A NOTE ON DIVISIBILITY SEQUENCES

R. B. McNEILL

Northern Michigan University, Marquette, MI 49855

(Submitted August 1985)

In [1], Marshall Hall defined U_n to be a *divisibility sequence* if $U_m | U_n$ whenever m | n. Well-known examples of such sequences include geometric sequences and the Fibonacci numbers and their various generalizations (see [2], [3], and the references therein). The purpose of this note is to prove the following theorem.

Theorem: Let U_n be the sequence generated by the recurrence relation

$$U_{n+2} = aU_{n+1} + bU_n$$

with a, b nonzero integers satisfying $a^2 + 4b = 0$. Then U_n is a nongeometric divisibility sequence if and only if $U_0 = 0$.

Proof: The Binet formula for the sequence U_n is given by

$$U_n = \left(\frac{\alpha}{2}\right)^n (c_1 + c_2 n)$$

If $U_0 = 0$, then $c_1 = U_0 = 0$, $U_n = (a/2)^n c_2 n$, and U_n is a (nongeometric) divisibility sequence.

Conversely, suppose $c_1 = U_0 \neq 0$ and that $U_m | U_n$ whenever m | n, i.e., suppose

 $c_1 + c_2 m \left| \left(\frac{\alpha}{2}\right)^{n-m} (c_1 + c_2 n) \text{ whenever } m \right| n.$

Replace m by c_1a_0m , n by c_1a_0n , and let $a_0 = a/2$ and $e = c_1a_0n - c_1a_0m$. Then

 $c_1 + c_2 c_1 a_0 m | a_0^e(c_1 + c_1 c_2 a_0 n)$ whenever m | n.

Therefore,

 $1 + c_2 a_0 m | a_0^e (1 + c_2 a_0 n)$ whenever m | n.

If $e \leq 0$, then

 $1 + c_2 a_0 m | 1 + c_2 a_0 n$

is immediate, while if e > 0, since $gcd(1 + c_2a_0m, a_0) = 1$, we also have

 $1 + c_2 a_0 m | 1 + c_2 a_0 n$ whenever m | n.

Letting m = 1, n = 2, gives

$$1 + c_2 a_0 | 1 + 2c_2 a_0$$
 or $1 + c_2 a_0 | c_2 a_0$.

Since $gcd(1 + c_2a_0, c_2a_0) = 1$, it follows that $1 + 2c_2a_0 = \pm 1$. Hence, either $c_2a_0 = 0$ or $c_2a_0 = -2$. If $c_2a_0 = 0$, then $c_2 = 0$, since $a_0 \neq 0$ by assumption, and we have the geometric sequence $c_1(a/2)^n$. On the other hand, if $c_2a_0 = -2$, then we have

1 - 2m | 1 - 2n whenever m | n,

which is false for m = 2, n = 4.

214

[Aug.

A NOTE ON DIVISIBILITY SEQUENCES

REFERENCES

- 1. Marshall Hall. "Divisibility Sequences of 3rd Order." Amer. J. Math. 58 (1936):577-84.
- 2. Clark Kimberling. "Divisibility Properties of Recurrent Sequences." The Fibonacci Quarterly 14, no. 4 (1976):369-76.
 3. Clark Kimberling. "Generating Functions of Linear Divisibility Sequences."
- The Fibonacci Quarterly 18, no. 3 (1980):193-208.
