ANOTHER FAMILY OF FIBONACCI-LIKE SEQUENCES

PETER R. J. ASVELD

Department of Computer Science, Twente University of Technology P.O. Box 217, 7500 AE Enschede, The Netherlands

(Submitted March 1986)

In [1] we studied the class of recurrence relations

$$G_{n} = G_{n-1} + G_{n-2} + \sum_{j=0}^{k} \alpha_{j} n^{j}$$
(1)

with $G_0 = G_1 = 1$. The main result of [1] consists of an expression for G_n in terms of the Fibonacci numbers F_n and F_{n-1} , and in the parameters α_0 , ..., α_n .

The present note is devoted to the related family of recurrences that is obtained by replacing the (ordinary or power) polynomial in (1) by a factorial polynomial; viz.

$$H_n = H_{n-1} + H_{n-2} + \sum_{j=0}^{k} \gamma_j n^{(j)}$$
(2)

with $H_0 = H_1 = 1$, $n^{(j)} = n(n-1)(n-2) \dots (n-j+1)$ for $j \ge 1$, and $n^{(0)} = 1$. The structure of this note resembles the one of [1] to a large extent.

As usual (cf. e.g., [2] and [4]) the solution $H_n^{(h)}$ of the homogeneous equation corresponding to (2) is

 $H_n^{(h)} = C_1 \phi_1^n + C_2 \phi_2^n$

with $\phi_1 = \frac{1}{2}(1 + \sqrt{5})$ and $\phi_2 = \frac{1}{2}(1 - \sqrt{5})$.

Next we try as a particular solution

$$H_n^{(p)} = \sum_{i=0}^k B_i n^{(i)},$$

which yields

$$\sum_{i=0}^{k} B_{i} n^{(i)} - \sum_{i=0}^{k} B_{i} (n-1)^{(i)} - \sum_{i=0}^{k} B_{i} (n-2)^{(i)} - \sum_{i=0}^{k} \gamma_{i} n^{(i)} = 0.$$

In order to rewrite this equality, we need the following *Binomial Theorem* for *Factorial Polynomials*.

Lemma 1:
$$(x + y)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} x^{(k)} y^{(n-k)}$$
.

Proof (A. A. Jagers):

(x

$$+ y)^{(n)} t^{x+y} = t^n \frac{d^n t^{x+y}}{dt^n}$$

$$= t^n \sum_{k=0}^n \binom{n}{k} x^{(k)} t^{x-k} y^{(n-k)} t^{y-n+k}.$$

(Leibniz's formula)

Cancellation of t^{x+y} yields the desired equality.

1987]

361

Thus, we have

$$\sum_{i=0}^{k} B_{i} n^{(i)} - \sum_{\ell=0}^{k} \left(\sum_{i=0}^{i} B_{i} \binom{i}{\ell} ((-1)^{(i-\ell)} + (-2)^{(i-\ell)} n^{(\ell)} \right) - \sum_{i=0}^{k} \gamma_{i} n^{(i)} = 0;$$

hence, for each $i (0 \leq i \leq k)$,

$$B_i - \sum_{m=i}^k \delta_{im} B_m - \gamma_i = 0 \tag{3}$$

with, for $m \ge i$,

$$\delta_{im} = \binom{m}{i} ((-1)^{(m-i)} + (-2)^{(m-i)}).$$

Since $(-x)^{(n)} = (-1)^n (x + n - 1)^{(n)}$ and $n^{(n)} = n!$, we have

$$\delta_{im} = \binom{m}{i} (-1)^{m-i} ((m-i)! + (m-i+1)!)$$
$$= \binom{m}{i} (-1)^{m-i} (m-i+2) (m-i)!$$
$$= (-1)^{m-i} (m-i+2) m^{(m-i)}.$$

