ON $r^{\text {th }}$-ORDER RECURRENCES*

LAWRENCE SOMER
George Washington University, Washington, D.C. 20052
(Submitted August 1985)

This note will generalize results obtained by Wyler [5] concerning periods of second-order recurrences.

Let $r \geqslant 2$ and let (u) be an r th-order linear recurrence over the rational integers satisfying the recursion relation

$$
\begin{equation*}
u_{n+r}=a_{1} u_{n+r-1}-a_{2} u_{n+r-2}+\cdots+(-1)^{r+1} a_{r} u_{n} \tag{1}
\end{equation*}
$$

with initial terms $u_{0}=u_{1}=\cdots=u_{r-2}=0, u_{r-1}=1$. Then (u) is called a unit sequence with coefficients $\alpha_{1}, a_{2}, \ldots, a_{r}$. For a positive integer M, the primitive period of (u) modulo M, denoted by $K(M)$, is the least positive integer m such that $u_{n+m} \equiv u_{n}(\bmod M)$ for all nonnegative integers n greater than or equal to some fixed integer n_{0}. It is known that the primitive period modulo M of a unit sequence (u) is a period modulo M of any other recurrence satisfying the same recursion relation (see [4], pp. 603-04). The rank of (U) modulo M, denoted by $k(M)$, is the least integer m such that $u_{n+m} \equiv s u_{n}(\bmod M)$ for some residue s and for all integers n greater than or equal to some fixed nonnegative integer n_{0}. We call s the principal multiplier of (u) modulo M. If $\left(\alpha_{r}, M\right)=1$, then it is known from [1] that (u) is purely periodic modulo M and $K(M) \mid k(M)$. Furthermore, if $\left(\alpha_{r}, M\right)=1$, Carmichael [1] has shown that the principal multiplier s is a unit modulo M and $K(M) / K(M)=E(M)$ is the exponent of the multiplier s modulo M. In this paper, we will put constraints on $K(M)$ given $k(M)$ and the exponent of α_{r} modulo M.

Our two main results are Theorems 1 and 2. Theorem 2 is a refinement of Theorem 1.

Theorem 1: Let (u) be a unit sequence with coefficients $\alpha_{1}, \alpha_{2}, \ldots, a_{r}$. Let $M \geqslant 2$ be a positive integer such that $\left(\alpha_{r}, M\right)=1$. Let h be the exponent of a_{r} modulo M. Let $k=k(M)$ and $K=K(M)$. Let H be the least common multiple of h and k. Then $H \mid K$ and $K \mid r H$.

Theorem 2: Let (u) be a unit sequence with coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$. Let $M \geqslant 2$ be a positive integer such that $\left(\alpha_{r}, M\right)=1$. Let h, k, K, and H be defined as in Theorem 1. Let

$$
r=\prod_{i=1}^{n} p_{i}^{\alpha_{i}}
$$

where the p_{i} are distinct primes and $\alpha_{i} \geqslant 1$. Let

$$
h=\left(\prod_{i=1}^{n} p_{i}^{\beta_{i}}\right) h^{\prime}, k=\left(\prod_{i=1}^{n} p_{i}^{\gamma_{i}}\right) k^{\prime},
$$

[^0]
ON $r^{\text {th }}$-ORDER RECURRENCES

where $\beta_{i} \geqslant 0, \gamma_{i} \geqslant 0$, and $\left(h^{\prime}, r\right)=\left(k^{\prime}, r\right)=1$. Let j vary over all the indices $i, 1 \leqslant i \leqslant n$, such that $\beta_{i}>\gamma_{i}$. Let $c=1$ if there is no subscript i such that $\beta_{i}>\gamma_{i}$. Otherwise, let

$$
c=\prod_{j} p_{j}^{\alpha_{j}}
$$

Then

$$
c H \mid K
$$

and

$$
K \mid k(r H / k, \phi(M)),
$$

where $\phi(M)$ denotes Euler's totient function.
To prove Theorems 1 and 2, we will need the following lemmas.
Lemma 1: For the unit sequence (u) given in (1), define the persymmetric determinant

$$
D_{n}^{(r)}(u)=\left|\begin{array}{llll}
u_{n} & u_{n+1} & \cdots & u_{n+r-1} \\
u_{n+1} & u_{n+2} & \ldots & u_{n+r} \\
\ldots \ldots \ldots & \ldots \ldots & \ldots & \ldots
\end{array}\right| \ldots \ldots .
$$

