ON THE DERIVATIVES OF COMPOSITE FUNCTIONS

CLEMENT FRAPPIER
Université de Montréal, Montréal, Quebec H3C 3J7, Canada
(Submitted August 1985)

1. INTRODUCTION AND STATEMENT OF RESULTS
1.1 Let f, g be functions sufficiently differentiable. Put $G(z)=f\left(z^{z}\right)$, where $z^{z}:=\exp (z \ln z)\left(\exp t:=e^{t}, \ln 1=0\right)$. If f is the identity function, i.e., if $G(z)=z^{z}$, then (see [7], p. 110)

for $m=1,2,3, \ldots$. A particular case of a result obtained in this article shows that (1) may be replaced by

$$
\begin{equation*}
G^{(m)}(1)=\sum_{k=1}^{m} \sum_{\ell=1}^{k}(-1)^{k+m} S_{1}(m, k) \ell^{k-\ell}\binom{k}{\ell} \tag{2}
\end{equation*}
$$

where $S_{1}(m, k)$ is the sequence of Stirling numbers of the first kind, which may be defined by

$$
\begin{aligned}
& S_{1}(m, 1)=(m-1)! \\
& S_{1}(m, m)=1 \\
& S_{1}(m, k)=(m-1) S_{1}(m-1, k)+S_{1}(m-1, k-1), 1<k<m
\end{aligned}
$$

and
Let us consider the sequence $\omega(m, k, j)$ defined, for $0 \leqslant j \leqslant k, 1 \leqslant k \leqslant m$, in the following way:

$$
\begin{equation*}
j!\omega(m, k, j):=\binom{m}{k-j} \sum_{s=0}^{j}(-1)^{s}\binom{j}{s}(k-s)^{m-k+j} \tag{3}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \omega(m, k, 0)=\binom{m}{k} k^{m-k}, \\
& \omega(m, m, j)=\binom{m}{j} \\
& \left(\text { since } \sum_{s=0}^{j}(-1)\binom{j}{s}(m-s)=j!; \text { note that } s\binom{j+1}{s}=(j+1)\binom{j}{s-1}\right) \\
& \text { and (see }[3], I I, \text { p. 38) } \omega(m, k, k)=S(m, k),
\end{aligned}
$$

ON THE DERIVATIVES OF COMPOSITE FUNCTIONS

the sequence of Stirling numbers of the second kind, which may be defined by

$$
S(m, 1)=S(m, m)=1
$$

and

$$
S(m, k)=k S(m-1, k)+S(m-1, k-1), 1<k<m
$$

That kind of generalization of Stirling numbers has already been considered by Carlitz ([1]; see also [2] and [4]). In fact, we have (see [1], II, p. 243)

$$
\omega(m, k, j)=(-1)^{k+m}\binom{m}{k-j} R(m-k+j, j,-k),
$$

where

$$
\sum_{m=0}^{\infty} \sum_{j=0}^{m} R(m, j, \lambda) \frac{x^{m} y^{j}}{m!}=\exp \left(\lambda x+y\left(e^{x}-1\right)\right), \lambda \in \mathbb{R} .
$$

The combinatorial aspect of the sequence $R(m, j, \lambda)$ and other related numbers have been studied in the aforesaid articles. We want, here, to give some complements. To begin, we state the following theorem.

Theorem 1: Suppose that $G(z)$ is defined as above; we have
$G^{(m)}(z)=\sum_{k=1}^{m} \sum_{\ell=1}^{k} \sum_{r=1}^{\ell} \sum_{s=0}^{\ell}(-1)^{k+m} S_{1}(m, k) S(\ell, r) \omega(k, \ell, s) z^{r z+\ell-m}(\ln z)^{s} f^{(r)}\left(z^{z}\right)$.
If $f(z) \equiv z$, then $G(z)=z^{z}$ and (4) becomes
$G^{(m)}(z)=\sum_{k=1}^{m} \sum_{\ell=1}^{k} \sum_{s=0}^{\ell}(-1)^{k+m} S_{1}(m, k) \omega(k, \ell, s) z^{z+\ell-m}(\ln z)^{s} ;$
we obtain (2) with $z=1$.
While proving (4), we shall obtain some identities relating two differential operators, denoted by $f_{m}^{(3)}, f_{m}^{(4)}$, and defined by

$$
\begin{equation*}
f_{0}^{(3)}:=f, f_{1}^{(3)}(z):=\exp \left(\frac{f^{\prime}(z)}{f(z)}\right), f_{m}^{(3)}:=\left(f_{m-1}^{(3)}\right)_{1}^{(3)}, m>1, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{0}^{(4)}:=f, f_{1}^{(4)}(z):=\exp \left(\frac{z f^{\prime}(z)}{f(z)}\right), f_{m}^{(4)}:=\left(f_{m-1}^{(4)}\right)_{1}^{(4)}, m>1 \tag{7}
\end{equation*}
$$

