ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by

A. P. HILLMAN

Assistant Editors
GLORIA C. PADILLA and CHARLES R. WALL
Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to DR. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$.
PROBLEMS PROPOSED IN THIS ISSUE
B-598 Proposed by Herta T. Freitag, Roanoke VA
For which positive integers n is ($2 L_{n}, L_{2 n}-3, L_{2 n}-1$) a Pythagorean triple? For which of these n 's is the triple primitive?

B-599 Proposed by Herta T. Freitag, Roanoke, VA
Do B-598 with the triple now ($2 L_{n}, L_{2 n}+1, L_{2 n}+3$).
B-600 Proposed by Philip L. Mana, Albuquerque, NM
Let n be any positive integer and $m=n^{13}-n$. Prove that F_{n} is an integral multiple of 30290 .

B-601 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let $A_{n, k}=\left(F_{n}+F_{n+1}+\cdots+F_{n+k-1}\right) / k$. Find the smallest k in $\{2,3,4$, $\ldots\}$ such that $A_{n, k}$ is an integer for every n in $\{0,1,2, \ldots\}$.

B-602 Proposed by Paul S. Bruckman, Fair Oaks, CA
Let H_{n} represent either F_{n} or L_{n}.
(a) Find a simplified expression for $\frac{1}{H_{n}}-\frac{1}{H_{n+1}}-\frac{1}{H_{n+2}}$.
(b) Use the result of (a) to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}}=3+2 \sum_{n=1}^{\infty} \frac{1}{F_{2 n-1} F_{2 n+1} F_{2 n+2}} .
$$

1987]

B-603 Proposed by Paul S. Bruckman, Fair Oaks, CA
Do the Lucas analogue of $B-602(\mathrm{~b})$.

SOLUTIONS

Downrounded Square Roots

B-574 Proposed by Valentina Bakinova, Rondout Valley, NY
Let $\alpha_{1}, a_{2}, \ldots$ be defined by $\alpha_{1}=1$ and $\alpha_{n+1}=\left[\sqrt{s_{n}}\right]$, where $s_{n}=\alpha_{1}+a_{2}+$ $\cdots+a_{n}$ and $[x]$ is the integer with $x-1<[x] \leqslant x$. Find $a_{100}, s_{100}, a_{1000}$, and $s_{1000^{\circ}}$

Solution by L.A. G. Dressel, University of Reading, England

Starting with $s_{1}=1$, we have $a_{2}=a_{3}=a_{4}=1$ and $s_{4}=4$. Suppose now that, for some integer $h, h \geqslant 2$, we have $s_{t}=h^{2}$. Then, since $(h+1)^{2}=h^{2}+2 h+1$, we obtain
$\begin{aligned} & a_{t+1}=a_{t+2}=a_{t+3}=h \quad \text { and } \quad s_{t+3}=(h+1)^{2}+h-1 ; \\ & \text { further, } \\ & a_{t+4}=a_{t+5}=h+1 \quad \text { and } \quad s_{t+5}=(h+2)^{2}+h-2,\end{aligned}$
and continuing as long as $j \leqslant h, s_{t+2 j+1}=(h+j)^{2}+h-j$, so that for $j=k$ we obtain $s_{t+2 h+1}=(2 h)^{2}$.

Since $s_{4}=2^{2}$, it follows that whenever s_{n} is a perfect square it is of the form $2^{2 i}(i=0,1,2, \ldots)$, and that if

$$
s_{t_{i}}=2^{2 i} \quad \text { and } \quad s_{t_{i+1}}=2^{2(i+1)}
$$

then $t_{i+1}=t_{i}+2^{i+1}+1$.
Since $s_{1}=1, t_{0}=1$, and we can show that

$$
t_{i}=2^{i+1}+i-1, \text { for } i=0,1,2, \ldots
$$

To find α_{100} and s_{100} : we have $t_{5}=64+4=68$, so that $s_{68}=(32)^{2}$,

$$
s_{99}=(32+15)^{2}+32-15, a_{100}=47, s_{100}=(47)^{2}+64=2273
$$

To find a_{1000} and $s_{1000}: t_{8}=2^{9}+7=519$ and $s_{519}=(256)^{2}$,

$$
s_{998}=(256+239)^{2}+256-239, \alpha_{999}=\alpha_{1000}=495
$$

and

$$
s_{1000}=(256+240)^{2}+256-240=(496)^{2}+16=246032
$$

Also solved by Charles Ashbacher, Paul S. Bruckman, Piero Filipponi, L. Kuipers, J. Suck, M. Wachtel, and the proposer.

