ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each Solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

PROBLEMS PROPOSED IN THIS ISSUE
B-604 Proposed by Heinz-Jürgen Seiffert, Berlin, Germany
Let c be a fixed number and $u_{n+2}=c u_{n+1}+u_{n}$ for n in $N=\{0,1,2, \ldots\}$. Show that there exists a number h such that

$$
u_{n+4}^{2}=h u_{n+3}^{2}-h u_{n+1}^{2}+u_{n} \text { for } n \text { in } N
$$

B-605 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
S(n)=\sum_{i=1}^{n} L_{2 n+2 i-1} .
$$

Determine the positive integers n, if any, for which $S(n)$ is prime.
B-606 Proposed by L. Kuipers, Sierre, Switzerland
Simplify the expression

$$
L_{n+1}^{2}+2 L_{n-1} L_{n+1}-25 F_{n}^{2}+L_{n-1}^{2} .
$$

B-607 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
Let

$$
C_{n}=\sum_{k=0}^{n}\binom{n}{k} F_{k} L_{n-k} .
$$

Show that $C_{n} / 2^{n}$ is an integer for n in $\{0,1,2, \ldots\}$.

ELEMENTARY PROBLEMS AND SOLUTIONS

B-608 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
For $k=\{2,3, \ldots\}$ and n in $N=\{0,1,2, \ldots\}$, let

$$
S_{n, k}=\frac{1}{k} \sum_{j=n}^{n+k-1} F_{j}^{2}
$$

denote the quadratic mean taken over k consecutive Fibonacci numbers of which the first is F_{n}. Find the smallest such $k \geqslant 2$ for which $S_{n, k}$ is an integer for all n in N.

B-609 Proposed by Adina DiPorto \& Piero Filipponi, Fond. U. Bordoni, Rome, Italy

Find a closed form expression for

$$
S=\sum_{k=1}^{n}\left(k F_{k}\right)^{2}
$$

and show that $S_{n} \equiv n(-1)^{n}\left(\bmod F_{n}\right)$.

SOLUTIONS

Nondivisors of the L_{n}

B-580 Proposed by Valentina Bakinova, Rondout Valley, NY
What are the three smallest positive integers d such that no Lucas number L_{n} is an integral multiple of d ?

Solution by J. Suck, Essen, Germany
They are 5, 8, 10. Since $1\left|L_{n}, 2\right| L_{0}, 3\left|L_{2}, 4\right| L_{3}, 6\left|L_{6}, 7\right| L_{4}, 9 \mid L_{6}$, it remains to show that $5 \nmid I_{n}$ and $8 \nmid L_{n}$ for all $n=0,1,2, \ldots$. This follows from the fact that the Lucas sequence modulo 5 or 8 is periodic with period 2, 1, 3, 4 or $2,1,3,4,7,3,2,5,7,4,3,7$, respectively.

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T. Freitag, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, and the proposer.

Third Degree Representations for F

B-581 Proposed by Antal Bege, University of Cluj, Romania
Prove that, for every positive integer n, there are at least [$n / 2$] ordered 6 -tuples (a, b, c, x, y, z) such that

$$
F_{n}=a x^{2}+b y^{2}-c z^{2}
$$

and each of a, b, c, x, y, z is a Fibonacci number. Here [t] is the greatest integer in t.

Solution by Paul S. Bruckman, Fair Oaks, CA

We first prove the following relations:

$$
\begin{align*}
& F_{2 n}=F_{2 s+1} F_{n-s+1}^{2}+F_{2 s} F_{n-s}^{2}-F_{2 s-1} F_{n-s-1}^{2} ; \tag{1}\\
& F_{2 n+1}=F_{2 s+2} F_{n-s+1}^{2}+F_{2 s+1} F_{n-s}^{2}-F_{2 s} F_{n-s-1}^{2}, \tag{2}
\end{align*}
$$

valid for all integers s and n.
Proof of (1) and (2): We use the following relations repeatedly:

$$
\begin{equation*}
F_{u} F_{v}^{2}=\frac{1}{5}\left(F_{2 v+u}-(-1)^{u} F_{2 v-u}-2(-1)^{v} F_{u}\right), \tag{3}
\end{equation*}
$$

