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INTRODUCT I ON

The Zeckendorf Theorem states that every positive integer can be repre-
sented as a sum of distinct Fibonacci numbers and that this representation is
unique, provided no two consecutive Fibonacci numbers appear in any sum.

In [2] the Zeckendorf Theorem is extended to a class of sequences obtained
from the generalized Fibonacci polynomials; in particular, an analogous theorem
holds for the generalized Fibonacci sequences. In Section 1, a collection of
sequences called the Hoggatt sequences is introduced, and it is shown that
these sequences also enjoy a "Zeckendorf Theorem’; in fact, the Hoggatt se-
quences share many of the representation and ordering properties of the gener-
alized Fibonacci sequences discussed in [2] and [3].

1. HOGGATT SEQUENCES AND ZECKENDORF REPRESENTATIONS

For each fixed integer » with r 2 2, the generalized Fibonacci polynomials
yield a generalized Fibonacci sequence [2] which will be denoted {R,};.;. The
generalized Fibonaccei sequence associated with the integer r can be defined as
follows [31]:

R, =15
R; = 2972 for § = 2, 3, «v.s P}
Reyp = E%+r—1 R, t e + Ry for all positive integers k.

Note that with r = 2, 3, 4, and 5 we obtain, respectively, the Fibonacci num-
bers {F,}, the Tribonacci numbers {7T,}, the Quadranacci numbers {g,}, and the
Pentanacci numbers {P,}.

The Hoggatt sequence of degree v, where r is once again a fixed integer
greater than 1, will be denoted {R,} and can be obtained by taking differences
of adjacent generalized Fibonacci numbers; more precisely, &, = R, ., - B, for
all positive integers n. The defining properties of the sequences {R,} and
{®, } give rise to the following recursive description of the Hoggatt sequence
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of degree r:

®; = 2971 for Jd =1y 2y voauy v = 1;

Rp=2"""1 - 1=@ +@, + -+ +@

1 r-17?

Rpyrp=®pypn.y ¥R, + o +®&, for all positive integers k.

Note that the second-degree Hoggatt sequence coincides with the Fibonacci se-
quence; moreover, for r > 2, the sequences {R,} and {®,} differ in their ini-
tial (and subsequent) entries but share a common recursion relation.

Identities similar (but not identical) to those developed for the general-
ized Fibonacci sequences in [3] can be obtained for the Hoggatt sequences.

For » = 2 the Hoggatt sequence is the Fibonacci sequence {Fn}, and we have
the two identities

F, +F, + «++ +F, =T

2n 2n+1

and
F - 1.

Pyt Fot ooe v F, 0 =F 00

Let the third-degree Hoggatt sequence be denoted {3,}. Three identities
arise in this case:

(3, +3) + @ +a) + 0 (5, ., +3,)=3,,, "L
I+ By 3) + (G + 3) e (G, R 5y, 00) ST, -
3, + (3, + 3 + (3, +3) + e+ (3, I ) ST, T L

In general, we have the following lemma.
Lemma 1.7: For each integer r greater than 1, there arise » identities involv-
ing groupings of (r- 1) consecutive terms of the Hoggatt sequence of degree r.
@, + Ry + "+ ®p) + Ry + Rpyg + o0 + Ry ) + oo

F (Rpysr P Rpuoygs T 0t T Ryy) =Ry — L

R, + @Ry +®, + 20+ R, )+ Ry, R e R, )
+ (mr(n—1)+3 T Rp-nen T orn TR ) SRy, — 1

Ry +®R, + @, + R+ o AR, ) (@, FR g e FR, )
T @rnonyey TRe-n4s 0 T Qi) =®ppyy — L

(Hl + @&, + @Ry t+ o +R,_, T <(Hr +®R,,, oo +(R2r=—2) + e
+ <(Rz'n +mrn+l T +(Ry-n+r*--2) = (Rlﬂn+r—l 1;

Ry + Ry + Ry + o F Ry (R TRy, o Ry,

F Rppgr TRy + oo F Ry 1) =Ry - L
Proof: For a fixed r, each of the identities can be verified by adding 1 to

the expression on the left and applying the appropriate recursion relation.
In the first equation, note that

L+®, +®, + " +®, = @R, -

When the term ®,,; is added to the next (r~ 1) consecutive terms the result is
®,,.,1» which can be added to the next (r- 1) consecutive terms; this process

can be repeated until addition yields Rypye
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h

In general for the 7'M equation, where 2 < ¢ < r - 1, note that

L@ +®, + oo +®R;_, =1+ 1+2+ 0042072 =201 =@

-1 7
Since the next parenthetic expression is

Ripr T ®Riyp + o0 +®Rpyigs
the addition process described for the first equation can now be applied.

