ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by A. P. HILLMAN

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_n and the Lucas numbers L_n satisfy

and $F_{n+2} = F_{n+1} + F_n$, $F_0 = 0$, $F_1 = 1$ $L_{n+2} = L_{n+1} + L_n$, $L_0 = 2$, $L_1 = 1$.

PROBLEMS PROPOSED IN THIS ISSUE

B-604 Proposed by Heinz-Jürgen Seiffert, Berlin, Germany

Let c be a fixed number and $u_{n+2} = cu_{n+1} + u_n$ for n in $N = \{0, 1, 2, \ldots\}$. Show that there exists a number h such that

 $u_{n+4}^2 = hu_{n+3}^2 - hu_{n+1}^2 + u_n$ for n in N.

B-605 Proposed by Herta T. Freitag, Roanoke, VA

Let

$$S(n) = \sum_{i=1}^{n} L_{2n+2i-1}.$$

Determine the positive integers n, if any, for which S(n) is prime.

B-606 Proposed by L. Kuipers, Sierre, Switzerland

Simplify the expression

$$L_{n+1}^2 + 2L_{n-1}L_{n+1} - 25F_n^2 + L_{n-1}^2$$

<u>B-607</u> Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

Let

$$C_n = \sum_{k=0}^n \binom{n}{k} F_k L_{n-k}$$

Show that $C_n/2^n$ is an integer for n in $\{0, 1, 2, \ldots\}$.

[Nov.

B-608 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy

For
$$k = \{2, 3, ...\}$$
 and n in $\mathbb{N} = \{0, 1, 2, ...\}$, let

 $S_{n,k} = \frac{1}{k} \sum_{j=n}^{n+k-1} F_j^2$

denote the quadratic mean taken over k consecutive Fibonacci numbers of which the first is F_n . Find the smallest such $k \ge 2$ for which $S_{n,k}$ is an integer for all n in N.

<u>B-609</u> Proposed by Adina DiPorto & Piero Filipponi, Fond. U. Bordoni, Rome, Italy

Find a closed form expression for

$$S = \sum_{k=1}^{n} (kF_k)^2$$

and show that $S_n \equiv n(-1)^n \pmod{F_n}$.

SOLUTIONS

Nondivisors of the
$$L_n$$

B-580 Proposed by Valentina Bakinova, Rondout Valley, NY

What are the three smallest positive integers d such that no Lucas number L_n is an integral multiple of d?

Solution by J. Suck, Essen, Germany

They are 5, 8, 10. Since $1|L_n$, $2|L_0$, $3|L_2$, $4|L_3$, $6|L_6$, $7|L_4$, $9|L_6$, it remains to show that $5/L_n$ and $8/L_n$ for all n = 0, 1, 2, This follows from the fact that the Lucas sequence modulo 5 or 8 is periodic with period 2, 1, 3, 4 or 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, respectively.

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T. Freitag, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, and the proposer.

Third Degree Representations for $\ensuremath{\textit{F}}$

B-581 Proposed by Antal Bege, University of Cluj, Romania

Prove that, for every positive integer n, there are at least $\lfloor n/2 \rfloor$ ordered 6-tuples (a, b, c, x, y, z) such that

 $F_n = ax^2 + by^2 - cz^2$

and each of a, b, c, x, y, z is a Fibonacci number. Here [t] is the greatest integer in t.

Solution by Paul S. Bruckman, Fair Oaks, CA

1987]

ELEMENTARY PROBLEMS AND SOLUTIONS

We first prove the following relations:

$$F_{2n} = F_{2s+1}F_{n-s+1}^{2} + F_{2s}F_{n-s}^{2} - F_{2s-1}F_{n-s-1}^{2};$$
(1)

$$F_{2n+1} = F_{2s+2}F_{n-s+1}^{2} + F_{2s+1}F_{n-s}^{2} - F_{2s}F_{n-s-1}^{2}, \qquad (2)$$

valid for all integers s and n.

Proof of (1) and (2): We use the following relations repeatedly:

$$F_{u}F_{v}^{2} = \frac{1}{5}(F_{2v+u} - (-1)^{u}F_{2v-u} - 2(-1)^{v}F_{u}), \qquad (3)$$

which is readily proven from the Binet formulas and is given without proof.

Multiplying the right member of (1) by 5, we apply (3) to transform the result as follows:

$$(F_{2n+3} + F_{2n-4s+1} + 2(-1)^{n-s}F_{2s+1}) + (F_{2n} - F_{2n-4s} - 2(-1)^{n-s}F_{2s}) - (F_{2n-3} + F_{2n-4s-1} + 2(-1)^{n-s}F_{2s-1}) = (F_{2n+3} - F_{2n-3} + F_{2n}) + (F_{2n-4s+1} - F_{2n-4s} - F_{2n-4s-1}) + 2(-1)^{n-s}(F_{2s+1} - F_{2s} - F_{2s-1}) = (L_{3}F_{2n} + F_{2n}) + 0 + 0 = 5F_{2n}.$$

This proves (1).

.

.

.