We shall in fact consider two well-known operators, denoted here by $f_{m}^{(1)}, f_{m}^{(2)}$, and defined by

$$
\begin{align*}
& f_{0}^{(1)}:=f, f_{1}^{(1)}(z):=f^{\prime}(z), f_{m}^{(1)}:=\left(f_{m-1}^{(1)}\right)_{1}^{(1)}, m>1 \\
& f_{0}^{(2)}:=f, f_{1}^{(2)}(z):=z f^{\prime}(z), f_{m}^{(2)}:=\left(f_{m-1}^{(2)}\right)_{1}^{(2)}, m>1
\end{align*}
$$

and

Those operators have been studied for a very long time. The operator f_{1} is the ordinary derivative of f; it is easy to verify that

$$
f_{m}^{(2)}(z)=\sum_{k=1}^{m} S(m, k) z^{k} f^{(k)}(z) .
$$

Of course $\ln f_{1}^{(3)}$ is nothing but the logarithmic derivative of f. The operator $\ln f_{1}^{(4)}$ is useful in geometric function theory; for example, a function $f(z)$, holomorphic in the unit disk, is called starlike (see [6], p. 46) if

$$
\left|f_{1}^{(4)}(z)\right| \geqslant 1
$$

in that disk.

ON THE DERIVATIVES OF COMPOSITE FUNCTIONS

1.2 A classical formula of Faa Di Bruno ([3], I, p. 148; [5], p. 177) says that if $h(z):=f(g(z))$ then

$$
\begin{equation*}
h^{(m)}(z)=\sum_{k=1}^{m} \sum_{\pi(m, k)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}\left(g^{(j)}(z)\right)^{k_{j}} \cdot f^{(k)}(g(z)) \tag{8}
\end{equation*}
$$

where $\pi(m, k)$ means that the summation is extended over all nonnegative integers k_{1}, \ldots, k_{m} such that $k_{1}+2 k_{2}+\ldots+m k_{m}=m$ and $k_{1}+k_{2}+\cdots+k_{m}=k$; we have put

$$
c\left(k_{1}, \ldots, k_{m}\right):=\frac{m!}{k_{1}!\ldots k_{m}!(1!)^{k_{1}} \ldots(m!)^{k_{m}}}
$$

Formula (8) is equivalent to

$$
\ln h_{m}^{(3)}(z)=\sum_{k=1}^{m} \sum_{\pi(m, k)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}\left(g^{(j)}(z)\right)^{k_{j}} \cdot \ln f_{k}^{(3)}(g(z))
$$

It can be proved in several ways; a simple proof is contained in [8]. We can prove the next theorem using only the principle of mathematical induction.

Theorem 2: If $h(z):=f(g(z))$, then we have the identities

$$
\begin{equation*}
h_{m}^{(2)}(z)=\sum_{k=1}^{m} \sum_{\pi(m, k)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}\left(g_{j}^{(2)}(z)\right)^{k_{j}} \cdot f_{k}^{(1)}(g(z)) \tag{9}
\end{equation*}
$$

and

$$
\ln h_{m}^{(4)}(z)=\sum_{k=1}^{m} \sum_{\pi(m, k)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}\left(\ln g_{j}^{(4)}(z)\right)^{k_{j}} \cdot \ln f_{k}^{(4)}(g(z)) .
$$

Formula (9^{\prime}) may also be written in the form

$$
H_{m}^{(2)}(z)=\sum_{k=1}^{m} \sum_{\pi(m, k)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}\left(g_{j}^{(2)}(z)\right)^{k_{j}} \cdot f_{k}^{(2)}\left(e^{g(z)}\right)
$$

where $H(z):=f(\exp (g(z)))$.

$$
\begin{aligned}
& \text { 1.3 If } f^{-1} \text { denotes the inverse function of } f \text { [i.e., } \\
& \left.f\left(f^{-1}(z)\right) \equiv f^{-1}(f(z)) \equiv z\right] \text {, }
\end{aligned}
$$

then (see [3], I, p. 161), for $m=2,3,4, \ldots$,
$\left(f^{-1}\right)_{m}^{(1)}(z)$
$=\sum_{k=1}^{m-1} \sum_{\pi_{1}(m, k)} \frac{(-1)^{k}(m+k-1)!}{m!} c_{1}\left(k_{1}, \ldots, k_{m}\right) \prod_{j=2}^{m}\left(f^{(j)}\left(f^{-1}(z)\right)\right)^{k_{j}} \cdot\left(f^{\prime}\left(f^{-1}(z)\right)\right)^{-m-k}$,
where $\pi_{1}(m, k)$ means that the summation is extended over all nonnegative integers k_{2}, \ldots, k_{m} such that $2 k_{2}+\ldots+m k_{m}=m+k-1$ and $k_{2}+\cdots+k_{m}=k$. Here,

$$
c_{1}\left(k_{1}, \ldots, k_{m}\right):=c\left(0, k_{2}, \ldots, k_{m}\right) .
$$

The same kind of reasoning which could be used to prove (9) or (9^{\prime}) will help us to verify the following theorem.