Summing Products

B-575 Proposed by L.A. G. Dresel, Reading, England
Let R_{n} and S_{n} be sequences defined by given values $R_{0}, R_{1}, S_{0}, S_{1}$ and the recurrence relations $R_{n+1}=r R_{n}+t R_{n-1}$ and $S_{n+1}=s S_{n}+t S_{n-1}$, where r, s, t are constants and $n=1,2,3, \ldots$. Show that

Solution by J. Suck, Essen, Germany
This identity may be hard to dream up but is easy to prove by induction:
For $n=1$, the left-hand side is $(r+s) R_{1} S_{1}$, and the right-hand side is

$$
\left(r R_{1}+t R_{0}\right) S_{1}+R_{1}\left(s S_{1}+t S_{0}\right)-t\left(R_{1} S_{0}+R_{0} S_{1}\right),
$$

i.e., both are the same.

For the step from n to $n+1$, we have to show that
$t\left(R_{n+1} S_{n}+R_{n} S_{n+1}\right)+(r+s) R_{n+1} S_{n+1}$
$=\left(r R_{n+1}+t R_{n}\right) S_{n+1}+R_{n+1}\left(s S_{n+1}+t S_{n}\right)$,
which, after a little sorting, is seen to be true.
Also solved by Paul S. Bruckman, L. Cseh, Piero Filipponi \& Adina Di Porto, L. Kuipers, Andreas N. Philippou \& Demetris Antzoulakos, George Philippou, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer.

Product of Three Fibonacci Numbers

B-576 Proposed by Herta T. Freitag, Roanoke, VA
Let $A=L_{2 m+3(4 n+1)}+(-1)^{m}$. Show that A is a product of three Fibonacci numbers for all positive integers m and n.

Solution by Lawrence Somer, Washington, D.C.
We prove the more general result that, if $r \geqslant 1$, then

$$
L_{2 r+1}+(-1)^{r+1}=5 F_{r} F_{r+1}=F_{5} F_{r} F_{r+1} .
$$

Note that, if $2 r+1=2 m+3(4 n+1)$, then

$$
m \equiv r+1(\bmod 2) \quad \text { and } \quad(-1)^{m}=(-1)^{r+1}
$$

By the Binet formulas and using the fact that $\alpha \beta=-1$, $5 F_{r} F_{r+1}=5\left[\left(\alpha^{r}-\beta^{r}\right) / \sqrt{5}\right]\left[\left(\alpha^{r+1}-\beta^{r+1}\right) / \sqrt{5}\right]$
$=\alpha^{2 r+1}+\beta^{2 r+1}-(\alpha \beta)^{r}(\alpha+\beta)$

$$
=L_{2 r+1}-(-1)^{r} L_{1}=L_{2 r+1}+(-1)^{r+1},
$$

and we are done.

Also solved by Paul S. Bruckman, L.A. G. Dresel, Piero Filipponi, George Koutsoukellis, L. Kuipers, Andreas N. Philippou \& Demetris Antzoulakos, Bob Prielipp, H.-J. Seiffert, Sahib Singh, J. Suck, and the proposer.

Difference of Squares

B-577 Proposed by Herta T. Freitag, Roanoke, VA
Let A be as in B-575. Show that $4 A / 5$ is a difference of squares of Fibonacci numbers.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
Let m and n be arbitrary positive integers. We shall show that

ELEMENTARY PROBLEMS AND SOLUTIONS

$$
\begin{equation*}
4 A / 5=F_{m+6 n+3}^{2}-F_{m+6 n}^{2} \tag{*}
\end{equation*}
$$

In our solution to $B-576$, we establish that

Thus,

$$
A=5 F_{m+6 n+2} F_{m+6 n+1} .
$$

$$
4 A / 5=4 F_{m+6 n+2} F_{m+6 n+1} .
$$

But it is known that $4 F_{k} F_{k-1}=F_{k+1}^{2}-F_{k-2}^{2}$ [see $\left(I_{36}\right)$ on p. 59 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. (Boston: Houghton-Mifflin, 1969], so (*) follows.