Then

$$
D_{n+1}^{(r)}(u)=\alpha_{r} D_{n}^{(r)}(u)
$$

Proof: This is Heymann's Theorem and a proof is given in [2, ch. 12.12].
Lemma 2: Let $k=k(M)$. Suppose

$$
u_{m} \equiv u_{m+1} \equiv \cdots \equiv u_{m+r-2} \equiv 0(\bmod M)
$$

and $\left(\alpha_{r}, M\right)=1$. Then $k \mid m$. Furthermore,

$$
\begin{equation*}
u_{m i+n} \equiv u_{m+r-1}^{i} u_{n}(\bmod M) \tag{2}
\end{equation*}
$$

and for all non-negative integers n,

$$
\begin{equation*}
u_{m+r-1}^{r} \equiv \alpha_{r}^{m}(\bmod M) . \tag{3}
\end{equation*}
$$

In particular, if s is the principal multiplier of (u), then

$$
s^{r} \equiv \alpha_{r}^{k}(\bmod M) .
$$

Proof: Suppose $m=t k+d$, where $0 \leqslant d<k$. Since (u) is purely periodic modulo M, it follows that, for $0 \leqslant n \leqslant r-2$,

$$
0 \equiv u_{m+n} \equiv s u_{m+n-k} \equiv s^{2} u_{m+n-2 k} \equiv \cdots \equiv s^{t} u_{m+n-t k}=s^{t} u_{d+n}(\bmod M),
$$

where s is the principal multiplier of (u) modulo M. However, if $d>0$, this is impossible since s is a unit modulo M and, by definition, k is the smallest positive integer j such that $u_{j+n} \equiv 0(\bmod M)$ for $0 \leqslant n \leqslant r-2$. Thus, $d=0$ and $k \mid m$.

We now note that

$$
\begin{equation*}
u_{m+n} \equiv u_{m+r-1} u_{n}(\bmod M) \tag{4}
\end{equation*}
$$

for $0 \leqslant n \leqslant r-1$. It follows from the linearity of the $r^{\text {th }}$-order recursion relation defining (u) that (4) holds for all nonnegative integers n, and u_{m+r-1}

ON $r^{\text {th-ORDER }}$ RECURRENCES

is a multiplier modulo M, though not necessarily principal, of (u). By applying congruence (4) repeatedly, we obtain

$$
\begin{aligned}
u_{m i+n} & =u_{m+(m(i-1)+n)} \equiv u_{m+r-1} u_{m(i-1)+n}=u_{m+r-1} u_{m+(m(i-2)+n)} \\
& \equiv u_{m+r-1}^{2} u_{m(i-2)+n} \equiv \cdots \equiv u_{m+r-1}^{i} u_{n}(\bmod M),
\end{aligned}
$$

and congruence (2) holds.
To prove (3), we note that since $u_{m} \equiv u_{m+1} \equiv \cdots \equiv u_{m+r-2} \equiv 0(\bmod M)$, one easily calculates that

$$
D_{m}^{(r)}(u) \equiv(-1)^{r(r-1) / 2} u_{m+r-1}^{r}(\bmod M) .
$$

Moreover, since $u_{0}=u_{1}=\cdots=u_{r-2}=0$ and $u_{r-1}=1$,

$$
D_{0}^{(r)}(u)=(-1)^{r(r-1) / 2}
$$

By applying Lemma 1 m times, we now obtain

$$
D_{m}^{(r)}(u) \equiv(-1)^{r(r-1) / 2} u_{m+r-1}^{r} \equiv a^{m} D_{0}^{(r)}(u)=a_{r}^{m}(-1)^{r(r-1) / 2}(\bmod M),
$$

and congruence (3) is seen to hold. Finally, noting that $s \equiv u_{k+r-1}(\bmod M)$, the lemma now follows.

