A NOTE ON DIVISIBILITY SEQUENCES

R. B. McNEILL
Northern Michigan University, Marquette, MI 49855

(Submitted August 1985)

In [1], Marshall Hall defined U_{n} to be a divisibizity sequence if $U_{m} \mid U_{n}$ whenever $m \mid n$. Well-known examples of such sequences include geometric sequences and the Fibonacci numbers and their various generalizations (see [2], [3], and the references therein). The purpose of this note is to prove the following theorem.

Theorem: Let U_{n} be the sequence generated by the recurrence relation

$$
U_{n+2}=a U_{n+1}+b U_{n}
$$

with a, b nonzero integers satisfying $a^{2}+4 b=0$. Then U_{n} is a nongeometric divisibility sequence if and only if $U_{0}=0$.

Proof: The Binet formula for the sequence U_{n} is given by

$$
U_{n}=\left(\frac{a}{2}\right)^{n}\left(c_{1}+c_{2} n\right)
$$

If $U_{0}=0$, then $c_{1}=U_{0}=0, U_{n}=(\alpha / 2)^{n} c_{2} n$, and U_{n} is a (nongeometric) divisibility sequence.

Conversely, suppose $c_{1}=U_{0} \neq 0$ and that $U_{m} \mid U_{n}$ whenever $m \mid n$, i.e., suppose $c_{1}+c_{2} m \left\lvert\,\left(\frac{a}{2}\right)^{n-m}\left(c_{1}+c_{2} n\right)\right.$ whenever $m \mid n$.

Replace m by $c_{1} \alpha_{0} m$, n by $c_{1} \alpha_{0} n$, and let $\alpha_{0}=\alpha / 2$ and $e=c_{1} \alpha_{0} n-c_{1} \alpha_{0} m$. Then $c_{1}+c_{2} c_{1} a_{0} m \mid \alpha_{0}^{e}\left(c_{1}+c_{1} c_{2} a_{0} n\right)$ whenever $m \mid n$.
Therefore,
$1+c_{2} \alpha_{0} m \mid \alpha_{0}^{e}\left(1+c_{2} \alpha_{0} n\right)$ whenever $m \mid n$.
If $e \leqslant 0$, then

$$
1+c_{2} a_{0} m \mid 1+c_{2} a_{0} n
$$

is immediate, while if $e>0$, since $\operatorname{gcd}\left(1+c_{2} \alpha_{0} m, \alpha_{0}\right)=1$, we also have
$1+c_{2} a_{0} m \mid 1+c_{2} a_{0} n$ whenever $m \mid n$.
Letting $m=1, n=2$, gives
$1+c_{2} a_{0} \mid 1+2 c_{2} a_{0}$ or $1+c_{2} a_{0} \mid c_{2} \alpha_{0}$.
Since $\operatorname{gcd}\left(1+c_{2} a_{0}, c_{2} a_{0}\right)=1$, it follows that $1+2 c_{2} a_{0}= \pm 1$. Hence, either $c_{2} a_{0}=0$ or $c_{2} a_{0}=-2$. If $c_{2} a_{0}=0$, then $c_{2}=0$, since $a_{0} \neq 0$ by assumption, and we have the geometric sequence $c_{1}(a / 2)^{n}$. On the other hand, if $c_{2} a_{0}=-2$, then we have
$1-2 m \mid 1-2 n$ whenever $m \mid n$,
which is false for $m=2, n=4$.

A NOTE ON DIVISIBILITY SEQUENCES

REFERENCES

1. Marshall Hall. "Divisibility Sequences of 3rd Order." Amer. J. Math. 58 (1936):577-84.
2. Clark Kimberling. "Divisibility Properties of Recurrent Sequences." The Fibonacei Quarterly 14, no. 4 (1976):369-76.
3. Clark Kimberling. "Generating Functions of Linear Divisibility Sequences." The Fibonacci Quarterly 18, no. 3 (1980):193-208.
$\stackrel{\rightharpoonup}{\Delta} \stackrel{\rightharpoonup}{\Delta}$