Likewise, multiplying the right member of (2) by 5 yields:

$$(F_{2n+4} - F_{2n-4s} + 2(-1)^{n-s}F_{2s+2}) + (F_{2n+1} + F_{2n-4s-1} - 2(-1)^{n-s}F_{2s+1}) - (F_{2n-2} - F_{2n-4s-2} + 2(-1)^{n-s}F_{2s}) = (F_{2n+4} - F_{2n-2} + F_{2n+1}) - (F_{2n-4s} - F_{2n-4s-1} - F_{2n-4s-2}) + 2(-1)^{n-s}(F_{2s+2} - F_{2s+1} - F_{2s}) = (L_3F_{2n+1} + F_{2n+1}) - 0 + 0 = 5F_{2n+1}.$$

This proves (2).

We may combine (1) and (2) into the single formula:

$$F_{n} = F_{2s+1+o_{n}}F_{m-s+1}^{2} + F_{2s+o_{n}}F_{m-s}^{2} - F_{2s-1+o_{n}}F_{m-s-1}^{2},$$
(4)

where

$$m \equiv [n/2], \quad o_n \equiv (1 - (-1)^n)/2 = \begin{cases} 1, & n \text{ odd,} \\ 0, & n \text{ even.} \end{cases}$$

We see that the 6-tuples

(a, b, c, x, y, z)

$$= (F_{2s+1+o_n}, F_{2s+o_n}, F_{2s-1+o_n}, F_{m-s+1}, F_{m-s}, F_{m-s-1})$$
(5)

are solutions of the problem, as s is allowed to vary. For at least the values $s = 0, 1, \ldots, m - 1$, different 6-tuples are produced in (5). Hence, there are at least $m = \lfloor n/2 \rfloor$ distinct 6-tuples solving the problem.

Also solved by the proposer.

ELEMENTARY PROBLEMS AND SOLUTIONS

Zeckendorf Representations

B-582 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy

It is known that every positive integer N can be represented uniquely as a sum of distinct nonconsecutive positive Fibonacci numbers. Let f(N) be the number of Fibonacci addends in this representation, $\alpha = (1 + \sqrt{5})/2$, and [x] be the greatest integer in x. Prove that

 $f([\alpha F_n^2]) = [(n + 1)/2]$ for n = 1, 2, ...

Solution by L. A. G. Dresel, University of Reading, England

Since

 $F_r^2 - F_{r-2}^2 = (F_r - F_{r-2})(F_r + F_{r-2}) = F_{r-1}L_{r-1} = F_{2(r-1)},$ we have, summing for even values r = 2t, t = 1, 2, ..., m,

 $F_{2m}^2 - 0 = F_{4m-2} + F_{4m-6} + \cdots + F_2$,

and summing for odd values r = 2t + 1, $t = 1, 2, \ldots, m$,

 $F_{2m+1}^2 - 1 = F_{4m} + F_{4m-4} + \cdots + F_4.$

Let $a = \frac{1}{2}(1 + \sqrt{5})$ and $b = \frac{1}{2}(1 - \sqrt{5})$, then

$$aF_{2s} = (a^{2s+1} - ab^{2s})/\sqrt{5} = F_{2s+1} + (b - a)b^{2s}/\sqrt{5} = F_{2s+1} - b^{2s}.$$

Applying the formula for F_{2m}^2 , we obtain

$$aF_{2m}^2 = F_{4m-1} + F_{4m-5} + \cdots + F_3 - (b^{4m-2} + b^{4m-6} + \cdots + b^2)$$

and since $0 < (b^2 + b^6 + \cdots + b^{4m-2}) < b^2/(1 - b^4) < 1$, we have

 $[\alpha F_{2m}^2] = F_{4m-1} + F_{4m-5} + \cdots + F_3 - 1.$

Putting $F_3 - 1 = F_2$, we have a sum of *m* nonconsecutive Fibonacci numbers. Similarly,

$$aF_{2m+1}^{2} = F_{4m+1} + F_{4m-3} + \dots + F_{5} + a - (b^{4m} + \dots + b^{\circ} + b^{4}),$$

$$0 < (b^{4} + b^{8} + \dots + b^{4m}) < b^{4}/(1 - b^{4}) < b^{2},$$

and $1 < a - b^2 < 2$,

so that

$$[\alpha F_{2m+1}^2] = F_{4m+1} + F_{4m-3} + \cdots + F_5 + F_1,$$

which is the sum of (m+1) nonconsecutive Fibonacci numbers. Finally, for n = 1, we have

 $[aF_1^2] = 1 = F_1.$

Thus, in all cases, we have

 $f([aF_n^2]) = [(n + 1)/2], n = 1, 2, \dots$

Also solved by Paul S. Bruckman, L. Kuipers, J. Suck, and the proposer.

1987]

Recursion for a Triangle of Sums

B-583 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania

For positive integers n and s, let

$$S_{n,s} = \sum_{k=1}^{n} \binom{n}{k} k^{s}.$$

Prove that $S_{n,s+1} = n(S_{n,s} - S_{n-1,s})$.