which is readily proven from the Binet formulas and is given without proof.
Multiplying the right member of (1) by 5, we apply (3) to transform the result as follows:

$$
\begin{aligned}
& \left(F_{2 n+3}+F_{2 n-4 s+1}+2(-1)^{n-s} F_{2 s+1}\right)+\left(F_{2 n}-F_{2 n-4 s}-2(-1)^{n-s} F_{2 s}\right) \\
& \quad \quad-\left(F_{2 n-3}+F_{2 n-4 s-1}+2(-1)^{n-s} F_{2 s-1}\right) \\
& =\left(F_{2 n+3}-F_{2 n-3}+F_{2 n}\right)+\left(F_{2 n-4 s+1}-F_{2 n-4 s}-F_{2 n-4 s-1}\right) \\
& \quad \quad+2(-1)^{n-s}\left(F_{2 s+1}-F_{2 s}-F_{2 s-1}\right) \\
& = \\
& \quad\left(L_{3} F_{2 n}+F_{2 n}\right)+0+0=5 F_{2 n} .
\end{aligned}
$$

This proves (1).
Likewise, multiplying the right member of (2) by 5 yields:

$$
\begin{aligned}
& \left(F_{2 n+4}-F_{2 n-4 s}+2(-1)^{n-s} F_{2 s+2}\right)+\left(F_{2 n+1}+F_{2 n-4 s-1}-2(-1)^{n-s} F_{2 s+1}\right) \\
& \quad \quad-\left(F_{2 n-2}-F_{2 n-4 s-2}+2(-1)^{n-s} F_{2 s}\right) \\
& =\left(F_{2 n+4}-F_{2 n-2}+F_{2 n+1}\right)-\left(F_{2 n-4 s}-F_{2 n-4 s-1}-F_{2 n-4 s-2}\right) \\
& \quad \quad+2(-1)^{n-s}\left(F_{2 s+2}-F_{2 s+1}-F_{2 s}\right) \\
& =\left(L_{3} F_{2 n+1}+F_{2 n+1}\right)-0+0=5 F_{2 n+1} .
\end{aligned}
$$

This proves (2).
We may combine (1) and (2) into the single formula:

$$
\begin{equation*}
F_{n}=F_{2 s+1+o_{n}} F_{m-s+1}^{2}+F_{2 s+o_{n}} F_{m-s}^{2}-F_{2 s-1+o_{n}} F_{m-s-1}^{2}, \tag{4}
\end{equation*}
$$

where

$$
m \equiv[n / 2], \quad o_{n} \equiv\left(1-(-1)^{n}\right) / 2= \begin{cases}1, & n \text { odd } \\ 0, & n \text { even } .\end{cases}
$$

We see that the 6-tuples

$$
\begin{align*}
& (\alpha, b, c, x, y, z) \\
& =\left(F_{2 s+1+o_{n}}, F_{2 s+o_{n}}, F_{2 s-1+o_{n}}, F_{m-s+1}, F_{m-s}, F_{m-s-1}\right) \tag{5}
\end{align*}
$$

are solutions of the problem, as s is allowed to vary. For at least the values $s=0,1, \ldots, m-1$, different 6 -tuples are produced in (5). Hence, there are at least $m=[n / 2]$ distinct 6 -tuples solving the problem.

Also solved by the proposer.

ELEMENTARY PROBLEMS AND SOLUTIONS

Zeckendorf Representations

B-582 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
It is known that every positive integer N can be represented uniquely as a sum of distinct nonconsecutive positive Fibonacci numbers. Let $f(N)$ be the number of Fibonacci addends in this representation, $a=(1+\sqrt{5}) / 2$, and $[x]$ be the greatest integer in x. Prove that

$$
f\left(\left[a F_{n}^{2}\right]\right)=[(n+1) / 2] \text { for } n=1,2, \ldots .
$$

