=-2-6 z=0$ only if $z=-1 / 3$ and $f^{\prime \prime \prime}(-1 / 3)<0$ so that $f^{\prime}(z)$ has a maximum at $z=-1 / 3$. However, $f^{\prime}(-1 / 3)<0$ so that $f(z)$ is decreasing for all real z and, since $f(1 / 2)>0$ and $f(1)<0$, it is clear that $f(z)=0$ has one real root $z,(1 / 2)<z<1$, and so must have two nonreal roots which are conjugate pairs.

Now, let $h(z)$ be the polynomial defined by

$$
h(z)=T_{\alpha} z+\left(T_{2 \alpha}-a_{\alpha} T_{\alpha}\right) z^{2} .
$$

Then, applying partial fractions, we have, as $\alpha=1$,

$$
\begin{aligned}
F(z) & =\frac{u_{1} z}{\gamma_{1}-z}+\frac{u_{2} z}{\gamma_{2}-z}+\frac{u_{3} z}{\gamma_{3}-z} \\
& =z\left(\frac{u_{1}}{\gamma_{1}} \sum_{n=0}^{\infty}\left(\frac{z}{\gamma_{1}}\right)^{n}+\frac{u_{2}}{\gamma_{2}} \sum_{n=0}^{\infty}\left(\frac{z}{\gamma_{2}}\right)^{n}+\frac{u_{3}}{\gamma_{3}} \sum_{n=0}^{\infty}\left(\frac{z}{\gamma_{3}}\right)^{n}\right)
\end{aligned}
$$

This converges if $\left|\frac{z}{\gamma_{1}}\right|<1,\left|\frac{z}{\gamma_{2}}\right|<1$, and $\left|\frac{z}{\gamma_{3}}\right|<1$.
Now the denominator of $F(z)$ can be written as

$$
\left(\gamma_{1}-z\right)\left(\gamma_{2}-z\right)\left(\gamma_{3}-z\right)
$$

and if we let γ_{1} be the real root between $1 / 2$ and 1 and note that $\left(\gamma_{2}-z\right)\left(\gamma_{3}-z\right)>0$,
since γ_{2} and γ_{3} are complex conjugates, we see that, for real z,
$1-z-z^{2}-z^{3}>0$ if and only if $\gamma_{1}-z>0$ or $z<\gamma_{1}$.
Clearly, then, as $\gamma_{1} \gamma_{2} \gamma_{3}=1$ and $\left|\gamma_{2}\right|=\left|\gamma_{3}\right|=\left(1 / \sqrt{\gamma_{1}}\right)>1$, we also have
$|z|<\left|\gamma_{2}\right|$ and $|z|<\left|\gamma_{3}\right|$,
completing the proof.

Example 1: Let $k=3$ and let $\alpha=8$. Then, by Theorem 3,

$$
\sum_{i=1}^{\infty} 10^{-3 i} T_{8 i}=\frac{44 \cdot 10^{6}+4 \cdot 10^{3}}{10^{9}-131 \cdot 10^{6}+3 \cdot 10^{3}-1}=\frac{44,004,000}{869,002,999}
$$

Note that this fraction is approximately equal to $.050637 .$. and that with

$$
T_{8}=44, T_{16}=5768, T_{24}=755476,
$$

we have

$$
\begin{aligned}
& \sum_{i=1}^{\infty} 10^{-3 i} T_{8 i}= .044 \\
&+.005768 \\
&+.000755476 \\
& \hline
\end{aligned}
$$

so that the series converges quite rapidly for $k=3$ although it does not converge at all for $k=2$.

Example 2: Listed in the table below are the convergents of

$$
\sum_{i=1}^{\infty} 10^{-k i} T_{\alpha i} \text { for } k=1,2,3 \text { and } \alpha \leqslant 4
$$

	$k=1$	$k=2$	$k=3$
$\alpha=1$	$\frac{100}{889}$	$\frac{10,000}{989,899}$	$\frac{1,000,000}{998,998,999}$
$\alpha=2$	$\frac{110}{689}$	$\frac{10,100}{969,899}$	$\frac{1,001,000}{996,998,999}$
$\alpha=3$	$\frac{190}{349}$	$\frac{19,900}{930,499}$	$\frac{1,999,000}{993,004,999}$
$\alpha=4$	None	$\frac{40,000}{889,499}$	$\frac{4,000,000}{988,994,999}$

ACKNOWLEDGMENT

I would like to express my deep thanks to Stephen Eure and David Richman for their encouragement and assistance in writing this paper. In particular, Professor Richman proved Theorem 2 in this paper.

REFERENCES

1. Brother Alfred Brousseau. "Ye Olde Fibonacci Curiosity Shoppe." The Fibonacci Quarterly 10 (1972):442.
2. Richard H. Hudson \& C.F. Winans. "A Complete Characterization of the Decimal Fractions That Can Be Represented as $\sum 10^{-k(i+1)} F_{\alpha i}$, Where $F_{\alpha i}$ is the aith Fibonacci Number." The Fibonacci Quarterly 19 (1982):414-21.
3. Gunter Kohler. "Generating Functions of Fibonacci-Like Sequences and Decimal Expansions of Some Fractions." The Fibonacci Quarterly 23 (1985):2935.
4. Pin-Yen Lin. "The General Solution to the Decimal Fraction of Fibonacci Series." The Fibonacci Quarterly 22 (1984):229-34.
5. C. T. Long. "The Decimal Expansion of $\frac{1}{89}$ and Related Results." The Fibonacci Quarterly 19 (1981):53-55.
6. Fenton Stancliff. "A Curious Property of $A_{i i}$." Scripta Mathematica 19 (1953):126.
7. C. F. Winans. "The Fibonacci Series in the Decimal Equivalents of Fractions." J. Recreat. Math. 12 (1979-1980):191-96.
8. J. Wlodarski. "A Number Problem." The Fibonacci Quarterly 9 (1971):195.
