A NOTE ON THE PELL EQUATION

J. M. METZGER

University of North Dakota, Grand Forks, ND 58202

S. P. KALER

Honeywell Corporation, Mineapolis, Minnesota

(Submitted August 1985)

1. INTRODUCTION

The *Pellian sequence* $\{x_n, n = 1, 2, 3, ...\}$ is defined by the rule: x_n is the least positive integer x such that $nx^2 + 1$ is the square of an integer; if no such x exists, x_n is taken to be 0. Briefly, x_n is the least positive solution to the Pell equation $nx^2 + 1 = y^2$. The sequence behaves irregularly; the first few terms are

0, 2, 1, 0, 4, 2, 3, 1, 0, 6, 3, 2, 180, 4,

while $x_{61} = 1766319049$. It is easy to see that if *n* is a perfect square, then $x_n = 0$. The converse is also true: it is shown in [2] that for positive non-square *n*, if \sqrt{n} has continued fraction expansion $[a_0, \overline{a_1, \ldots, a_k}]$, then the convergent p_{2k-1}/q_{2k-1} provides a solution $x = q_{2k-1}$, $y = p_{2k-1}$ to the Pell equation $nx^2 + 1 = y^2$ ([2] also serves as a good reference for terminology and facts about continued fractions used in Section 3 of this note). It is also easy to show that $x_n = 1$ if and only if *n* is one less than a square. In this note, a method will be described which produces all the occurrences of any integer m > 1 in the Pellian sequence.

2. POSSIBLE OCCURENCES OF m

It is not difficult to restrict the possible occurences of m in the Pellian sequence to a small list. The method as given in [1] is as follows:

Suppose *m* is an odd integer greater than 1 and that $x_n = m$. Say $nm^2 + 1 = y^2$ for a positive integer *y*. Since $nm^2 = (y - 1)(y + 1)$, and *m* is odd, while y - 1 and y + 1 share no common odd factors, there must be positive integers a, *b* with (a, b) = 1, m = ab, and such that $a^2 | (y + 1)$ and $b^2 | (y - 1)$. Hence,

$$n = (y^2 - 1)/m^2 = ((y + 1)/a^2)((y - 1)/b^2).$$

If *m* is even, write $m = 2^{e}M$ with *M* odd. In this case, if $nm^{2} + 1 = y^{2}$, then *y* must be odd and so

 $n2^{2e-2}M^2 = ((y + 1)/2)((y - 1)/2).$

The factors on the right are consecutive integers. It follows that

 $m/2 = 2^{e-1}M = ab$

with
$$(a, b) = 1$$
 and such that $a^2 | (y + 1)/2$ and $b^2 | (y - 1)/2$. Thus,
 $n = ((y + 1)/2a^2)((y - 1)/2b^2)$.

So the only possible occurrences of \boldsymbol{m} in the Pellian sequence are found as follows:

[Aug.

216

A NOTE ON THE PELL EQUATION

1. For odd *m* write *m* as a product ab with (a, b) = 1 in all possible ways. For even *m* write m/2 as a product ab with (a, b) = 1 in all possible ways.

2. For each such factorization ab find the positive solutions to

 $y \equiv -1 \pmod{a^2}$ $y \equiv 1 \pmod{b^2}$ if *m* is odd, or to $y \equiv -1 \pmod{2a^2}$ $y \equiv 1 \pmod{2b^2}$ if *m* is even.

Then *m* can occur in the Pellian sequence only for the numbers $n = (y^2 - 1)/m^2$. For example, if m = 35, there are four systems to solve:

1.	$y \equiv -1 \pmod{1^2}$ $y \equiv 1 \pmod{35}$	2. 2.	$y \equiv -1 \pmod{5^2}$ $y \equiv 1 \pmod{7^2}$
3.	$y \equiv -1 \pmod{7^2}$ $y \equiv 1 \pmod{5^2}$) 4.	$y \equiv -1 \pmod{35^2}$ $y \equiv 1 \pmod{1^2}$

The solutions are, respectively,

1.	$y = 1 + 35^2 t$,	2. $y = 99 + 35^2 t$,
3.	$y = 1126 + 35^2 t$,	4. $y = 1224 + 35^2 t$,

each with $t \ge 0$.