Theorem 3: If f^{-1} denotes the inverse function of f, then the following identities are valid for $m=2,3,4, \ldots$:

$$
\begin{align*}
& \left(f^{-1}\right)_{m}^{(2)}=\sum_{k=1}^{m-1} \sum_{\pi_{1}(m, k)} \frac{(-1)^{k}(m+k-1)!}{m!} c_{1}\left(k_{1}, \ldots, k_{m}\right) \tag{11}\\
& \cdot \prod_{j=2}^{m}\left(\ln f_{j}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{j}} \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k} ; \\
& \ln \left(f^{-1}\right)_{m}^{(3)}(z)=\sum_{k=1}^{m-1} \sum_{\pi_{1}(m, k)} \frac{(-1)^{k}(m+k-1)!}{m!} c_{1}\left(k_{1}, \ldots, k_{m}\right) \\
& \cdot \prod_{j=2}^{m}\left(f_{j}^{(2)}\left(f^{-1}(z)\right)\right)^{k_{j}} \cdot\left(f_{1}^{(2)}\left(f^{-1}(z)\right)\right)^{-m-k} ; \\
& \ln \left(f^{-1}\right)_{m}^{(4)}(z)=\sum_{k=1}^{m-1} \sum_{\pi_{1}(m, k)} \frac{(-1)^{k}(m+k-1)!}{m!} c_{1}\left(k_{1}, \ldots, k_{m}\right) \\
& \cdot \prod_{j=2}^{m}\left(\ln f_{j}^{(4)}\left(f^{-1}(z)\right)\right)^{k_{j}} \cdot\left(\ln f_{1}^{(4)}\left(f^{-1}(z)\right)\right)^{-m-k}
\end{align*}
$$

It is to be noted that (11^{\prime}) may be obtained from ($11^{\prime \prime}$) by replacing $f(z)$ by $\exp f(z)$: also, if we replace $f(z)$ by $f\left(e^{z}\right)$ in (11), then we obtain (11"). The distinction between formulas (8) and (9) and formulas (10) and (11) is also to be observed. Finally, while the identity

$$
\ln \left(\begin{array}{c}
g(z) \\
\left.f^{(z)}\right)_{m}^{(3)}
\end{array}=\sum_{k=0}^{m}\binom{m}{k} g^{(m-k)}(z) \ln f_{k}^{(3)}(z)\right.
$$

is nothing but the Leibnitz formula, we have

$$
\ln \left(f^{g(z)}(z)\right)_{m}^{(4)}=\sum_{k=0}^{m}\binom{m}{k} g_{m-k}^{(2)}(z) \ln f_{k}^{(4)}(z)
$$

or, what is the same thing (see [5], p. 222):

$$
(f(z) g(z))_{m}^{(2)}=\sum_{k=0}^{m}\binom{m}{k} f_{k}^{(2)}(z) g_{m-k}^{(2)}(z)
$$

2. COMPLEMENTARY RESULTS

It follows from the recurrence relations for Stirling's numbers that:
Lemma 1: We have, for $m=1,2,3, \ldots$,

$$
\begin{equation*}
f_{m}^{(2)}(z)=\sum_{k=1}^{m} S(m, k) z^{k} \cdot f_{k}^{(1)}(z) \tag{12}
\end{equation*}
$$

and

$$
z^{m} f_{m}^{(1)}(z)=\sum_{k=1}^{m}(-1)^{k+m} S_{1}(m, k) \cdot f_{k}^{(2)}(z)
$$

To obtain (4), we shall also need the following lemma.

ON THE DERIVATIVES OF COMPOSITE FUNCTIONS

Lemma 2: The sequence $\omega(m, k, j)$, defined by (3), satisfies the following recurrence relation:

$$
\begin{align*}
\omega(m, 1,0)= & m, \omega(m, m, j)=\binom{m}{j} \quad(0 \leqslant j \leqslant m), \\
\omega(m, k, k)= & S(m, k) \quad(1 \leqslant k \leqslant m), \\
\omega(m+1, k, 0)= & k \omega(m, k, 0)+\omega(m, k-1), 0)+\omega(m, k, 1), 1<k \leqslant m ; \\
\omega(m+1, k, j)= & k \omega(m, k, j)+(j+1) \omega(m, k, j+1) \tag{13}\\
& +\omega(m, k-1, j-1)+\omega(m, k-1, j), 1 \leqslant j<k \leqslant m .
\end{align*}
$$