The final identity follows by recalling that 1 + R, +®; + =00 +®R,_, =@
and applying the addition process.

r

In [1] a proof of a Zeckendorf Theorem for the generalized Fibonacci poly-
nomials is given; a consequence of this theorem is the existence and uniqueness
of the Zeckendorf representation for positive integers in terms of the gen-
eralized Fibonaceci numbers. A generalized Zeckendorf Theorem also holds for
the Hoggatt numbers of degree r. That is, for a given r, every positive inte-
ger can be represented as the sum of distinct terms of the sequence {®,} pro-
vided no »r consecutive terms of the sequence are used in the representation;
however, since the sum of the first (r- 1) terms of the sequence is ®,,in order
to ensure uniqueness of the representation, we must also require that no repre-
sentation use the first (- 1) consecutive terms of {®,}.

Theorem 1.2: For each fixed integer r 2 2, every positive integer N has a
unique representation in terms of {®,} of the form

N=N® +DV,® + -+ +N;®;, where V; € {0, 1} for j =1, 2, ..., 12,

NINZ e ecess @ Nr—l = O’
and

MWy =m0 o

sr-1 = 0 for all positive integers k;

i.e., every integer has a unique Zeckendorf representation in terms of {®,}.

Proof: Note that for r = 2, the Hoggatt sequence in question is the Fibonacci
sequence and the Zeckendorf Theorem holds.

The nature of the inductive proof of the theorem can best be seen by con-
sidering a particular small value of r. We concentrate our efforts on the case
in which » = 3. Suppose for some n every positive integer ¥ < 3, ,, - 1 has a
unique Zeckendorf representation; it suffices to prove that every positive in-

teger N < 35, ., - 1 has a unique Zeckendorf representation.

It follows from Lemma 1.1 that
Jgpso — L =3, + (35 +3,) + (g +3,) + - + (35, + Jap41)s

and this equation must give the unique Zeckendorf representation for 3, , - 1.
Next, we note that the representation for 3j,,,,- 1 implies that the largest
integer which can be represented without using J;,,, or any succeeding term of
{3.} is 3,,,, - 1; therefore, the term 3, ,, is itself the unique Zeckendorf
representation for Jgto°

Since J,,,, - 1< 3,,,, - 1, the integer 3, ., - 1 has a unique Zeckendorf
representation. Moreover, this unique representation is given by the following
identity from Lemma 1.1:

Igpe1 = L = (3, +35) + (35 +3) + ¢o0 + (33,., +3,,).
An immediate consequence of the preceding observations is that

Sp42 T Jgp41 ~ 1
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is uniquely representable by
J3p42 + (T2 + J3) + (Fs + Tg) + o0 4+ (Tg,1 + J3,).

It also follows that, for any positive integer M less than 3,,,,, there is a
unique Zeckendorf representation for Jj,., + M consisting of adding 3Jj,4, to
the unique Zeckendorf representation for M.

Finally, we apply the only remaining third-degree identity in Lemma 1.1.
Since 34, - 1 < 33,4, - 1, the integer 3,;, - 1 has a unique Zeckendorf repre-
sentation, and this representation is given by the identity

I3 = 1 =3, + (3y + 35) + (37 + 3g) + +++ + (Fgy-2 + Tgy-1)-
It follows immediately that
Iap+2 T Jagpe1 + J3p — 1
has the unique Zeckendorf representation
ez T Tgppr F [0, + (3, +3) + (3, +35) + o= + (3, _, + 35, )],

It is also apparent that 3,,,, + M has a unique Zeckendorf representation for
every positive integer M less than Iagpe1r T Iy

J

Noting that

S3p420 F Tgpp1 T 95, ~ 1 =35, -1

concludes the proof of the theorem in the case r = 3.

The only major difference between the proof for » = 3 and the proof for an
arbitrary value of » is that in the general case all r identities appearing in
Lemma 1.1 must be used.

2. THE HOGGATT SEQUENCE OF DEGREE 3

If » = 3, the associated Hoggatt sequence {J,} is defined by taking

g =1, 3, =2, 3

1 ) =3, +3,=1+2=3

3
and

J; =13

: +3,

i for 7 2 4;

i-1 *t 33

the first seven terms of the resulting sequence are:
3, 3, 5, 35 35 I
2 3 6 11 20 37

By Theorem 1.2, every positive integer has a unique Zeckendorf representation
in terms of the third-degree Hoggatt numbers. In the next theorem, we prove
that the terms used in the Zeckendorf representation of integers give informa-
tion about the natural ordering of the integers being represented; in particu-
lar, we investigate lexicographic orderings which were defined and examined in
[3] and [5]. We now define this kind of ordering as in [3].