Also solved by Paul S. Bruckman, L.A. G. Dresel, Piero Filipponi, George Koutsoukellis, Andreas N. Philippou \& Demetris Antzoulakos, H.-J. Seiffert, Sahib Singh, Lawrence Somer, J. Suck, and the proposer.

$$
\text { Zeckendorf Representation for }[\alpha F]
$$

B-578 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy
It is known (Zeckendorf's theorem) that every positive integer N can be represented as a finite sum of distinct nonconsecutive Fibonacci numbers and that this representation is unique. Let $\alpha=(1+\sqrt{5}) / 2$ and $[x]$ denote the greatest integer not exceeding x. Denote by $f(N)$ the number of F-addends in the Zeckendorf representation for N. For positive integers n, prove that $f\left(\left[\alpha F_{n}\right]\right)=1$ if n is odd.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
It suffices to show that, for each positive integer $n,\left[\alpha F_{2 n-1}\right]$ is a Fibonacci number. We shall show that,
for each positive integer $n,\left[\alpha F_{2 n-1}\right]=F_{2 n}$.
Let n be an arbitrary positive integer, and let $b=(1-\sqrt{5}) / 2$. It is known that, for each positive integer $k, a F_{k}=F_{k+1}-b^{k}$ [see p. 34 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. (Boston: Houghton-Mifflin, 1969]. So $a F_{2 n-1}=F_{2 n}-b^{2 n-1}=F_{2 n}+(-b)^{2 n-1}$. Since $0<-b<1,0<(-b)^{2 n-1}<1$. It follows that $\left[a F_{2 n-1}\right]=F_{2 n}$.

Also solved by Paul S. Bruckman, L. Cseh, L.A. G. Dresel, Herta T. Freitag, L. Kuipers, Imre Merenyi, Sahib Singh, Lawrence Somer, J. Suck, and the proposer.

> Zeckendorf Representation, Even Case

B-579 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy
Using the notation of $B-578$, prove that $f\left(\left[\alpha F_{n}\right]\right)=n / 2$ when n is even.
Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
Let n be an arbitrary positive integer. We shall show that the Zeckendorf representation for $\left[\alpha F_{2 n}\right]$ is $F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}$, which implies the required result.

Let $b=(1-\sqrt{5}) / 2$. It is known that

$$
a F_{2 n}=F_{2 n+1}-b^{2 n}
$$

[see p. 34 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. (Boston: Houghton-Mifflin, 1969]. Since $0<b^{2}<1,0<b^{2 n}<1$. It follows that $\left[\alpha F_{2 n}\right]=F_{2 n+1}-1$.
But

$$
F_{2 n+1}-1=F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}
$$

by (I_{6}) (Ibid., p. 56). Hence, the Zeckendorf representation for $\left[a F_{2 n}\right]$ is

$$
F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}
$$

completing our solution.
Also solved by Paul S. Bruckman, L. Cseh, L.A. G. Dresel, Herta T. Freitag, L. Kuipers, Imre Merenyi, Sahib Singh, Lawrence Somer, J. Suck, and the proposer.

$\rightarrow \Delta \Delta$

Continued from page 278
6. A. F. Horadam. "Special Properties of the Sequence $W_{n}(a, b ; p, q) . "$ The Fibonacci Quarterly 5, no. 5 (1967):424-34.
7. D. Jarden. Recurring Sequences. Jerusalem: Riveon Lematematika, 1958.
8. E. Lucas. Théorie des nombres. Paris: Blanchard, 1961, ch. 18.
9. K. Subba Rao. "Some Properties of Fibonacci Numbers." Amer. Math. Monthly 60, no. 10 (1953):680-84.
10. A. Tagiuri. "Recurrence Sequences of Positive Integral Terms." (Italian) Period. di Mat., serie 2, no 3 (1901):1-12.
11. A. Tagiuri. "Sequences of Positive Integers." (Italiam) Period. di Mat., serie 2, no. 3 (1901):97-114.
12. N. N. Vorobév. The Fibonacci Numbers (tr. from Russian). New York, 1961.