Proof: If $m=1$, then $k=1$ and $j=0$ or 1 ; in that case the relation (13) is trivial. Also, since
and

$$
\begin{aligned}
& \omega(m, k, 0)=\binom{m}{k} k^{m-k} \\
& \omega(m, k, 1)=\left(k^{m-k+1}-(k-1)^{m-k+1}\right)\binom{m}{k-1},
\end{aligned}
$$

we have immediately

$$
k \omega(m, k, 0)+\omega(m, k-1,0)+\omega(m, k, 1)=\omega(m+1, k, 0), 1<k \leqslant m
$$

Now, for $1 \leqslant j<k$,
$j![k \omega(m, k, j)+(j+1) \omega(m, k, j+1)+\omega(m, k-1, j-1)+\omega(m, k-1, j)]$
$=k\binom{m}{k-j} \sum_{s=0}^{j}(-1)^{s}\binom{j}{s}(k-s)^{m-k+j}+\binom{m}{k-j-1}^{j+1} \sum_{s=0}^{j}(-1)^{s}\binom{j+1}{s}(k-s)^{m-k+j+1}$

$$
+j\binom{m}{k-j}_{s=0}^{j-1}(-1)^{s}\binom{j-1}{s}(k-1-s)^{m-k+j}+\binom{m}{k-j-1} \sum_{s=0}^{j}(-1)^{s}\binom{j}{s}(k-1-s)^{m-k+j+1}
$$

$=\binom{m}{k-j} \sum_{s=0}^{j}(-1)^{s}\binom{j}{s}(k-s)^{m+1-k+j}+\binom{m}{k-j-1} \sum_{s=0}^{j}(-1)^{s}\binom{j}{s}(k-s)^{m+1-k+j}$
$=\binom{m+1}{k-j} \sum_{s=0}^{j}(-1)^{s}\binom{j}{s}(k-s)^{m+1-k+j}=j!\omega(m+1, \quad k, j)$.
This completes the proof of Lemma 2.

3. PROOFS OF THE THEOREMS

The proof of Theorem 2 is similar to that of Theorem 3; it suffices to define the sequence corresponding to (11*) below in an appropriate manner.

Proof of Theorem 1: Let us verify that if $G(z):=f\left(z^{z}\right)$ then

$$
\begin{equation*}
G_{m}^{(2)}(z)=\sum_{k=1}^{m} \sum_{j=0}^{k} \omega(m, k, j) z^{k}(1 \mathrm{n} z)^{j} f_{k}^{(2)}\left(z^{z}\right) . \tag{14}
\end{equation*}
$$

It is sufficient to show that if we write

$$
G_{m}^{(2)}(z)=\sum_{k=1}^{m} \sum_{j=0}^{k} w(m, k, j) z^{k}(\ln z)^{j} f_{k}^{(2)}\left(z^{z}\right)
$$

ON THE DERIVATIVES OF COMPOSITE FUNCTIONS

then the sequence $w(m, k, j)$ satisfies the same recurrence relation (13) as $\omega(m, k, j)$ with the same initial conditions. Observe that

$$
(f+g)_{1}^{(2)}(z) \equiv f_{1}^{(2)}(z)+g_{1}^{(2)}(z)
$$

it follows from (7') that

$$
\begin{align*}
G_{m+1}^{(2)}(z)= & \sum_{k=1}^{m} \sum_{j=0}^{k} k w(m, k, j) z^{k}(\ln z)^{j} f_{k}^{(2)}\left(z^{z}\right) \tag{15}\\
& +\sum_{k=1}^{m} \sum_{j=0}^{k} j w(m, k, j) z^{k}(\ln z)^{j-1} f_{k}^{(2)}\left(z^{z}\right) \\
& +\sum_{k=1}^{m} \sum_{j=0}^{k} w(m, k, j) z^{k+1}(\ln z)^{j+1} f_{k+1}^{(2)}\left(z^{z}\right) \\
& +\sum_{k=1}^{m} \sum_{j=0}^{k} w(m, k, j) z^{k+1}(\ln z)^{j} f_{k+1}^{(2)}\left(z^{z}\right) .
\end{align*}
$$

Relation (13) then follows immediately if we change, respectively, j to $j+1$, j to $j-1$ and k to $k-1$, and k to $k-1$ in the second, third, and fourth double summation of the right-hand side of (15). To see that $w(m, k, j)$ satisfies the same initial conditions as $\omega(m, k, j)$, we may use the observations made after the definition (3).