From the family of recurrences (3), we can successively determine B_k , ..., B_0 : the coefficient B_i is a linear combination of γ_i , ..., γ_k . Therefore, we set

$$B_i = -\sum_{j=i}^{\kappa} b_{ij} \gamma_j$$

(cf. [1]) which yields, together with (3),

$$-\sum_{j=i}^{k} b_{ij} \gamma_{j} + \sum_{m=i}^{k} \delta_{im} \left(\sum_{\substack{ l = m }}^{k} b_{ml} \gamma_{l} \right) - \gamma_{i} = 0.$$

Thus, for $0 \leq i \leq j \leq k$, we have

$$b_{jj} = 1$$

$$b_{ij} = -\sum_{m=i+1}^{j} \delta_{im} b_{mj}, \text{ if } i < j.$$

Hence, for the particular solution $H_n^{(p)}$ of (2), we obtain

$$H_{n}^{(p)} = -\sum_{i=0}^{k} \sum_{j=i}^{k} b_{ij} \gamma_{j} n^{(i)} = -\sum_{j=0}^{k} \gamma_{j} \left(\sum_{i=0}^{j} b_{ij} n^{(i)} \right).$$

As in [1] the determination of C_1 and C_2 from $H_0 = H_1 = 1$ yields

$$H_n = (1 - H_0^{(p)})F_n + (-H_1^{(p)} + H_0^{(p)})F_{n-1} + H_n^{(p)}.$$

Therefore, we have

Proposition 2: The solution of (2) can be expressed as

$$H_n = (1 + M_k)F_n + \mu_k F_{n-1} - \sum_{j=0}^k \gamma_j \pi_j(n),$$

[Nov.

362

.

.

where M_k is a linear combination of γ_0 , ..., γ_k , μ_k is a linear combination of γ_1 , ..., γ_k , and for each j ($0 \le j \le k$), $\pi_j(n)$ is a factorial polynomial of degree j:

Table 1

$$M_{k} = \sum_{j=0}^{k} b_{0j} \gamma_{j}, \quad \mu_{k} = \sum_{j=1}^{k} b_{1j} \gamma_{j}, \quad \pi_{j}(n) = \sum_{i=0}^{j} b_{ij} n^{(i)}.$$

j	$\pi_j(n)$
0	1
1	$n^{(1)} + 3$
2	$n^{(2)} + 6n^{(1)} + 10$
3	$n^{(3)} + 9n^{(2)} + 30n^{(1)} + 48$
4	$n^{(4)} + 12n^{(3)} + 60n^{(2)} + 192n^{(1)} + 312$
5	$n^{(5)} + 15n^{(4)} + 100n^{(3)} + 480n^{(2)} + 1560n^{(1)} + 2520$
6	$n^{(6)} + 18n^{(5)} + 150n^{(4)} + 960n^{(3)} + 4680n^{(2)} + 15120n^{(1)} + 24480$
7	$n^{(7)} + 21n^{(6)} + 210n^{(5)} + 1680n^{(4)} + 10920n^{(3)} + 52920n^{(2)} + 171360n^{(1)} + 277200n^{(1)} + 277200n^{(1)}$
8	$n^{(8)} + 24n^{(7)} + 280n^{(6)} + 2688n^{(5)} + 21840n^{(4)} + 141120n^{(3)} + 685440n^{(2)} + 2217600n^{(1)} + 3588480$
9	$n^{(9)} + 27n^{(8)} + 360n^{(7)} + 4032n^{(6)} + 39312n^{(5)} + 317520n^{(4)} + 2056320n^{(3)} +$

Table 1 displays the factorial polynomials $\pi_j(n)$ for $j = 0, 1, \ldots, 9$.

 $+ 9979200n^{(2)} + 32296320n^{(1)} + 52254720$

The coefficients of γ_0 , γ_1 , γ_2 , ... in M_k and of γ_1 , γ_2 , ... in μ_k are independent of k; cf. [1]. As k tends to infinity they give rise to two infinite sequences M and μ of natural numbers (not mentioned in [3]) of which the first few elements are

M: 1, 3, 10, 48, 312, 2520, 24480, 277200, 3588480, 52254720, ...

