A PROPERTY OF NUMBERS EQUIVALENT TO THE GOLDEN MEAN
 GRAHAM WINLEY, KEITH TOGNETTI, and TONY van RAVENSTEIN University of Wollongong, Wollongong, N.S.W. 2500, Australia

(Submitted June 1985)
We are concerned with finding the convergents $C_{j}(\alpha)=\frac{p_{j}}{q_{j}}$, in lowest terms,
a positive real number α that satisfy the inequality,

$$
\begin{equation*}
\left|\alpha-C_{j}(\alpha)\right|<\frac{\beta}{\sqrt{5} q_{j}^{2}}, 0<\beta<1 . \tag{1}
\end{equation*}
$$

From Le Veque [3] or Roberts [4], we have the following theorems.
Hurwitz's theorem states that, if α is irrational and $\beta=1$, there are infinitely many irreducible rational solutions to (1).

Dirichlet's theorem states that, if $\beta=\sqrt{5} / 2$, then all rational solutions to (1) are convergents to α.

Since $1 / \sqrt{5}<1 / 2$, we note that the expression "irreducible rational solutions" in Hurwitz's theorem may always be replaced by "convergents."

It is readily shown (see [4]) that if $\alpha=\tau=(1+\sqrt{5}) / 2$ (the Golden Mean) then there are only finitely many convergents to τ which satisfy (1). In [5], van Ravenstein, Winley, \& Tognetti have determined the convergents explicitly.

We now extend [5] by determining the solutions to (1) when α is equivalent to τ, which means the Noble Number α has a simple continued fraction expansion $\left(a_{0} ; a_{1}, a_{2}, \ldots, a_{n}, 1,1,1, \ldots\right)$ where the terms $a_{1}, a_{2}, \ldots, a_{n}$ are positive integers, $a_{n} \geqslant 2$ and a_{0} is a nonnegative integer.

Using the notation of [5], with C_{j} replaced by $C_{j}(\alpha)$, and well-known facts [see Chrystal [1] and Khintchine [2]):
(i) $p_{j}=p_{j-2}+\alpha_{j} p_{j-1}$,
$q_{j}=q_{j-2}+a_{j} q_{j-1}$,
for $j \geqslant 0, p_{-2} \stackrel{q_{-1}}{=}=0$ and $q_{-2}=p_{-1}=1$;
$q_{j+1}>q_{j}>q_{j-1}>\ldots>q_{0}=1 ;$
$p_{j-1} q_{j}-p_{j} q_{j-1}=(-1)^{j} ;$
(iv) $C_{j}(\tau)=\frac{F_{j+1}}{F_{j}}$, where F_{j} is the j th term of the

Fibonacci sequence $\{1,1,2,3,5, \ldots\}$;
(v) $F_{j}=\frac{\tau^{j+1}-(1-\tau)^{j+1}}{\sqrt{5}}$.

It follows from (2(1)) that

$$
\left.\begin{array}{l}
C_{j}(\alpha)=\frac{p_{j}}{q_{j}}=\left[\begin{array}{l}
\frac{p_{j-2}+a_{j} p_{j-1}}{q_{j-2}+a_{j} q_{j-1}}, j=0,1,2, \ldots, n \\
\frac{F_{j-n} p_{n}+F_{j-n-1} p_{n-1}}{F_{j-n} q_{n}+F_{j-n-1} q_{n-1}}, j=n+1, n+2, \ldots, \\
\alpha=\lim _{j \rightarrow \infty} C_{j}(\alpha)=\frac{p_{n-1}+\tau p_{n}}{q_{n-1}+\tau q_{n}}=C_{n}(\alpha)+\frac{(-1)^{n}}{q_{n}\left(\tau q_{n}+q_{n-1}\right)} .
\end{array}\right] \\
\text { Using }(2(111)), \text { and (2(iv)) in (3), we see that, for } j \geqslant n+1, \\
C_{j}(\alpha)=\frac{C_{j-n-1}(\tau) p_{n}+p_{n-1}}{C_{j-n-1}(\tau) q_{n}+q_{n-1}}, \\
C_{j-n-1}(\tau)=\frac{F_{j-n}}{F_{j-n-1}}, \\
\left|\alpha-C_{j}(\alpha)\right|=\frac{\left|\tau-C_{j-n-1}(\tau)\right|}{\left(q_{n-1}+q_{n} \tau\right)\left(C_{j-n-1}(\tau) q_{n}+q_{n-1}\right)}
\end{array}\right\}
$$

and

Hence, for $j \geqslant n+1$, (1) reduces to

$$
\begin{equation*}
\left|\tau-C_{j-n-1}(\tau)\right|<\frac{\beta\left(q_{n-1}+q_{n} \tau\right)}{\sqrt{5} F_{j-n-1}^{2}\left(C_{j-n-1}(\tau) q_{n}+q_{n-1}\right)} \tag{5}
\end{equation*}
$$