Now, using (12') and (14), then (12), we obtain

$$
\begin{aligned}
G_{m}^{(1)}(z) & =\sum_{k=1}^{m}(-1)^{k+m} S_{1}(m, k) z^{-m} G_{k}^{(2)}(z) \\
& =\sum_{k=1}^{m} \sum_{l=1}^{k} \sum_{s=0}^{\ell}(-1)^{k+m} S_{1}(m, k) \omega(k, \ell, s) z^{\ell-m}(1 n z)^{s} \cdot f_{\ell}^{(2)}\left(z^{z}\right) \\
& =\sum_{k=1}^{m} \sum_{l=1}^{k} \sum_{s=0}^{\ell} \sum_{r=1}^{\ell}(-1)^{k+m} S_{1}(m, k) S(\ell, r) \omega(k, \ell, s) z^{r z+\ell-m}(1 n z)^{s} f_{r}^{(1)}\left(z^{z}\right)
\end{aligned}
$$

Proof of Theorem 3: It remains only to prove (11). That formula is clear for $m=2$. Suppose that it is satisfied for a given $m>2$. Then

$$
\begin{align*}
\left(f^{-1}\right)_{m+1}^{(2)}(z)= & \sum_{k=1}^{m-1} \sum_{\pi_{1}(m, k)}(-1)^{k} \frac{(m+k-1)!}{m!} c_{1}\left(k_{1}, \ldots, k_{m}\right) \tag{16}\\
& \cdot \prod_{i=2}^{m}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}} \\
& \cdot \sum_{j=2}^{m} k_{j} \frac{\ln f_{j+1}^{(3)}\left(f^{-1}(z)\right)}{\ln f_{j}^{(3)}\left(f^{-1}(z)\right)}\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-1} \\
& -\sum_{k=1}^{m-1} \sum_{\pi_{1}(m, k)}(-1)^{k} \frac{(m+k-1)!}{m!} c_{1}\left(k_{1}, \ldots, k_{m}\right) \\
& \cdot \prod_{i=2}^{m}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}} \cdot \ln f_{2}^{(3)}\left(f^{-1}(z)\right) \\
& \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-2} .
\end{align*}
$$

ON THE DERIVATIVES OF COMPOSITE FUNCTIONS

Let us put

$$
\begin{align*}
& k_{i}^{(1)}= \begin{cases}k_{2}+1, & i=2 \\
k_{i}, & 2<i \leqslant m \\
0, & i=m+1\end{cases} \\
& k_{i}^{(j)}= \begin{cases}k_{i}, & 2 \leqslant i<j \\
k_{j}-1, & i=j \\
k_{j+1}+1, & i=j+1 \\
k_{i}, & j+1<i \leqslant m \\
0, & i=m+1,2 \leqslant j<m\end{cases} \tag{11*}
\end{align*}
$$

and

$$
k_{i}^{(m)}= \begin{cases}k_{i}, & 2 \leqslant i<m \\ k_{m}-1, & i=m \\ 1, & i=m+1\end{cases}
$$

We have
and

$$
\begin{aligned}
& \sum_{i=2}^{m+1} i k_{i}^{(1)}=m+k+1, \quad \sum_{i=2}^{m+1} k_{i}^{(1)}=k+1, \\
& \sum_{i=2}^{m+1} i k_{i}^{(j)}=m+k, \quad \sum_{i=2}^{m+1} k_{i}^{(j)}=k, 1<j \leqslant m .
\end{aligned}
$$

Identity (16) may thus be written in the form

$$
\begin{aligned}
\left(f^{-1}\right)_{m+1}^{(2)}(z)= & \sum_{j=2}^{m} \sum_{k=1}^{m-1} \sum_{\pi_{1}^{(j)}(m+1, k)}(-1)^{k} \frac{(m+k-1)!}{m!} c_{1}\left(k_{1}^{(j)}, \ldots, k_{m}^{(j)}\right)(j+1) k_{j+1}^{(j)} \\
& \cdot \prod_{i=2}^{m+1}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}^{(j)}} \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-1} \\
& -\sum_{k=1}^{m-1} \pi_{1}^{(1)}(m+1, k+1) \\
& \left.\cdot \prod_{i=2}^{m+1}\left(\ln f_{i}^{k} \frac{(m+k)!}{m!} c_{1}\left(f_{1}^{(1)}, \ldots, k_{m}^{(1)}\right) \cdot 2 k_{2}^{(1)}(z)\right)\right)^{k_{i}^{(1)}} \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-2}
\end{aligned}
$$

where $\pi_{1}^{(j)}(m+1, k)$ means that the summation is extended over the numbers $k_{2}^{(j)}$, $\ldots, k_{m}^{(j)}$, related to the numbers k_{2}, \ldots, k_{m} by (11*), satisfying

$$
2 k_{2}^{(j)}+\cdots+m k_{m}^{(j)}=m+k, k_{2}^{(j)}+\cdots+k_{m}^{(j)}=k, 1<j \leqslant m
$$

