A GENERALIZATION OF FIBONACCI POLYNOMIALS AND A REPRESENTATION OF GEGENBAUER POLYNOMIALS OF INTEGER ORDER

KARL DILCHER*
Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada

(Submitted September 1985)

1. INTRODUCTION

Various sequences of polynomials by the name of Fibonacci and Lucas polynomials occur in the literature. For example, Doman \& Williams [2] introduced the polynomials

$$
\begin{align*}
F_{n+1}(z) & :=\sum_{m=0}^{[n / 2]}\binom{n-m}{m} z^{m}, \tag{1}\\
L_{n}(z) & :=\sum_{m=0}^{[n / 2]} \frac{n}{n-m}\binom{n-m}{m} z^{m}, \tag{2}
\end{align*}
$$

for $n=1,2,3, \ldots$, and $F_{0}(z):=0, F_{1}(z):=1, L_{0}(z):=2 ;[n / 2]$ denotes the integer part of $n / 2$. Several properties of these polynomials were derived in [2] and, more recently, by Galvez \& Dehesa [3].

The Fibonacci and Lucas polynomials which occur, for example, in [4], are different from but closely related to the $F_{n}(z)$ and $L_{n}(z)$. The properties derived in [4] and in the papers cited there can easily be adapted to the polynomials defined in (1) and (2); they mainly concern zeros and divisibility properties.

In [2], the connection to the Gegenbauer (or ultraspherical) and Chebyshev polynomials $C_{n}^{\alpha}(z)$ and $T_{n}(z)$ was given, namely

$$
\begin{aligned}
& C_{n}^{1}(z)=(2 z)^{n} F_{n+1}\left(-1 / 4 z^{2}\right), \\
& T_{n}(z)=\frac{1}{2}(2 z)^{n} L_{n}\left(-1 / 4 z^{2}\right) .
\end{aligned}
$$

We also note that $C_{n}^{1}(z)=U_{n}(z)$, the Chebyshev polynomial of the second kind. Because $2 T_{n}(z)=n C_{n}^{0}(z)$ (see, e.g., [1], p. 779), we now have

$$
\begin{align*}
& F_{n+1}(z)=(-z)^{n / 2} C_{n}^{1}(1 / 2 \sqrt{-z}), \tag{3}\\
& \frac{1}{n} L_{n}(z)=(-z)^{n / 2} C_{n}^{0}(1 / 2 \sqrt{-z}) ; \tag{4}
\end{align*}
$$

here and in the following the square root is to be considered as the principal branch.

The purpose of this note is to use these identities as a starting point to define a wider class of sequences of polynomials which contains (1) and (2) as special cases, and to derive some properties.
*Supported by a Killam Postdoctoral Fellowship.

A GENERALIZATION OF FIBONACCI POLYNOMIALS AND A REPRESENTATION OF GEGENBAUER POLYNOMIALS OF INTEGER ORDER

$$
\text { 2. THE POLYNOMIALS } F_{n}^{(k)}(z)
$$

For $k=-1,0,1, \ldots$, we introduce

$$
\begin{equation*}
F_{n}^{(k)}(z):=(-z)^{n / 2} C_{n}^{k+1}(1 / 2 \sqrt{-z}) ; \tag{5}
\end{equation*}
$$

by (3) and (4), we have the special cases

$$
F_{n}^{(0)}(z)=F_{n+1}(z) \quad \text { and } \quad F_{n}^{(-1)}(z)=L_{n}(z) / n
$$

We now use the explicit expressions for the Gegenbauer polynomials (see, e.g., [1], p. 775):

$$
\begin{equation*}
C_{n}^{\alpha}(x)=\frac{1}{\Gamma(\alpha)} \sum_{m=0}^{[n / 2]}(-1)^{m} \frac{\Gamma(\alpha+n-m)}{m!(n-2 m)!}(2 x)^{n-2 m}, \tag{6}
\end{equation*}
$$

for $\alpha>-1 / 2, \alpha \neq 0$, and

$$
\begin{equation*}
C_{n}^{0}(x)=\sum_{m=0}^{[n / 2]}(-1)^{m} \frac{(n-m-1)!}{m!(n-2 m)!}(2 x)^{n-2 m} \tag{7}
\end{equation*}
$$

