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PROBLEMS PROPOSED IN THIS ISSUE 

H-415 Proposed by Larry Taylor, Rego Park, N.Y. 

Let n and w be integers with w odd. From the following Fibonacci-Lucas 
identity (Elementary Problem B-464, The Fibonacci Quarterly, December 1981, p. 
466) , derive another Fibonacci-Lucas identity using the method given in Prob-
lem 1: 

n + 2w n + w ~ ^w^n + w^n -w ~ ^n-w^n-2w = (^ 3w ~ 2Lw)in. 

H-416 Proposed by Gregory Wulczyn, Bucknell University (Ret.), Lewisburg, PA 

/ P N f-5(Vi + Vi> H l ( m o d P } ' 
(1) If K ) = 1, show that: { 

V (.5(Lp + 1 - Fp + 1) = 1 (mod p ) . 

/ D , ( - 5 ( i p - i +Fp-i) = ~1 (mod p ) , 
(2) If (%) = - 1 , show that { 

{•HLp + 1 - Fp + 1) = - 1 (mod p ) . 

H~417 Proposed by Piero Filipponi, Rome, Italy 

Let G(n9 m) denote the geometric mean taken over m consecutive Fibonacci 
numbers of which the smallest: is Fn . It can be readily proved that 

G(n9 2k + 1) (7< = 1, 25 . ..) 

is not integral and is asymptotic to Fn + p (as n tends to infinity). 

Show that if n is odd (even), then G(n9 2k + 1) is greater (smaller) than 
Fn+ks except for the case k = 25 where G(n« 5) < F for every n* 

SOLUTIONS 

Bracket Some Sums 

H-392 Proposed by Piero Filipponi, Rome, Italy [Vol. 23(4), Nov. 19851 

It is known [1], [2], [3], [4] that every positive integer n can be repre-
sented uniquely as a finite sum of F-addends (distinct nonconsecutive Fibonacci 
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numbers). Denoting by fin) the number of F-addends the sum of which represents 
the integer n and denoting by [x] the greatest integer not exceeding x, prove 
that: 

(i) f([Fk/2]) = [fc/3], (k = 3, 4, . . . ) ; 

([fe/4] + 1, for [fc/4] E l (mod 2) and k = 3 (mod 4) 
(ii) /([V3]) = i (̂  = 4, 5, ...) 

([fe/4], otherwise. 

Find (if any) a closed expression for f([Fk/p]) with p a prime and k such 
that Fk = 0 (mod p). 
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Solution (partial) by the proposer 

Proof (i): Let us put k = 3h + V iv = 0, 1, 2; h = 1, 2, . . .) . On the basis 
of the equalities 

(F3h/29 for v = 0 
^ + y/2] = \ 

1 (F3h + V ~ l)/2, for v = 1, 2 
the relations 

[̂ +U/2] = E ^ i + u-2 (" = °' !> 2) 
i = 1 

can be proven by induction on h. Therefore [Fk/2] can be represented as a sum 
of h = [fe/3] F-addends. 

Proof (ii): Let us put k = 4/z + v (v = 0, 1, 2, 3; h = 1, 2, . . .) . By virtue 
of the identity 

F = F F + F F (!) 

and of the congruence 

Fhh = 0 (mod 3), (2) 

the congruences 

_ i 1 (mod 3), for h even, ,^\ 
4^+1 ~ \2 (mod 3), for h odd, 

can be r e a d i l y p roven by i n d u c t i o n on h. From (1) and ( 2 ) , we can w r i t e : 

Fhhl3, f o r v = 0 , 
[ p /o i _ ; [ ^ f e + i / 3 ] , f o r y = 1, ( 4 ) 
L ^ + " / J J ~ )Fhh!3 + [ * \ h + 1 / 3 ] , f o r i; = 2 , 

, ^ / 3 + [2Ffyh+1/3], f o r z; = 3 ; 
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therefore, from (3) and (4), we obtain: 

[Fkh/3] = Fkh/3, \/h; (5) 

\F /31 = l(F^h+i ~ l^/3> f o r h e v e n ' (5') 
^ ^ + i/JJ \(F^h + l - 2)/3, for h odd; ^ ; 

\F /31 = i(F^+2 " ^ Z 3 ' f o r & e v e n ' r5'M 
L ^ + 2/JJ \ ( F ^ + 2 - 2)/3, for .ft odd; °  > 

rp /3i = i ^ + 3 " 2)/3, f o r h e v e n > rV'M 
L*^ + 3/JJ \ ( ^ + 3 - l)/3, for ft odd. ^ ; 

From (5), (5'), (5")» (5"')» and on the basis of (1) and of the identity 

the relations 

f ^ + !/3] = E ^ + y - , ( y = ° ' X» 2 ' 3? * e v e n > ( ? ) 
i = 1 

^,h + v'^ = f
M +i + E \ i + v (v = 0, 1, 2; ft odd) (7') 

i = 1 
(h + l)/2 

[ ^ + 3 / 3 ] = E ^87;-5 ft odd) (7") 
i = l 

can be proven by induction ©n h. As an example, we consider the case h even 
and v - 1, and prove that 

/z/2 

i = 1 

Setting h = 2, we obtain (Fg - l ) /3 = L5. Supposing the statement true for h9 
we have 

(h + 2)/2 h/2 + l 

X £ 8 i -3 = £ h i - 3 = ( ^ + i - D/3 + ^ + 5 
%-\ ^ = 1 

= ( ^ + i - D/3 + ^ + . + ^ + 6 

= C ^ + i - D/3 + 18F,, + 1 1 ^ . , 

= C3^„ + i + 2 1 ^ h - D/3 
= '(*V* + 9 - D/3 = (F„(,+2) + 1 - D / 3 . 