$\pi_{1}^{(1)}(m+1, k+1)$ means that

$$
2 k_{2}^{(1)}+\cdots+m k_{m}^{(1)}=m+k+1, k_{2}^{(1)}+\cdots+k_{m}^{(1)}=k+1
$$

We have put

$$
c_{1}\left(k_{1}^{(j)}, \ldots, k^{(j)}\right):=\frac{m!}{k_{2}^{(j)}!\ldots k_{m}^{(j)}!(2!)^{k_{2}^{(j)}} \ldots(m!)^{k_{m}^{(j)}}}, 1 \leqslant j \leqslant m
$$

ON THE DERIVATIVES OF COMPOSITE FUNCTIONS

Replacing k by $k-1$ in the last summation of (17), we readily obtain

$$
\begin{align*}
\left(f^{-1}\right)_{m+1}^{(2)}(z)= & \sum_{j=2}^{m} \sum_{k=1}^{m-1} \sum_{\pi_{1}^{(j)}(m+1, k)}(-1)^{k} \frac{(m+k-1)!}{m!} c_{1}\left(k_{1}^{(j)}, \ldots, k_{m}^{(j)}\right)(j+1) k_{j+1}^{(j)} \\
& \left.\cdot \prod_{i=2}^{m+1}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}^{(j)}} \cdot \ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-1} \tag{18}\\
& +\sum_{k=2}^{m} \sum_{\pi_{1}^{(1)}(m+1, k)}(-1)^{k} \frac{(m+k-1)!}{m!} c_{1}\left(k_{1}^{(1)}, \ldots, k_{m}^{(1)}\right) \cdot 2 k_{2}^{(1)} \\
& \cdot \prod_{i=2}^{m+1}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}^{(1)}} \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-1} .
\end{align*}
$$

Now, let $\left(k_{2}^{*}, \ldots, k_{m+1}^{*}\right)$ be a solution of the system

$$
\begin{aligned}
& 2 k_{2}^{*}+\cdots+(m+1) k_{m+1}^{*}=m+k \\
& k_{2}^{*}+\cdots+k_{m+1}^{*}=k, \\
& k_{j}^{*} \geqslant 0,1<j \leqslant m+1, \quad(1 \leqslant k \leqslant m) .
\end{aligned}
$$

(i) If $k_{2}^{*} \neq 0$, then $k_{m+1}^{*}=0$ (otherwise, $k_{m+1}^{*}=1$ and $2 K_{2}^{*}+\cdots+m k_{m}^{*}=$ $k-1=k_{2}^{*}+\cdots+k_{m}^{*}$, which implies that $k_{2}^{*}=\cdots=k_{m}^{*}=0$); in that case, to each solution ($k_{2}^{*}, \ldots, k_{m}^{*}, 0$) there corresponds a solution $\left(k_{2}^{(1)}, \ldots, k_{m}^{(1)}, 0\right)$; it is possible, since the hypothesis $k_{2}^{*} \neq 0$ implies that $k_{2}=k_{2}^{(1)}-1=k_{2}^{*}-1$ $\geqslant 0$. Conversely, to each solution $\left(k_{2}^{(1)}, \ldots, k_{m+1}^{(1)}\right)$, there corresponds a solu$\operatorname{tion}\left(k_{2}^{*}, \ldots, k_{m}^{*}, k_{m+1}^{*}=0\right)$.
(ii) Suppose that $1<j<m$. If $k_{j+1}^{*} \neq 0$ then $k_{m+1}^{*}=0$; in that case, to each solution $\left(k_{2}^{*}, \ldots, k_{m+1}^{*}\right)$, there corresponds a solution $\left(k_{2}^{(j)}, \ldots, k_{m+1}^{(j)}=0\right)$; it is possible, since $k_{j+1}=k_{j+1}^{(j)}-1=k_{j+1}^{*}-1 \geqslant 0$.
(iii) If $k_{m+1}^{*} \neq 0$, then $k_{m+1}^{*}=1$ and $k_{2}^{*}=\cdots=k_{m}^{*}=0, k=1$. In that case, to the solution $\left(0, \ldots, 0, k_{m+1}^{*}=1\right)$, there corresponds the solution ($0, \ldots, 0, k_{m+1}^{(m)}=1$).