The connection between (7) and (2) is immediate and, for $\alpha=k+1 \geqslant 1$, we have

$$
\frac{1}{\Gamma(\alpha)} \frac{\Gamma(\alpha+n-m)}{m!(n-2 m)!}=\frac{(n+k-m)!}{k!m!(n-2 m)!}=\binom{n+k-m}{m}\binom{n+k-2 m}{k}
$$

with (6) and (5), this yields the explicit expression

$$
\begin{equation*}
F_{n}^{(k)}(z)=\sum_{m=0}^{[n / 2]}\binom{n+k-m}{m}\binom{n+k-2 m}{k} z^{m} \tag{8}
\end{equation*}
$$

for $k \geqslant 0$. This could also serve as a definition of the $F_{n}^{(k)}(z)$, in analogy to (1).

3. SOME PROPERTIES

With (5) and the recurrence relation for Gegenbauer polynomials (see, e.g., [1], p. 782), we obtain

$$
\begin{equation*}
(n+1) F_{n+1}^{(k)}(z)=(n+k+1) F_{n}^{(k)}(z)+(n+2 k+1) z F_{n-1}^{(k)}(z) . \tag{9}
\end{equation*}
$$

More properties of the $F_{n}^{(k)}(z)$ can be derived, with (5), from the corresponding properties of the Gegenbauer polynomials. This includes generating functions, differential relations, and more recurrence relations; we just mention

$$
\frac{d}{d z} F_{n+1}^{(k)}(z)=(k+1) F_{n-1}^{(k+1)}(z) \quad(\text { for } k \geqslant 0)
$$

and

$$
\begin{equation*}
\frac{d}{d z} L_{n}(z)=n F_{n-1}^{\prime}(z) \tag{10}
\end{equation*}
$$

which can also be verified directly using (8), (1), and (2). If we differentiate the recurrence

$$
\begin{equation*}
P_{n+1}(z)=P_{n}(z)+z P_{n-1}(z) \tag{11}
\end{equation*}
$$

which, by (9), holds for $L_{n}(z)$ and $F_{n}(z)$, we get, with (10),

$$
(n+1) F_{n}(z)=n F_{n-1}(z)+L_{n-1}(z)+(n-1) z F_{n-2}(z)
$$

this, combined with (11), for $F_{n}(z)$, yields

$$
L_{n-1}(z)=2 F_{n}(z)-F_{n-1}(z) .
$$

This last equation can also be derived from the corresponding well-known identity connecting the Chebyshev polynomials of the first and second kind.

The following recurrence relation involves polynomials $F_{n}^{(k)}(z)$ of different orders $k \geqslant 1$.

$$
F_{n+2}^{(k)}(z)-F_{n+1}^{(k)}(z)-z F_{n}^{(k)}(z)=F_{n+2}^{(k-1)}(z),
$$

which can be verified by elementary manipulations, using (8).
4. THE $F_{n}^{(k)}(z)$ AS ELEMENTARY SYMMETRIC FUNCTIONS

We begin with the following
Lemma: (a) For integers $n \geqslant 0$ and for complex $z \neq 1$ and x, we have

$$
\begin{align*}
& \sum_{j=0}^{n}(-1)^{j} F_{j}^{(n-j)}(x) z^{n-j}=(z-1)^{n} F_{n+1}\left(\frac{x}{(z-1)^{2}}\right) \tag{12}\\
& \text { (b) } \sum_{j=0}^{n}(-1)^{j} F_{j}^{(n-j)}(x)= \begin{cases}0 & \text { if } n \text { is odd, } \\
x^{n / 2} & \text { if } n \text { is even. }\end{cases}
\end{align*}
$$