Each solution y provides a candidate $n = (y^2 - 1)/35^2$, where $x_n = 35$ is possible. These candidates for the four solution sets are, respectively (with $t \ge 0$),

1. $(2 + 35^{2}t)t = 0$, 1227, 4904, ..., 2. $(4 + 7^{2}t)(2 + 5^{2}t) = 8$, 1431, 5304, ..., 3. $(23 + 5^{2}t)(45 + 7^{2}t) = 1035$, 4512, 10439, ..., 4. $(1 + t)(1224 + 35^{2}t) = 1224$, 4896, 11019,

In fact, x_n is 35 for all the listed values of n except the 0 of solution 1 (x_0 is not even defined) and the 8 of solution 2 ($x_8 = 1$ since 8 is one less than a square). Thus, while the method produces all possible occurrences of m in the Pellian sequence, some exceptional values of n can creep into the lists.

3. EXCEPTIONAL VALUES

When m is odd, the two trivial factorizations of m,

m = (1)(m) and m = (m)(1),

give exceptional values of n which are easy to determine. For the first factorization, the system to solve is

 $y \equiv -1 \pmod{1^2}$ $y \equiv 1 \pmod{m^2},$

with solutions $y = 1 + m^2 t$, $t \ge 0$, which yields candidates

 $n = (y^2 - 1)/m^2 = (2 + m^2 t)t$

Of course t = 0 gives an exceptional value of n. However, all other values of t are good. To see that is so, it must be shown for each t > 0 that, if x is a

1987]

217

A NOTE ON THE PELL EQUATION

positive integer and $(2 + m^2t)tx^2 + 1 = y^2$, then $x \ge m$. From $(2 + m^2t)tx^2 + 1 = y^2$, it follows that

$$2tx^2 + 1 = y^2 - (mtx)^2 \ge (mtx + 1)^2 - (mtx)^2 = 2mtx + 1,$$

which shows $x \ge m$.

The same reasoning shows that the system

 $y \equiv -1 \pmod{m^2}$ $y \equiv 1 \pmod{1^2}$

yields no exceptional values of n.

Similarly, for even m, the factorization (1)(m/2) of m/2 yields one exceptional value of n (namely, n = 0), while the factorization (m/2)(1) gives no exceptional values.

For the nontrivial factorizations of m, the exceptional values will be determined by noting a peculiar feature of the continued fraction expansions of \sqrt{n} for the candidate n values produced by each of the systems: the expansions all share common "middle terms." For example, looking at the solutions to system 2 in the example above, the following CFEs are found:

$$\sqrt{8} = [2, 1, 4] = [2, 1, 4, 1, 4, 1, 4];$$

$$\sqrt{1431} = [37, \overline{1, 4, 1, 4, 74}];$$

$$\sqrt{5304} = [72, \overline{1, 4, 1, 4, 1, 144}].$$

To see why this is so, let us suppose m is odd and m = ab, with a, b > 1, (a, b) = 1. Let Y be the least positive solution of

 $y \equiv -1 \pmod{a^2}$ $y \equiv 1 \pmod{b^2},$

so that all positive solutions are given by $y = Y + m^2 t$, $t \ge 0$. For each $t \ge 0$, put

$$n_t = ((Y + m^2 t)^2 - 1)/m^2$$
,

the t^{th} candidate n. If it is observed that

$$\begin{split} [\sqrt{n_t}] &= [\sqrt{(Y+m^2t)^2 - 1}/m] = [\sqrt{(Y+m^2t)^2 - 1}]/m] \\ &= [(Y+m^2t - 1)/m] = [Y/m] + mt, \end{split}$$

where [•] denotes the greatest integer function, it is not difficult to verify that the sequence $\sqrt{n_t} - [\sqrt{n_t}]$, $t = 0, 1, \ldots$ is monotone increasing and converges to Y/m - [Y/m]. Thus, for all $t \ge 1$, we have

$$\sqrt{n_0} - [\sqrt{n_0}] < \sqrt{n_t} - [\sqrt{n_t}] < Y/m - [Y/m].$$

Now, x = m, y = Y is certainly a solution to the Pell equation $n_0 x^2 + 1 = y^2$, and, consequently, Y/m must be a convergent of the CFE of $\sqrt{n_0}$; in fact, it can be said that

$$\sqrt{n_0} = [q_0, q_1, \dots, q_k, 2q_0],$$

where k is odd, and $q_0 = [Y/m]$, since [Y/m] is the greatest integer in $\sqrt{n_0}$ and, finally, Y/m has CFE $[q_0, q_1, \ldots, q_k]$. The period of the expansion of $\sqrt{n_0}$ is not necessarily k + 1, but must be some divisor of k + 1. In addition, it is known that $2q_0$ is the largest integer appearing in the CFE of $\sqrt{n_0}$.