Rearranging the terms in the summations of (18), we may thus write

$$
\begin{align*}
& \left(f^{-1}\right)_{m+1}^{(2)}(z)=\sum_{j=2}^{m} \sum_{k=1}^{m-1} \sum_{\pi_{1}^{*}(m+1, k)}(-1)^{k} \frac{(m+k-1)!}{(m+1)!} c_{1}\left(k_{1}^{*}, \ldots, k_{m+1}^{*}\right)(j+1) k_{j+1}^{*} \tag{19}\\
& \text { - } \prod_{i=2}^{m+1}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}^{k}} \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-1} \\
& +\sum_{k=2}^{m} \sum_{\pi_{1}^{*}(m+1, k)}(-1)^{k} \frac{(m+k-1)!}{(m+1)!} c_{1}\left(k_{1}^{*}, \ldots, k_{m+1}^{*}\right) \cdot 2 k_{2}^{*} \\
& \text { - } \prod_{i=2}^{m+1}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}^{*}} \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-k-1} \text {, }
\end{align*}
$$

where

$$
2 k_{2}^{*}+\cdots+(m+1) k_{m+1}^{*}=m+k, k_{2}^{*}+\cdots+k_{m+1}^{*}=k
$$

and

$$
c_{1}\left(k_{1}^{*}, \ldots, k_{m+1}^{*}\right):=\frac{(m+1)!}{k_{1}^{*} \ldots k_{m+1}^{*}!(1!)^{k_{1}^{*}} \ldots((m+1)!)^{k_{m+1}^{*}}}
$$

In the first summation of (19) we may add the terms corresponding to $k=m$ since $2 k_{2}^{*}+\cdots+(m+1) k_{m+1}^{*}=2 m, k_{2}^{*}+\cdots+k_{m+1}^{*}=m$ imp 1 y

$$
(m-1) k_{m+1}^{*}+\cdots+2 k_{4}^{*}+k_{3}^{*}=0
$$

i.e., $k_{3}^{*}=\cdots=k_{m+1}^{*}=0$. Similarly, we may add, in the second summation of (19), the terms corresponding to $k=1$. Writing

$$
\sum_{j=2}^{m}(j+1) k_{j+1}^{*}=m+k-2 k_{2}^{*}
$$

we obtain

$$
\begin{align*}
\left(f^{-1}\right)_{m+1}^{(2)}= & \sum_{k=1}^{m} \sum_{\pi_{1}^{*}(m+1, k)}(-1)^{k} \frac{(m+k)!}{(m+1)!} c_{1}\left(k_{1}^{*}, \ldots, k_{m+1}^{*}\right) \tag{20}\\
& \cdot \prod_{i=2}^{m+1}\left(\ln f_{i}^{(3)}\left(f^{-1}(z)\right)\right)^{k_{i}^{*}} \cdot\left(\ln f_{1}^{(3)}\left(f^{-1}(z)\right)\right)^{-m-1-k}
\end{align*}
$$

This completes the proof of Theorem 3.

4. SOME REMARKS AND EXAMPLES

4.1 Remark on Taylor's formula: Let us write

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!}\left(g\left(z-z_{0}\right)\right)^{k}, a_{0}:=f\left(z_{0}\right) . \tag{21}
\end{equation*}
$$

We have, in a neighborhood of $z=z_{0},(g(0)=0)$,

$$
a_{k}=\left(f\left(z_{0}+g^{-1}(z)\right)^{(k)}(z=0) .\right.
$$

Put

$$
\begin{equation*}
f_{1}\left(z_{0}\right):=\alpha_{1}=\frac{f^{\prime}\left(z_{0}+g^{-1}(0)\right)}{g^{\prime}\left(g^{-1}(0)\right)} \text { and } f_{k}:=\left(f_{k-1}\right)_{1}, k>1 . \tag{22}
\end{equation*}
$$

In order that $a_{k} \equiv f_{k}\left(z_{0}\right)$, we must have

$$
\left(f\left(z_{0}+g^{-1}(z)\right)\right)^{(k)}(z=0) \equiv \frac{f^{(k)}\left(z_{0}+g^{-1}(0)\right)}{\left(g^{\prime}\left(g^{-1}(0)\right)^{k}\right.}
$$

whence

$$
\begin{aligned}
f\left(z_{0}+g^{-1}(z)\right) & \equiv \sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}+g^{-1}(0)\right)}{k!}\left(\frac{z}{g^{\prime}\left(g^{-1}(0)\right)}\right)^{k} \\
& =f\left(\frac{z}{g^{\prime}\left(g^{-1}(0)\right)}+z_{0}+g^{-1}(0)\right)
\end{aligned}
$$

1987]
in a neighborhood of $z=0$. It follows that if g is normalized by the conditions

$$
\begin{equation*}
g(0)=0, g^{\prime}(0)=1 \tag{24}
\end{equation*}
$$

then $g(z) \equiv z$. The unique function g, normalized by (24), for which the expansion (21) is valid, where α_{k} is the $k^{\text {th }}$ iteration of the operator induced by $f_{1}:=a_{1}$, is the identity function $g(z)=z$; in that case, $f_{1}=f^{\prime}$. A similar argument may be made for expansions of the form

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{a_{k}}{k!}\left(\ln \frac{z}{z_{0}}\right)^{k}, \quad \sum_{k=0}^{\infty} \frac{\ln a_{k}}{k!}\left(z-z_{0}\right)^{k}, \sum_{k=0}^{\infty} \frac{\ln \alpha_{k}}{k!}\left(\ln \frac{z}{z_{0}}\right)^{k} \tag{25}
\end{equation*}
$$

It is in fact easy to come down to the previous case. For the expansions (25) we have, respectively, $f_{1}=f_{1}^{(2)}, f_{1}=f_{1}^{(3)}, f_{1}=f_{1}^{(4)}$ [see (6), (7), and (7')].