From (7), (7') , (7")» and (6), i t is seen that [i^/3] can be represented as a 
sum of h + 1 = [fc/4] + 1 F-addends in the case [fc/4] odd and A: = 3 (mod 4), and 
as a sum of ft = [&/4] F-addends otherwise. 

Also solved (minus a closed form) by L. Kulpers and B. Poonen. 

E Gads 

H-39̂  Proposed by Ambati Jay a Krishna, Baltimore, MD, and 
Gomathi S. Rao, Orangeburg, SC [Vol. 24(1), Feb. 1986] 

2 4 6 Find the value of the continued fraction 1 + — — — 
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Solution by Paul S. Bruckman, Fair Oaks, CA 

Define on , the nth convergent of the indicated continued fraction, as fol-
lows: 

(1) cn = unlvn E 1 + 2/3 + 4/5 + ••• + 2n/(2n + 1), n = 1, 2, ...; 

c0 = 1 = 1/1. 

After a moment's reflection, it is seen that un and vn satisfy the common re-
currence relation: 

(2) wn = (2n+ l)wn_1 + 2nwn_2, n > 2, where wn denotes either un or vn9 
and 

(3) u0 = v0 = 1; w2 = 5, v± = 3. 

We now define the generating functions: 

(4) w(#) = zl un— , v(x) = Y* vn "T 5 w ^ ) denoting either w(x) or v(x). 
n = 0 n- n=0 n' 

The initial conditions in (3) become: 

(5) u(0) = v(0) = 1; u'(0) = 5, vr(0) = 3. 

The recurrence in (2) translates to the following differential equation: 

(6) {2x - l)w" + (2x + 5)wr + hw = 0. 

To solve (6), we find the following transformation useful: 

(7) g(x) = (2x - l)wr(x) + hw(x). 
Then, we find (6) is equivalent to the first-order homogeneous equation: 

(8) g' + g = 0, 
from which 

(9) g(x) ~ cce~x, for an unspecified constant a. 

Substituting this last result into (7), after first making the transformation: 

(10) W(x) = h(x) * (1 - 2x)~2, 

we find that hr(x) = -a(l - 2x)e~x, so 

(11) h(x) = -a(l + 2x)e~x + b, where b is another unspecified constant. 

Thus, 

(12) w(x) = (1 - 2x)~2{b - a(l + 2x)e~x}9 

where a and b are to be determined from (5), by appropriate differentiation in 
(12). Note that w(0) = b - a = 1. Also, 

wf(x) = 4Z?(1 - 2x)~3 - 2ae~x(l- 2x) ~ 3 (3-i-2x) + ae'x (1+ 2x){\- 2x)~2 , 

so w'(0) = kb - 5a = 4 - a. If &>(#) = w(x), then a = -1 and 2? = 0, while if 
w(x) = z;(x), then a = 1 and & = 2. Hence, 

(13) u(x) = (1 + 2a;) (1 - 2x)~2e~x, z;(x) = 2(1 - 2^)~2 - w(a;). 

Next, we use (13) to obtain expansions for u(x) and v (x) and, therefore, expli-
cit expressions for the un and vn originally defined in (1). We start with 
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(1 + 2x) ( l - 2x)~2 = (1 + 2x) E (n + l)2*a;" 
n = o 

00 00 00 

= E (" + l)2n^rn + E w2n#n = E (2n + l )2nxn ; 
ft=0 ft=0 n = 0 

t hus , 
w(x) = E (2n + 1)2W*W • E (~l)n ^T = E ^ n E - ^ ^ r - ( 2 n - 2fe + 1)2""* 

ft = 0 ft=0 n ' ft = 0 fc = 0 ^ " 

= E (2n + 1) (2x)n E "Sf- " 2 E (2^)" E 7f-^TTT ; 
l e t t i n g 

(14) r n = E \ T - > n = 0, 1, 2, . . . , 
k = o K-

we obtain 

u(x) = I ) (2n + l)(2a;)"r„ + £ (2x)*(r - I ^ ) 
n = 0 n = l \ Yl. I 

= 1 + £ {2(n + l)rn - ^ ^ } ( 2 x ) \ 
ft = 1 v n. ) 

or 
(15) M(:c) = £ {ln + 1(n + l)\rn - (-l)"|f^ . 