Solution by L. A. G. Dresel, University of Reading, England
Since

$$
F_{r}^{2}-F_{r-2}^{2}=\left(F_{r}-F_{r-2}\right)\left(F_{r}+F_{r-2}\right)=F_{r-1} L_{r-1}=F_{2(r-1)},
$$

we have, summing for even values $r=2 t, t=1,2, \ldots, m$,

$$
F_{2 m}^{2}-0=F_{4 m-2}+F_{4 m-6}+\cdots+F_{2}
$$

and summing for odd values $r=2 t+1, t=1,2, \ldots, m$,

$$
F_{2 m+1}^{2}-1=F_{4 m}+F_{4 m-4}+\cdots+F_{4}
$$

Let $a=\frac{1}{2}(1+\sqrt{5})$ and $b=\frac{1}{2}(1-\sqrt{5})$, then

$$
a F_{2 s}=\left(a^{2 s+1}-a b^{2 s}\right) / \sqrt{5}=F_{2 s+1}+(b-a) b^{2 s} / \sqrt{5}=F_{2 s+1}-b^{2 s}
$$

Applying the formula for $F_{2 m}^{2}$, we obtain

$$
\alpha F_{2 m}^{2}=F_{4 m-1}+F_{4 m-5}+\cdots+F_{3}-\left(b^{4 m-2}+b^{4 m-6}+\cdots+b^{2}\right)
$$

and since $0<\left(b^{2}+b^{6}+\cdots+b^{4 m-2}\right)<b^{2} /\left(1-b^{4}\right)<1$, we have

$$
\left[\alpha F_{2 m}^{2}\right]=F_{4 m-1}+F_{4 m-5}+\cdots+F_{3}-1
$$

Putting $F_{3}-1=F_{2}$, we have a sum of m nonconsecutive Fibonacci numbers. Similarly,

$$
\begin{array}{ll}
& a F_{2 m+1}^{2}=F_{4 m+1}+F_{4 m-3}+\cdots+F_{5}+a-\left(b^{4 m}+\cdots+b^{8}+b^{4}\right), \\
& 0<\left(b^{4}+b^{8}+\cdots+b^{4 m}\right)<b^{4} /\left(1-b^{4}\right)<b^{2} \\
\text { and } \quad & 1<a-b^{2}<2,
\end{array}
$$

so that

$$
\left[\alpha F_{2 m+1}^{2}\right]=F_{4 m+1}+F_{4 m-3}+\cdots+F_{5}+F_{1}
$$

which is the sum of $(m+1)$ nonconsecutive Fibonacci numbers. Finally, for $n=$ 1, we have

$$
\left[\alpha F_{1}^{2}\right]=1=F_{1}
$$

Thus, in all cases, we have

$$
f\left(\left[\alpha F_{n}^{2}\right]\right)=[(n+1) / 2], n=1,2, \ldots
$$

A.lso solved by Paul S. Bruckman, L. Kuipers, J. Suck, and the proposer.

ELEMENTARY PROBLEMS AND SOLUTIONS

Recursion for a Triangle of Sums

B-583 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania
For positive integers n and s, let

$$
S_{n, s}=\sum_{k=1}^{n}\binom{n}{k} k^{s} .
$$

Prove that $S_{n, s+1}=n\left(S_{n, s}-S_{n-1, s}\right)$.
Solution by J.-J. Seiffert, Berlin, Germany
With $\binom{n-1}{n}:=0$ and $\binom{n}{k}-\binom{n-1}{k}=\frac{k}{n}\binom{n}{k}$, we obtain

$$
S_{n, s}-S_{n-1, s}=\sum_{k=1}^{n}\left(\binom{n}{k}-\binom{n-1}{k}\right) k^{s}=\frac{1}{n} \sum_{k=1}^{n}\binom{n}{k} k^{s+1}=\frac{1}{n} S_{n, s+1} .
$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Russell Euler, Piero Filipponi \& Odoardo Brugia, Herta T. Freitag, Fuchin He, Joseph J. Kostal, L. Kuipers, Carl Libis, Bob Prielipp, J. Suck, Nicola Treitzenberg, Paul Tzermias, Tad P. White, and the proposer.

