TRANSPOSABLE INTEGERS IN ARBITRARY BASES*

ANNE L. LUDINGTON
Loyola College, Baltimore, MD 21210
(Submitted August 1985)

1. INTRODUCTION

Let k be a positive integer. The n-digit number $x=a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ is called k-transposable if and only if

$$
\begin{equation*}
k x=a_{n-2} a_{n-3} \cdots a_{0} a_{n-1} \tag{1}
\end{equation*}
$$

Clearly x is l-transposable if and only if all of its digits are equal. Thus, we assume $k>1$.

Kahan has studied decadic k-transposable integers (see [1]); that is, numbers expressed in base 10. The numbers $x_{1}=142857$ and $x_{2}=285714$ are both 3-transposable:

$$
\begin{aligned}
& 3(142857)=428571 \\
& 3(285714)=857142
\end{aligned}
$$

Kahan has shown that decadic k-transposable numbers exist only when $k=3$. Further, all 3-transposable integers are obtained by concatenating x_{1} or $x_{2} m$ times, $m \geqslant 1$ [1]. In this paper we will study k-transposable integers for an arbitrary base g.

2. TRANSPOSABLE INTEGERS IN BASE g

Let x be an n-digit number expressed in base g; that is,

$$
x=\sum_{i=0}^{n-1} a_{i} g^{i}
$$

with $0 \leqslant a_{i}<g$ and $a_{n-1} \neq 0$. Then x will be k-transposable if and only if

$$
\begin{equation*}
k x=\sum_{i=0}^{n-2} a_{i} g^{i+1}+a_{n-1} . \tag{2}
\end{equation*}
$$

Again we assume $k>1$; further, we can assume that $k<g$, since $k \geqslant g$ would imply that $k x$ has more digits than x. By rewriting (2), we see that the digits of x must satisfy the following equation:

$$
\begin{equation*}
\left(k g^{n-1}-1\right) \alpha_{n-1}=(g-k) \sum_{i=0}^{n-2} \alpha_{i} g^{i} \tag{3}
\end{equation*}
$$

Let d be the greatest common divisor of $g-k$ and $k g^{n-1}-1$, written

$$
d=\left(g-k, k g^{n-1}-1\right) .
$$

[^0]Then the following lemma gives information about d.
Lemma: Let x be an n-digit k-transposable g-adic integer and let

$$
d=\left(g-k, k g^{n-1}-1\right)
$$

Then d must satisfy the following:
(i) $(d, k)=1$
(ii) $k<d$
(iii) $k^{n} \equiv 1(\bmod d)$

Proof: Properties (i) and (iii) follow immediately from the definition of d.
To show (ii), suppose $d \leqslant k-1$. Then, in (3), ($g-k$) divides the lefthand side (LHS) as follows:

$$
a \text { divides } k g^{n-1}-1 \text { and } \frac{g-k}{d} \text { divides } a_{n-1}
$$

Thus,

$$
\frac{k g^{n-1}-1}{d}>\frac{(k-1) g^{n-1}}{d} \geqslant g^{n-1} \text { by the assumption. }
$$

But, then, the LHS divided by $g-k$ has a g^{n-1} term, while the right-hand side (RHS) does not. Since $(d, k)=1, k<d$.

We are now able to determine those g-adic numbers which are k-transposable for some k.

Theorem 1: There exists an n-digit g-adic k-transposable integer if and only if there exists an integer d which satisfies the following properties:

(i)	$(d, k)=1$
(ii)	$k<d$
(iii)	$d \mid g-k$
(iv)	$k^{n} \equiv 1(\bmod d)$

Proof: If x is k-transposable then, by the lemma, $d=\left(g-k, k^{n-1}-1\right)$ satisfies (i)-(iv).

To show the converse, we first observe that d divides $\mathrm{kg}^{n-1}-1$:

$$
k g^{n-1}-1 \equiv k k^{n-1}-1 \equiv k^{n}-1 \equiv 0(\bmod d)
$$

We now define $x=\sum_{i=0}^{n-1} a_{i} g^{i}$ which satisfies (3). Let

$$
\begin{equation*}
a_{n-1}=\frac{g-k}{d} \tag{4}
\end{equation*}
$$

Since $k<d$, $\left(k^{n-1}-1\right) / d$ has no g^{n-1} term. Thus, a_{n-2}, \ldots, a_{0} are well defined by the following equation:

$$
\begin{equation*}
\sum_{i=0}^{n-2} a_{i} g^{i}=\frac{k g^{n-1}-1}{d} \tag{5}
\end{equation*}
$$

Note that (5) is obtained by dividing (3) by $g-k=d((g-k) / d)$.
For d satisfying (i)-(iv), we can actually find [$d / k] k$-transposable integers. We will define

$$
x_{t}=\sum_{i=0}^{n-1} b_{t, i} g^{i}, \text { where } t=1, \ldots,\left[\frac{d}{k}\right]
$$

[Aug.

Let $b_{t, i}$ be given by

$$
\begin{equation*}
b_{t, n-1}=\left(\frac{g-k}{d}\right) t \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n-2} b_{t, i} g^{i}=\left(\frac{k g^{n-1}-1}{d}\right) t . \tag{7}
\end{equation*}
$$

Note that in (7) the RHS has no g^{n-1} term since $k t \leqslant d$; thus, the $b_{t, i}$ are well defined.

We will shortly give an example to show how Theorem 1 is used to determine all k-transposable integers for a given g. We note here that the proof of Theorem 2 is a constructive one. The digits of k-transposable numbers are found using (6) and (7). We now show that almost all g have k-transposable integers.

Theorem 2: If $g=5$ or $g \geqslant 7$, then there exists a k-transposable integer for some k. No k-transposable numbers exist for $g=2,3,4,6$.