So the CFEs of

$$\sqrt{n_0} - [\sqrt{n_0}] = [0, q_1, \dots, q_k, \dots]$$

 $Y/m - [Y/m] = [0, q_1, \dots, q_k]$

[Aug.

218

and

are identical out to the entry q_k . Since the numbers $\sqrt{n_t} - [\sqrt{n_t}]$ are trapped between these two values, they also must have continued fraction expansions which begin with $[0, q_1, q_2, \dots, q_k]$. Furthermore, since x = m certainly provides a solution to the Pell equation $n_t x^2 + 1 = y^2$, it follows that the CFE of $\sqrt{n_t}$ has the form

 $[Q, \overline{q_1, \ldots, q_k, 2Q}]$, where $Q = [\sqrt{n_t}]$.

Since the values q_1, q_2, \ldots, q_k are all less than $2q_0$, and so certainly less than 2Q, it must be that the period of the CFE of $\sqrt{n_t}$ is exactly k + 1; hence, m is the least positive x that satisfies the Pell equation $n_t x^2 + 1 = y^2$, which proves that m occurs in the Pellian sequence at every n_t except, possibly, the value n_0 .

In a similar fashion, it is found for even m that each nontrivial factorization of m yields at most one exceptional value of n, namely the value

 $n_0 = (Y^2 - 1)/m^2$,

where Y is the least positive solution for the system. Thus, the following theorem has been established.

Theorem 1: For m > 1 odd, write m = ab with (a, b) = 1, and let Y be the least positive solution of the system

$$y \equiv -1 \pmod{\alpha^2}$$

$$y \equiv 1 \pmod{b^2}.$$
(1)

Then $m = x_n$, the n^{th} term of the Pellian sequence, where n is given by

 $n = ((Y + m^2 t)^2 - 1)/m^2$, for all $t \ge 1$,

and possibly for t = 0 as well. This accounts for all occurrences of m.

For m > 1 even, write m/2 = ab with (a, b) = 1, and let Y be the least positive solution of the system

$$y \equiv -1 \pmod{2a^2}$$

$$y \equiv 1 \pmod{2b^2}.$$
(2)

Then $m = x_n$, the n^{th} term of the Pellian sequence, where n is given by

 $n = ((Y + m^2 t)^2 - 1)/m^2$, for all $t \ge 1$,

and possibly for t = 0 as well. This accounts for all occurrences of m.

It is natural to ask exactly when t = 0 will yield an exceptional n. While a general solution of this problem appears to be difficult, for some particular nontrivial facotrizations ab of m (or m/2), the answer can be provided. For example, when m is odd, a factorization of the form a(a + 2) always gives an exceptional value of n (as was seen for the case $35 = 5 \cdot 7$ in the earlier example). To see why this is true, suppose a = 2k + 1 and b = 2k + 3. The least positive solution to the system

$$y \equiv -1 \pmod{a^2}$$

$$y \equiv 1 \pmod{b^2}$$

is

$$Y = (k + 2)(2k + 1)^{2} - 1 = k(2k + 3)^{2} + 1,$$

which provides us with

 $n = k(k + 2) = (k + 1)^2 - 1,$

always one less than a square. Hence, $x_n = 1$, and this n is exceptional. However, such factorizations do not account for all exceptional values of n. For

219

 $m = 1197 = 19 \cdot 63$, the least positive solution to

 $y \equiv -1 \pmod{19^2}$ $y \equiv 1 \pmod{63^2}$

.

is Y = 3970, which yields n = 11. But $x_{11} = 3$ and not 1197. Likewise, it can be shown that if *m* is even and m/2 is factored as (m/4)(2) (assuming *m* is a multiple of 4), then for the *n* produced, $x_n = 2$, and not *m*. Again there are other factorizations which yield exceptional values of *n*.

REFERENCES

- S. P. Kaler. Properties of the Pellian Sequence." Masters Thesis. University of North Dakota, 1985.
- 2. W. J. LeVeque. Fundamentals of Number Theory. Reading, Mass.: Addison-Wesley, 1977.

.