ft = o I ; " • 

It follows from comparison of coefficients in (4) and (15) that 

(16) un = 2n+1(n + l ) ! r „ ~'(-l)n, n = 0, 1, 2, . . . . 
Likewise, s ince i?(aO = 2(1 - 2x)~2 - u(x) 9 we find 

y(:c) = 2 E ( n + l)2»x" - ± un £ = £ (n + 1) !2« + 1 ^ - £ M„ f^ , 
ft = 0 ft = 0 ^" n = 0 " • « = () n ' 

so 
(17) i;n = 2n + 1(n + 1)! - u„ , 
or 
(18) vn = 2n+1(n + 1)!(1 - rn) + (-1)", n = 0, 1, 2, ... . 
We note that 
(19) lim r = e~h. 

ft->- CO ^ 

Therefore, 
( 2n+1(n + l)!r„ - (-1)" ) , r 

lim cn = llm(un/vn) = lim < — V = lim 
»"•- ( 2 " + 1 ( K + 1 ) ! (1 - r ) + ( -1)" ) " * " 

= e - - 7 ( l - e - » ) , 
or 
(20) lim cn = (eh - l ) " 1 = 1.541494083. 

ft-*- oo 

^iso solved by W. Janous, A, Krishna & G. Rao, L. Kuipers & P. Shieu, J.-S. Lee 
& J.-Z. Lee, F. Steutel, and the proposer. 
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Easy Induction 

H-395 Proposed by Heinz-Jurgen Seiffert, Berlin Germany 
[Vol. 24(1), Feb. 1986] 

Show that for all positive integers m and k5 

m~1 F2k(2n + 1) _k~lF2m (2j+l) 

n = 0 2n + l J = 0 2 j + l 

Solution by J.-Z. Lee & J.-S. Lee, Soochow University, Taipei, Taiwan, R.O.C* 

Define 
m-l 

n = 0 

Sz(m, k) =".EV2m(2[7-+1)/£2j-+1)-
j =0 

From the definitions of Fn and LnS we have 

Lemma 1: F
(<m + 2k)(2n+l) Fm(2n + 1) (m + k)(2n + l) k(2n + l)> 

m-l 

Lemma 2: £ F = F
2m(2k- i)/L2k -1 • 

n = 0 

We will prove, using the induction hypothesis, that 
S1(m, k) = S2(m9 k) (*) 

for all positive integers 777 and k> 

For k = I j we obtain 
m-l rn-l 

S^m, 1) = £ (F2(2n + l)/L2n + 1) = £ F2n + 1 = F2m = Sz(m, 1), 
n = 0 « = 0 

so O ) is true for k = 1. Suppose that (*) is true for all positive integers 
less than k9 then 

m-l 

S1(m9 k) = £ (^2k(2n + l ) / L 2 n + l ) 
n = 0 

m- 1 

= E ( ( ^ 2 ( k - i ) ( 2 w + i) + ^(2fe-l)(2. + l ) L 2 n + l ) / L 2 n + l ) ^ ^ L e m m a l 5 

w = 0 

m - l m - l 
= E (F

2(k-1)( 2n + l) /L2n+0 + E ^(2k - 1) ( 2n + 1) 
n = 0 » = 0 

fc-2 
= E (̂ 2m(2j + l)/^2j' + l) + F2m(2k ~1)'L?± - I s 

j = 0 
by t h e i n d u c t i o n h y p o t h e s i s and Lemma 2 3 

k - l 

= E ( ^ ( 2 ( 7 - + i ) / L 2 j + i ) = M ^ &); 
j = 0 
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therefore, (*) is true for all positive integers k. 

Also solved by P. Bruckman, L. A.G. Dresel, C. Georghiou, W. Janous, L. Kuipers, 
and the proposer. 

Another Easy One 

H-396 Proposed by M. Wachtel, Zurich, Switzerland [Vol. 24(1), Feb. 1986] 

Establish the identity: 
7? TP 7? 

™ i+n ~ i+n+l ~ i+n+2 

i = i a^ i = i a1 i = i av 

a = 2, 3, 4, . . . , n = 0, 1,'2, 3, ... . 

Solution by Paul S. Bruckman, Fair Oaks, CA 

The series defined as follows, 

00 

fix, m) = Z Fi + mxi, m e Z, (1) 
-i = 1 

is absolutely convergent, with radius of convergence 0 E %(v5 - 1) = .618. In 
fact, the sum of the series is readily found to be equal to 

m +1 m , , 

/ O , 777) = , \x\ < 0. (2) 
1 _ 2 

Since a~ <C 0 for a = 2, 3, 4, ..., each of the series indicated in the state-
ment of the problem is absolutely convergent. Hence, 

00 OO OO 00 • 

t = 1 ^ = 1 ^ = 1 ^ = 1 

This may also be demonstrated from (2), setting x = a"1: 

ccF ^ n + F aF , „ + F , 
n . -I . „, -i n + 1 n n+2 n + 1 

f(a \ n) + f(a \ n + 1) = + 
a 2 - a - l a 2 - a - l 
aF + F 
UJ-n+ 3 n + 2 n 

= = f(a-\ n + 2 ) . 
a2 - a - 1 

^Iso solved by L. A. G. Dresel, P. Filipponi, C. Georghiou, W. Janous, L. Kui-
pers, J.-Z. Lee & J.-S. Lee, R. Whitney, and the proposer. 

• 0*0# 
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