Proof: Recall that $k>1$. For the first part we must find k with the following properties:

$$
\begin{aligned}
& 2 \leqslant k<\frac{g}{2} \\
& (k, g)=1
\end{aligned}
$$

If g is odd, let $k=2$. Otherwise, if $g=2 h, \hbar \geqslant 4$, choose

$$
k= \begin{cases}h-1 & \text { if } h \text { is even } \\ h-2 & \text { if } h \text { is odd }\end{cases}
$$

Now let $d=g-k$. Then, clearly, d satisfies (i)-(iii) of Theorem 1. Since $(d, k)=1$ and $k<d$, there exists n with $k^{n} \equiv 1(\bmod d)$. Hence, by Theorem 1 , there is an n-digit g-adic k-transposable integer.

It is a straightforward matter to check that there are no k-transposable integers when $g=2,3,4,6$.

We now show that up to concatenation there are only a finite number of k transposable integers for a given k, and hence a finite number for a given g.
Theorem 3: Suppose $x=\sum_{i=0}^{n-1} a_{i} g^{i}$ is a k-transposable integer. Let

$$
a=\left(g-k, k g^{n-1}-1\right)
$$

and let N be the order of K in U_{d}, the group of units of Z_{d}. Then x equals some N-digit k-transposable integer concatenated n / N times.

Proof: Since $k^{n} \equiv 1(\bmod d), n$ is a multiple of N. Let

$$
x_{t}=\sum_{i=0}^{N-1} b_{t, i} g^{i}, t=1, \ldots,\left[\frac{d}{k}\right],
$$

be the N-digit integers given by equations (6) and (7).
As shown in the proof of Theorem $1,(g-k) / d$ divides a_{n-1} while d divides $k g^{n-1}-1$. Thus,

$$
a_{n-1}=\frac{g-k}{d} \cdot t=b_{t, N-i} \text { for some } t \leqslant\left[\frac{d}{k}\right]
$$

Now,

$$
\sum_{i=0}^{n-2} a_{i} g^{i}=\left(\frac{k g^{n-1}-1}{d}\right) t=g^{n-N}\left(\frac{k g^{N-1}-1}{d}\right) t+\left(\frac{g^{n-N}-1}{d}\right) t
$$

Hence,

$$
a_{n-i}=b_{t, N-i}, i=2, \ldots, N
$$

since

$$
\sum_{i=0}^{N-2} b_{t, i} g^{i}=\left(\frac{k g^{N-1}-1}{d}\right) t
$$

But now we have

$$
\left(\frac{g^{n-N}-1}{d}\right) t=\left(\frac{g-k}{d}\right) t g^{n-N-1}+\left(\frac{k g^{n-N-1}-1}{d}\right) t
$$

Thus,

$$
a_{n-N-1}=\left(\frac{g-k}{d}\right) t=b_{t, N-1}
$$

and

$$
a_{n-N-i}=b_{t, N-i}, i=2, \ldots, N
$$

Continuing, we see that x equals x_{t} concatenated n / N times.
The N-digit numbers x_{t} are called basic k-transposable integers, since all others are obtained by concatenating these.

3. SOME EXAMPLES

We show how to determine all k-transposable integers for a given g by considering an example. By Theorem 3, we need only determine the basic $k-t r a n s-$ posable numbers.

Before beginning the example, we note that we need only consider $k<g / 2$. By Theorem $1, k<d$ and $d \mid g-k ;$ thus, $k \leqslant g / 2$. Since $(d, k)=1, k \neq g / 2$.

Let $g=9$: the possibilities for k, d, and N are given in the table.

k	$g-k$	d	N
2	7	7	3
3	6	-	-
4	5	5	2

When $k=2$, there are $\left[\frac{d}{k}\right]=3,2$-transposable integers. These are found using
(6) and (7) : (6) and (7):

$$
\begin{aligned}
& b_{t, 2}=t \\
& b_{t, 1} \cdot 9+b_{t, 0}=\left(\frac{2 \cdot 9^{2}-1}{7}\right) t=23 t, t=1,2,3
\end{aligned}
$$

Thus, the basic 2-transposable integers are 125, 251, 376. (Note that these numbers are expressed in base 9.) When $k=4$, there is one 4-transposable integer, namely, 17.

It is possible that, for a given g and k, there will be more than one d which satisfies (i)-(iii) of Theorem 1. We illustrate this with an example. Suppose $g=17$ and $k=2$. Since $g-k=15$, d can equal 3 , 5 , or 15 . The 2transposable integers for each case are given in the following table.

d	N	$\left[\frac{d}{k}\right]$	x
3	2	1	$5 \overline{11}$
5	4	2	$36 \overline{13} \overline{10} \quad 6 \overline{13} \overline{10} 3$
15	4	7	$\left\{\begin{array}{lllll} 1 & 249 & 49 & 42 \\ 2 & 4 & 9 & 5 & \overline{11} \\ 3 & 6 & \overline{13} & \overline{11} & 6 \\ \hline 13 & \overline{10} 3 \end{array} \quad 7 \overline{15} \overline{14} \overline{12}\right.$

Note that the 2 -transposable integers corresponding to $d=3$, 5 are included among those for $d=15$, except that 511511 is not basic.

REFERENCE

1. Steven Kahan. "K-Transposable Integers." Math. Magazine 49, no. 1 (1976): 27-28.
$\diamond \diamond \diamond \stackrel{\rightharpoonup}{\circ}$

[^0]: *Work on this paper was done while the author was a faculty member at Hamilton College, Clinton, NY. She is grateful for the support and encouragement given her during the eleven years she was associated with Hamilton College.