 $\mu \text{:} \ 1,\ 6,\ 30,\ 192,\ 1560,\ 15120,\ 171360,\ 2217600,\ 322963$, \ldots

Contrary to the corresponding sequences Λ and λ in [1], M and μ obviously show more regularity. Formally, this is expressed in

Proposition 3: For each i and j with $0 \le i \le j \le k$,

$$\begin{array}{l} b_{jj} \; = \; 1 \\ b_{ij} \; = \; j^{(j-i)} F_{j-i+2}, \; \mbox{if} \; \; i < j \, . \end{array}$$

Consequently,

$$\mathbf{M}_{k} = \mathbf{\gamma}_{0} + \sum_{j=1}^{k} j ! F_{j+2} \mathbf{\gamma}_{j} \quad \text{and} \quad \boldsymbol{\mu}_{k} = \mathbf{\gamma}_{1} + \sum_{j=2}^{k} j ! F_{j+1} \mathbf{\gamma}_{j}.$$

Proof: The argument proceeds by induction on j - i.

Initial step (j - i = 1): $b_{j-1, j} = -\delta_{j-1, j}b_{jj} = -(-1)^1 \cdot 3j \cdot 1 = j^{(1)}F_3$. Induction hypothesis: For all *m* with i < m < j, $b_{mj} = j^{(j-m)}F_{j-m+2}$.

1987]

Induction step:
$$b_{ij} = -\sum_{m=i+1}^{j} \delta_{im} b_{mj} = -\delta_{ij} b_{jj} - \sum_{m=i+1}^{j-1} \delta_{im} b_{mj}$$

= $(-1)^{j-i+1}(j-i+2)j^{(j-i)} + \sum_{m=i+1}^{j-1} (-1)^{m-i+1}(m-i+2)m^{(m-i)} b_{mj}$

From the induction hypothesis, it follows that

$$b_{ij} = j^{(j-i)} \left((-1)^{j-i+1} (j-i+2) + \sum_{m=i+1}^{j-1} (-1)^{m-i+1} (m-i+2) F_{j-m+2} \right)$$

As $F_0 = F_1 = 1$, we may replace j - i + 2 by $F_0 + (j - i + 1)F_1$. Adding

$$j^{(j-i)}\left((-1)^{j-i}(F_0 + F_1 - F_2) + \sum_{m=i+1}^{j-1} (-1)^{m-i+1}(m-i+1)(F_{j-m} + F_{j-m+1} - F_{j-m+2})\right) = 0$$

yields, after rearranging,

$$b_{ij} = j^{(j-i)}(F_{j-i} + F_{j-i+1}) = j^{(j-i)}F_{j-i+2},$$

which completes the induction.

Clearly, Proposition 3 provides a different way of computing the coefficients $a_{i,i}$ (and hence the elements of the sequences Λ and λ) from [1]; viz. by

$$a_{ij} = \sum_{m=i}^{j} s(i, m) \left(\sum_{\substack{\substack{\ell = m \\ k = m}}}^{j} b_{m\ell} s(\ell, j) \right) \quad (i \leq j),$$

where s(i, m) and S(l, j) are the Stirling numbers of the first and second kind, respectively.

ACKNOWLEDGMENTS

For some useful discussions, I am indebted to Frits Göbel and particularly to Bert Jagers who brought factorial polynomials to my notice and provided the proof of Lemma 1.

REFERENCES

- 1. P. R. J. Asveld. "A Family of Fibonacci-Like Sequences." The Fibonacci Quarterly 25, no. 1 (1987):81-83.
- 2. C. L. Liu. Introduction to Combinatorial Mathematics. New York: McGraw-Hill, 1968.
- 3. N.J.A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.

4. N. N. Vorobyov. The Fibonacci Numbers. Boston: Heath, 1963.