We are now ready for the proofs of Theorems 1 and 2.
Proof of Theorem 1: Note that $u_{K+r-1} \equiv u_{p-1}=1(\bmod M)$. By Lemma 2,

$$
u_{K+r-1}^{r} \equiv \alpha_{r}^{K} \equiv 1(\bmod M) .
$$

Thus, K is a multiple of h. Since $k \mid K, K$ is also a multiple of H. On the other hand, by Lemma 2,
and

$$
u_{r H} \equiv u_{r H+1} \equiv \cdots \equiv u_{r H+r-2} \equiv 0(\bmod M)
$$

$$
u_{r H+r-1} \equiv u_{H+r-1}^{r} \equiv \alpha_{r}^{H} \equiv 1(\bmod M) .
$$

Hence, $r H$ is a multiple of K and we are done.
Proof of Theorem 2: By Theorem 1, $K \mid r H$. Since $K=k E(M)$ and $E(M) \mid \phi(M)$, it follows that

$$
K \mid k(r H / k, \phi(M)) .
$$

For a given index j, let $\delta_{j}=\alpha_{j}+\beta_{j}$. Then it follows from the definitions of c and H that

$$
p_{j}^{\delta_{j}} \| c H \quad \text { and } \quad p_{j}^{\delta_{j}} \| r H \text {, }
$$

where $p_{j}^{x} \| N$ means x is the highest power of p_{j} dividing N. Since $H \mid K$ by Theorem 1 and $c H \mid r H$, it suffices to prove that if p_{j} is a prime dividing c, then

$$
K \nmid\left(r H / p_{j}\right) .
$$

By Lemma 2, we thus need to show that

$$
u_{\left(r H / p_{j}\right)+r-1} \not \equiv 1(\bmod M) .
$$

Note that $p_{j} k \mid H$ since $\beta_{j}>\gamma_{j}$. Thus, $r H / p_{j}=k N$ for some integer N. Moreover, $x \mid N$ since $k_{k} \mid H / p_{j}$. By Lemma 2,

$$
\begin{aligned}
u_{\left(r H / p_{j}\right)+r-1} & =u_{k N+r-1} \equiv u_{k+r-1}^{N} u_{r-1}=\left(u_{k+r-1}^{r}\right)^{N / r} \\
& \equiv\left(s^{r}\right)^{N / r} \equiv\left(a_{r}^{k}\right)^{N / r}=a_{r}^{H / p_{j}}(\bmod M) .
\end{aligned}
$$

Now,

$$
p_{j}^{\beta_{j}-1}\left\|\left(H / p_{j}\right), p_{j}^{\beta_{j}}\right\| \hbar .
$$

Thus,

$$
u_{\left(r H / p_{j}\right)+r-1} \equiv a_{r}^{H / p_{j}} \not \equiv 1(\bmod M) .
$$

Consequently, $K \nmid\left(r H / p_{j}\right)$ and we are done.

REFERENCES

1. R. D. Carmichae1. "On Sequences of Integers Defined by Recurrence Relations." Quart. J. Pure Appl. Math. 48 (1920):343-72.
2. L. M. Milne-Thomson. The Calculus of Finite Differences. London: Macmillan, 1960.
3. L. Somer. "The Divisibility and Modular Properties of $k^{\text {th }}$-Order Linear Recurrences Over the Ring of Integers of an Algebraic Number Field with Respect to Prime Ideals." Ph.D. dissertation, The University of Illinois at Urbana-Champaign, 1985.
4. M. Ward. "The Arithmetical Theory of Linear Recurring Series." Trans. Amer. Math. Soc. 35 (1933):600-28.
5. 0. Wyler. "On Second-Order Recurrences." Amer. Math. Monthly 72 (1965): 500-06.

[^0]: *This note is based partly on results in the author's Ph.D. Dissertation, The University of Illinois at Urbana-Champaign, 1985.