Proof: Let $f_{n}(x, z)$ denote the left-hand side of (12). With (8), we have

$$
\begin{aligned}
f_{n}(x, z) & =\sum_{j=0}^{n}(-1)^{j} \sum_{m=0}^{[j / 2]}\binom{n-m}{m}\binom{n-2 m}{n-j} x^{m} z^{n-j} \\
& =\sum_{m=0}^{[n / 2]} x^{m}\binom{n-m}{m} \sum_{j=2 m}^{n}(-1)\binom{n-2 m}{j-2 m} z^{n-j} \\
& =\sum_{m=0}^{[n / 2]} x^{m}\binom{n-m}{m} \sum_{j=0}^{n-2 m}(-1)^{j}\binom{n-2 m}{j} z^{n-2 m-j},
\end{aligned}
$$

which yields assertion (b) if we put $z=1$. For $z \neq 1$, we have

$$
f_{n}(x, z)=\sum_{m=0}^{[n / 2]} x^{m}\binom{n-m}{m}(z-1)^{n-2 m}=(z-1)^{n} \sum_{m=0}^{[n / 2]}\binom{n-m}{m}\left(\frac{x}{(z-1)^{2}}\right)^{m},
$$

which proves (a).
Proposition: For $k=1,2, \ldots, n$, we have
where

$$
F_{k}^{(n-k)}(x)=\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} A_{j_{1}}^{(n)}(x) \ldots A_{j_{k}}^{(n)}(x),
$$

$$
A_{j}^{(n)}(x):=1+2 \sqrt{-x} \cos \frac{j \pi}{n+1}
$$

Proof: Because $C_{n}^{1}(z)=U_{n}(z)$, we have, with (3) and the definition of $A_{j}^{(n)}(x)$, $F_{n+1}\left(x\left(A_{j}^{(n)}(x)-1\right)^{-2}\right)=F_{n+1}\left(-1 / 4 \cos ^{2} \frac{j \pi}{n+1}\right)$

A GENERALIZATION OF FIBONACCI POLYNOMIÀLS AND A REPRESENTATION OF GEGENBAUER POLYNOMIALS OF INTEGER ORDER

$$
=\left(2 \cos \frac{j \pi}{n+1}\right)^{-n} U_{n}\left(\cos \frac{j \pi}{n+1}\right) .
$$

Now $\cos (j \pi /(n+1))$, for $j=1,2, \ldots, n$, are known to be the zeros of the Chebyshev polynomials of the second kind $U_{n}(z)$. Furthermore, if n is odd, then $\cos (j \pi /(n+1))=0$ for $j=(n+1) / 2$, in which case $A_{j}^{(n)}(x)=1$ for all x. So we have, by both parts of the Lemma,

$$
\sum_{k=0}^{n}(-1)^{k} F_{k}^{(n-k)}(x)\left(A_{j}^{(n)}(x)\right)^{n-k}=0
$$

for all $j=1,2, \ldots, n$. But this means that the $F_{k}^{(n-k)}(x), k=0,1, \ldots, n$, with x held constant, are the elementary symmetric functions of the n roots $A_{j}^{(n)}(x)$ of $f(x, z)=0$. This proves the Proposition.

Finally, if we let $x=1 / 2 \sqrt{-z}$, the proposition together with (5) yields the following representation of the ultraspherical polynomials of integer order.

Corollary: If $k \geqslant 1$ is an integer, then

$$
C_{n}^{k}(x)=2_{1 \leqslant j_{1}<\ldots<j_{k} \leqslant n+k-1}\left(x+\cos \frac{j_{1} \pi}{n+k}\right) \cdots \cdot\left(x+\cos \frac{j_{n} \pi}{n+k}\right)
$$

In closing, we note that [5] and [6] deal with Gegenbauer polynomials from another (related) point of view.

REFERENCES

1. M. Abramowitz \& I. A. Stegun. Handbook of Mathematical Functions. Washington, D.C.: National Bureau of Standards, 1970.
2. B. G. S. Doman \& J. K. Williams. "Fibonacci and Lucas Polynomials." Math. Proc. Camb. Phil. Soc. 90 (1981):385-87.
3. F.J.Galvez \& J.S. Dehesa. "Novel Properties of Fibonacci and Lucas Polynomials." Math. Proc. Camb. Phil. Soc. 97 (1985):159-64.
4. A.F. Horadam \& E. M. Horadam. "Roots of Recurrence-Generated Polynomials." The Fibonacci Quarterly 20, no. 3 (1982):219-26.
5. A. F. Horadam \& S. Pethe. "Polynomials Associated with Gegenbauer Polynomials." The Fibonacci Quarterly 19, no. 5 (1981):393-98.
6. A. F. Horadam. "Gegenbauer Polynomials Revisited." The Fibonacci Quarterly 23, nо. 4 (1985):294-99.