Product of Exponential Generating Functions

B-584 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania
Using the notation of $\mathrm{B}-583$, prove that

$$
S_{m+n, s}=\sum_{k=0}^{s}\binom{s}{k} S_{m, k} S_{n, s-k}
$$

Solution by Heinz-Jürgen Seiffert, Berlin, Germany
The stated equation is not meaningful if one uses the notation of $\mathrm{B}-583$. (To see this, put $s=0$.) But such an equation can be proved for

$$
\begin{equation*}
S_{n, s}:=\sum_{k=0}^{n}\binom{n}{k} k^{s}, \tag{1}
\end{equation*}
$$

with the usual convention $0^{0}:=1$. Consider the function

$$
\begin{equation*}
F(x, n):=\sum_{s=0}^{\infty} S_{n, s} \frac{x^{s}}{s!} \tag{2}
\end{equation*}
$$

Since $0 \leqslant S_{n, s} \leqslant 2^{n} n^{s}$, the above series converges for all real x. Using (1), one obtains
or

$$
F(x, n)=\sum_{s=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} \frac{(k x)^{s}}{s!}=\sum_{k=0}^{n}\binom{n}{k} \sum_{s=0}^{\infty} \frac{(k x)^{s}}{s!}=\sum_{k=0}^{n}\binom{n}{k} e^{k x}
$$

$$
\begin{equation*}
F(x, n)=\left(e^{x}+1\right)^{n} \tag{3}
\end{equation*}
$$

which yields

$$
\begin{equation*}
F(x, m+n)=F(x, m) F(x, n) . \tag{4}
\end{equation*}
$$

```
ELEMENTARY PROBLEMS AND SOLUTIONS
```

Cauchy's product leads to

$$
\begin{equation*}
F(x, m) F(x, n)=\sum_{s=0}^{\infty} \sum_{k=0}^{s} \frac{S_{m, k}}{k!} \frac{S_{n, s-k}}{(s-k)!} x^{s} \tag{5}
\end{equation*}
$$

From (2), (4), and (5), and by comparing coefficients, one obtains the equation as stated in the proposal for the $S_{n, s}$ defined in (1).

Also solved by Paul S. Bruckman, Odoardo Brugia \& Piero Filipponi, L. A. G. Dresel, L. Kuipers, Fuchin He, J. Suck, Nicola Treitzenberg, Paul Tzermias, Tad P. White, and the proposer.

$$
\text { Combinatorial Interpretation of the } F_{n}
$$

B-585 Proposed by Constantin Gonciulea \& Nicolae Gonciulea, Trian College, Drobeta Turnu-Severin, Romania

For each subset A of $X=\{1,2, \ldots, n\}$, let $r(A)$ be the number of j such that $\{j, j+1\} \subseteq A$. Show that

$$
\sum_{A \subseteq X} 2^{r(A)}=F_{2 n+1}
$$

Solution by J. Suck, Essen, Germany
Let us supplement the proposal by

$$
\text { "and } \sum_{n \in A \subseteq X} 2^{r(A)}=F_{2 n} \cdot "
$$

We now have a beautiful combinatorial interpretation of the Fibonacci sequence. The two identities help each other in the following induction proof.

For $n=1, A=\emptyset$ or $X, r(A)=0$. Thus, both identities hold here. Suppose they hold for $k=1, \ldots, n$. Consider $Y:=\{1, \ldots, n, n+1\}$. If $\{n, n+1\} \subseteq$ $B \subseteq Y, r(B)=r(B \backslash\{n+1\})+1$. If $n \notin B \subseteq Y, r(B)=r(B \backslash\{n+1\})$. Thus,

$$
\begin{aligned}
\sum_{n+1 \in B \subseteq Y} 2^{r(B)} & =\sum_{n \in A \subseteq X} 2^{r(A)+1}+\sum_{A \subseteq X \backslash\{n\}} 2^{r(A)} \quad \begin{array}{l}
\text { (the last sum is } 1 \text { for } \\
\text { the step } 1 \rightarrow 1+1)
\end{array} \\
& =2 F_{2 n}+F_{2(n-1)+1}=F_{2 n}+F_{2 n+1}=F_{2(n+1)},
\end{aligned}
$$

and

$$
\sum_{B \subseteq Y} 2^{r(B)}=\sum_{n+1 \in B \subseteq Y} 2^{r(B)}+\sum_{A \subseteq X} 2^{r(A)}=F_{2(n+1)}+F_{2 n+1}=F_{2(n+1)}
$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, N. J. Kuenzi \& Bob Prielipp, Paul Tzermias, Tad P. White, and the proposer.