If $j-n-1$ is even $(j=n+1+2 k, k=0,1,2, \ldots)$, then using (4) and $\tau^{2}=1+\tau$ in (5) we seek nonnegative values of k such that

$$
\left(\tau F_{2 k}-F_{2 k+1}\right)\left(F_{2 k+1} q_{n}+F_{2 k} q_{n-1}\right)<\frac{\beta}{\sqrt{5}}\left(q_{n-1}+\tau q_{n}\right)
$$

Using (2(v)), this reduces to

$$
\begin{equation*}
k<\ln \left(\frac{q_{n}-\tau q_{n-1}}{\tau^{3}(1-\beta)\left(\tau q_{n}+q_{n-1}\right)}\right) / 4 \ln \tau \tag{6}
\end{equation*}
$$

Now nonnegative values of k in (6) exist only if

$$
\ln \left(\frac{q_{n}-\tau q_{n-1}}{\tau^{3}(1-\beta)\left(\tau q_{n}+q_{n-1}\right)}\right)>0
$$

which means that
$\beta_{u}<\beta<1$, where $\beta_{u}=\frac{\sqrt{5}}{\tau}\left[\frac{q_{n}+q_{n-1}}{\tau q_{n}+q_{n-1}}\right]$.
If $j-n-1$ is odd $(j=n+2+2 k, k=0,1,2, \ldots)$, then (5) reduces to

$$
\left(F_{2 k+2}-\tau F_{2 k+1}\right)\left(F_{2 k+2} q_{n}+F_{2 k+1} q_{n-1}\right)<\frac{\beta}{\sqrt{5}}\left(q_{n-1}+q_{n} \tau\right)
$$

Using (2(v)), this further reduces to

$$
\begin{equation*}
\tau^{4 k+6}(1-\beta)<\frac{\tau\left(\tau q_{n-1}-q_{n}\right)}{\tau q_{n}+q_{n-1}} \tag{7}
\end{equation*}
$$

A Property of numbers equivalent to the golden mean

Since the left side is positive and the right side is negative,
$\tau-\frac{q_{n}}{q_{n-1}}<\tau-a_{n}<0$,
there are no nonnegative values of k which satisfy (7).
This completes the solutions to (1) for $j \geqslant n+1$.
If $j=n$, then from (3) we have
$\left|\alpha-C_{n}(\alpha)\right|=\frac{1}{q_{n}\left(\tau q_{n}+q_{n-1}\right)}$,
and so (1) becomes
$\frac{1}{q_{n}\left(\tau q_{n}+q_{n-1}\right)}<\frac{\beta}{\sqrt{5} q_{n}^{2}}$,
which means $\beta>\frac{\sqrt{5} q_{n}}{\tau q_{n}+q_{n-1}}$.
However, since $\tau-\left(q_{n} / q_{n-1}\right)<0$, we have $q_{n}>\tau q_{n-1}$, and this gives
$\beta>\frac{\sqrt{5} q_{n}}{\tau q_{n}+q_{n-1}}>1$,
which is not possible. Hence, $C_{n}(\alpha)$ does not satisfy (1).
Consequently, there are no convergents that satisfy (1) if $\beta \leqslant \beta_{u}$ and $j \geqslant n$.
On the other hand, if $\beta>\beta_{u}$, then there are $[S]+1$ convergents that satisfy (1). They are given by
$C_{j}(\alpha)=\frac{F_{j-n} p_{n}+F_{j-n-1} p_{n-1}}{F_{j-n} q_{n}+F_{j-n-1} q_{n-1}}, j=n+1, n+3, \ldots, n+1+2[S]$,
where
$S=\ln \left(\frac{q_{n}-\tau q_{n-1}}{\tau^{3}(1-\beta)\left(\tau q_{n}+q_{n-1}\right)}\right) / 4 \ln \tau$,
and $[S]$ denotes the integer part of S.
We note that if $n=0$, then $\alpha=\left(a_{0} ; 1,1,1, \ldots\right), a_{0} \geqslant 2$, and the result (8) reduces to that given in [5].

It does not appear to be possible to make a precise statement as to which of the convergents $C_{j}(\alpha)$ for $j=0,1,2, \ldots, n-1$ will satisfy (1) without knowing the values of $\alpha_{0}, \alpha_{1}, \ldots, a_{n-1}$. However, we have shown that, if $0<\beta$ <1, then there are only finitely many convergents to α which satisfy (1).

REFERENCES

1. G. Chrystal. Algebra. 2nd ed. Edinburgh: Adam and Charles Black, 1939.
2. A. Ya Khintchine. Continued Fractions. Tr. by P. Wynn. The Netherlands: P. Noordhoff, 1963.
3. W. J. Le Veque. Fundamentals of Number Theory. Reading, Mass.: AddisonWesley, 1977.
4. J. Roberts. Elementary Number Theory: A Problem Oriented Approach. Cambridge, Mass.: MIT Press, 1977.
5. T. van Ravenstein, G. K. Winley, \& K. Tognetti. "A Property of Convergents to the Golden Mean." The Fibonacci Quarterly 23, no. 2 (1985):155-57.