It is of interest to observe here that for expansions of the form

$$
f(z)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!}\left(g(z)-g\left(z_{0}\right)\right)^{k}, \quad a_{0}:=f\left(z_{0}\right)
$$

we have always that α_{k} is the $k^{\text {th }}$ iteration of the operator induced by

$$
f_{1}\left(z_{0}\right):=\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

To see this, we may easily show that

$$
f_{k}\left(z_{0}\right)=\left.\frac{\partial^{k} f\left(g^{-1}\left(z+g\left(z_{0}\right)\right)\right)}{\partial z^{k}}\right|_{z=0}, k=1,2,3, \ldots .
$$

4.2 (i) Let us take $f(z)=e^{z}$, then $z=1$, in (4); we obtain:

$$
\begin{equation*}
\left(\exp \left(z^{z}\right)\right)_{m}^{(1)}(z=1)=e \sum_{k=1}^{m} \sum_{\ell=1}^{k} \sum_{r=1}^{\ell}(-1)^{k+m} S_{1}(m, k) S(\ell, r) \cdot\binom{k}{\ell} e^{k-\ell} \tag{26}
\end{equation*}
$$

(ii) If $g(z)=z^{z}$ in (9^{\prime}), then we obtain, using (14) and $g_{j}^{(4)}(z)=z^{z} e^{j z}$, $j=0,1,2, \ldots$, the identity

$$
\begin{equation*}
\sum_{\pi(m, k)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}(z+j)^{k_{j}}=\sum_{j=0}^{k} \omega(m, k, j) z^{j}, z \in \mathbb{C} \tag{27}
\end{equation*}
$$

Note that we can deduce from (8) (see [5], p. 191) the relation

$$
\sum_{\pi(m, k)} \frac{k!}{k_{1}!\cdots k_{m}!} \prod_{j=1}^{m} j^{k_{j}}=\binom{m+k-1}{m-k}, 1 \leqslant k \leqslant m
$$

(iii) Lagrange expansion [concerning a root of equations of the form $z=a$ $+\xi \phi(z), \xi \rightarrow 0]$ in conjunction with (8) may be used to prove the formula

$$
\begin{equation*}
\sum_{\pi(m, k)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}\left(\left(\phi^{j}(\alpha)\right)^{(j-1)}\right)^{k_{j}} \equiv\binom{m-1}{k-1}\left(\phi^{m}(\alpha)\right)^{(m-k)} \tag{28}
\end{equation*}
$$

which implies that

$$
1 \leqslant k \leqslant m
$$

$$
\begin{equation*}
\sum_{\pi(m)} c\left(k_{1}, \ldots, k_{m}\right) \prod_{j=1}^{m}\left(\left(\phi^{j}(\alpha)\right)^{(j-1)}\right)^{k_{j}} \equiv e^{-a}\left(\phi^{m}(\alpha) e^{a}\right)^{(m-1)} \tag{29}
\end{equation*}
$$

where $\pi(m)$ means that the summation is extended over all nonnegative integers
k_{1}, \ldots, k_{m} such that $k_{1}+2 k_{2}+\cdots+m k_{m}=m$.

REFERENCES

1. L. Carlitz. "Weighted Stirling Numbers of the First and Second Kind, I," and "Weighted Stirling Numbers of the First and Second Kind, II." The Fibonacci Quarterly 18, no. 2 (1980):147-62, and no. 3 (1980):242-57.
2. Ch. A. Charalambides. "On Weighted Stirling and Other Related Numbers and Some Combinatorial Applications." The Fibonacci Quarterly 22, no. 4 (1984): 296-309.
3. L. Comtet. Analyse Combinatoire, vols. I and II. Paris: Presses Universitaires de France, 1970.
4. F. T. Howard. "Weighted Associated Stirling Numbers." The Fibonacci Quarterly 22, no. 2 (1984):156-65.
5. J. Riordan. Combinatorial Identities. New York: Wiley \& Sons, 1968.
6. St. Ruscheweyh. Convolutions in Geometric Function Theory. Séminaire de Mathématiques Supérieurs. Montréal: Les Presses de l'Universitée de Montréal, 1982.
7. I. J. Schwatt. An Introduction to the Operations with Series. New York: Chelsea Publishing Company, 1924.
8. R. Steven. "The Formula of Faa Di Bruno." Amer. Math. Monthly 87, no. 10 (1980):805-09.
