[Neville Robbins, The Fibonacci Quarterly 25, no. 1 (1987):29]

In addition to the theorems Dr. Robbins presented, it is the case that

$$
\begin{equation*}
\binom{2 n}{n}=\sum_{i=\emptyset}^{n}\binom{n}{i}^{2} . \tag{1}
\end{equation*}
$$

Proof: In general, the coefficients of terms in a polynomial that is the product of two other polynomials is the convolution of the terms of the two-factor polynomials. In particular, the coefficients of the terms in the binomial expansion can be expressed by such a convolution:

$$
\begin{equation*}
\binom{p}{q}=\sum_{i=\emptyset}^{n}\binom{p-r}{i}\binom{r}{q-i} . \tag{2}
\end{equation*}
$$

If we chose $r=q=n$, then $p=2 n$, and we get

$$
\begin{equation*}
\binom{2 n}{n}=\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}, \tag{3}
\end{equation*}
$$

which is obviously equivalent to (1).
Equation (2) is a rendering of the first form of the Vandermonde convolution (see [1]), with the term $\binom{n}{p}$ replaced by 1 . Equation (3) is a particular case of that, with the substitutions noted.

Corollary: n ! can be written recursively not only as $n(n-1)!$, but also (for even n) as

$$
\begin{equation*}
n!=(n / 2)!^{2} \sum_{i=\emptyset}^{n / 2}\binom{n / 2}{i}^{2} . \tag{4}
\end{equation*}
$$

Proof: This is made clear by rewriting the summation according to (1) above:

$$
\begin{equation*}
n!=(n / 2)!^{2}\binom{n}{n / 2} \tag{5}
\end{equation*}
$$

We then expand the combination $\binom{n}{n / 2}$ to give,

$$
\begin{equation*}
n!=(n / 2)!^{2} \frac{n!}{(n / 2)!(n-n / 2)!} \tag{6}
\end{equation*}
$$

which is fairly obviously an identity.

Reference

1. John Riordan. Combinatorial Identities. New York: Wiley \& Sons, 1968, p. 15, Eq. (9), form 1.