Solution by J.-J. Seiffert, Berlin, Germany

With
$$\binom{n-1}{n}$$
: = 0 and $\binom{n}{k} - \binom{n-1}{k} = \frac{k}{n}\binom{n}{k}$, we obtain

$$S_{n,s} - S_{n-1,s} = \sum_{k=1}^{n} \left(\binom{n}{k} - \binom{n-1}{k} \right) k^{s} = \frac{1}{n} \sum_{k=1}^{n} \binom{n}{k} k^{s+1} = \frac{1}{n} S_{n,s+1}.$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, Russell Euler, Piero Filipponi & Odoardo Brugia, Herta T. Freitag, Fuchin He, Joseph J. Kostal, L. Kuipers, Carl Libis, Bob Prielipp, J. Suck, Nicola Treitzenberg, Paul Tzermias, Tad P. White, and the proposer.

Product of Exponential Generating Functions

B-584 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania

Using the notation of B-583, prove that

$$S_{m+n,s} = \sum_{k=0}^{s} {\binom{s}{k}} S_{m,k} S_{n,s-k}$$

Solution by Heinz-Jürgen Seiffert, Berlin, Germany

The stated equation is not meaningful if one uses the notation of B-583. (To see this, put s = 0.) But such an equation can be proved for

$$S_{n,s} := \sum_{k=0}^{n} \binom{n}{k} k^{s},$$
(1)

with the usual convention $0^0 := 1$. Consider the function

$$F(x, n) := \sum_{s=0}^{\infty} S_{n,s} \frac{x^{s}}{s!}.$$
 (2)

Since $0 \leq S_{n,s} \leq 2^n n^s$, the above series converges for all real x. Using (1), one obtains

$$F(x, n) = \sum_{s=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{(kx)^{s}}{s!} = \sum_{k=0}^{n} \binom{n}{k} \sum_{s=0}^{\infty} \frac{(kx)^{s}}{s!} = \sum_{k=0}^{n} \binom{n}{k} e^{kx}$$

$$F(x, n) = (e^{x} + 1)^{n},$$
(3)

or

$$F(x, n) = (e^x + 1)^n,$$
 (3)

which yields

$$F(x, m + n) = F(x, m)F(x, n).$$
(4)
[Nov.

374

Cauchy's product leads to

$$F(x, m)F(x, n) = \sum_{s=0}^{\infty} \sum_{k=0}^{s} \frac{S_{m,k}}{k!} \frac{S_{n,s-k}}{(s-k)!} x^{s}$$
(5)

From (2), (4), and (5), and by comparing coefficients, one obtains the equation as stated in the proposal for the $S_{n,s}$ defined in (1).

Also solved by Paul S. Bruckman, Odoardo Brugia & Piero Filipponi, L. A. G. Dresel, L. Kuipers, Fuchin He, J. Suck, Nicola Treitzenberg, Paul Tzermias, Tad P. White, and the proposer.

Combinatorial Interpretation of the F_n

<u>B-585</u> Proposed by Constantin Gonciulea & Nicolae Gonciulea, Trian College, Drobeta Turnu-Severin, Romania

For each subset A of $X = \{1, 2, ..., n\}$, let r(A) be the number of j such that $\{j, j + 1\} \subseteq A$. Show that

$$\sum_{A \subseteq X} 2^{r(A)} = F_{2n+1}.$$

Solution by J. Suck, Essen, Germany

Let us supplement the proposal by

"and
$$\sum_{n \in A \subseteq X} 2^{r(A)} = F_{2n}$$
."

We now have a beautiful combinatorial interpretation of the Fibonacci sequence. The two identities help each other in the following induction proof.

For n = 1, $A = \emptyset$ or X, r(A) = 0. Thus, both identities hold here. Suppose they hold for $k = 1, \ldots, n$. Consider $Y := \{1, \ldots, n, n + 1\}$. If $\{n, n + 1\} \subseteq B \subseteq Y$, $r(B) = r(B \setminus \{n + 1\}) + 1$. If $n \notin B \subseteq Y$, $r(B) = r(B \setminus \{n + 1\})$. Thus,

$$\sum_{n+1 \in B \subseteq Y} 2^{r(B)} = \sum_{n \in A \subseteq X} 2^{r(A)+1} + \sum_{A \subseteq X \setminus \{n\}} 2^{r(A)}$$
 (the last sum is 1 for the step $1 \to 1 + 1$)
= $2F_{2n} + F_{2(n-1)+1} = F_{2n} + F_{2n+1} = F_{2(n+1)}$,

and

$$\sum_{B \subseteq Y} 2^{r(B)} = \sum_{n+1 \in B \subseteq Y} 2^{r(B)} + \sum_{A \subseteq X} 2^{r(A)} = F_{2(n+1)} + F_{2n+1} = F_{2(n+1)-1}.$$

Also solved by Paul S. Bruckman, L. A. G. Dresel, N. J. Kuenzi & Bob Prielipp, Paul Tzermias, Tad P. White, and the proposer.

~

1987]