Let the positive integers be represented in terms of a strictly increasing
sequence of integers, {4,}, so that for integers M and N,

k K
M=3 MA;, and N = )} NA
=1

where the coefficients M; and N; lie in the set {0, 1, 2, ..., g} for some fixed
integer g; moreover, suppose m is an integer such that ¥; = N, for all © > m.
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If, for every pair of integers M and N, M,, > N, implies M > N, then the repre-
sentation is a lexicographic ordering.

In [3], identities analogous to those in Lemma 1.1 are used to show that
the Zeckendorf representation of the positive integers in terms of the Tribo-
nacci numbers is a lexicographic ordering; a similar proof is used in the fol-
lowing theorem.

Theorem 2.1: The Zeckendorf representation of the positive integers in terms
of the third-degree Hoggatt sequence {J,} is a lexicographic ordering.

Proof: Let M and N be two positive integers expressed in Zeckendorf form in
terms of the third-degree Hoggatt numbers; then, for some positive integer ¢,

t t
M = 2 M'L'Ji and N = E N’LJ’L"
=1 =1

where M;, N; € {0, 1}, MM, = N,N, = 0 and, for all %,
M.M. .M. =N.N., ,N. = 0.

1771+ 170+ 2 171+ 1%+ 2

Let m be a positive integer such that M; = N; for all Z > m, and suppose that
My > Np. Then M, = 1 and N, = 0. 1In order to prove that ¥ > N, we consider
the following truncated portions of M and N:

M* = M3, + M3, + -0 + M 3. +3, 2 3,
and

N*

NlJl +]\72£I2 + e +Nm—13m—l'

It is clear from the nature of the Zeckendorf representation and the recursion
relation for members of {3, } that in order to maximize N* we must have N,_; =
N,_.,=1. Let k be a positive integer so that m = 3k + j, where jJ =1, 2, or
3. The three pertinent identities in Lemma 1.1 imply that, for any of the three
possible values of j, the maximal possible value of N* is 3, — 1. Consequent-
ly, V% < 3, < M*, and it follows that N < M.

In [3], it was demonstrated that the positive integers can be represented
in terms of the Tribonacci numbers by means of a "second canonical form," and
it was proved that this new representation also gives rise to a lexicographic
ordering. Analogous results hold for the sequence {3, }. We begin by develop-
ing the second canonical form for a representation.

For each positive integer N, let J; be the least term of {J,} wused in the
Zeckendorf representation for N; of course, the subscript k depends on the par-
ticular integer N being examined. The uniqueness of the Zeckendorf represen-
tation implies it is possible to partition the positive integers into two sets
as follows:

S, is the set of all positive integers N such that
k =0 (mod 3) or Kk = 1 (mod 3),

and
S, is the set of all positive integers N such that
k = 2 (mod 3).

Suppose the elements of the sets S5, and S, are written in natural order, and
let S;,, denote the nth element in the set S; for ¢=1 or 2. We list the first
ten entries in each set.
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Table 1
n S1n So.n
1 1=Jl 2=32
2 3 = 3, 5=1735 +73,
3 b =13, + 3, 8 =13, +3,
4 6 =3, 11 = 34
5 7 =13, +3; 13 = 35 + 3,
6 9 =13, + 3, 16 = 35 + 35 + 3,
7 10 = 3, + 3, + 3, 19 =3, +3, +3
8 12 = 35, + 3, 22 =3, + 3,
9 14 = 3, + 3, 25 =3, +3, +3,
10 15 =3, + 3, + 3, 28 =3, +3, + 3,

Theorem 2.2: The sets S; and S, can be characterized as follows:

S, is the set of all positive integers N which can be
represented in the form 3, + N,3, + N335 + ..., where
each N; € {0, 1} and NN, N, ., =0 if < > 1;
S5, is the set of all positive integers N which can be
represented in the form 3, + N33, + N, 3, + -+, where
each V; € {0, 1} and NN, .IV =0 if 7 > 2.

T+ 177+2

Moreover, every positive integer has a unique representation in one of the
above two forms.

Proof: Let N be a positive integer and let J; be the least member of {3,} used
in the Zeckendorf representation of N in terms of {3,}. There are three cases
to consider depending on whether k is congruent to 0, 1, or 2 modulo 3.

If X = 0 (mod 3), then ¥ is an element of'S1 and, for some nonnegative in-—
teger m, k = 3m+ 3. Using the identities in Lemma 1.1 and the Zeckendorf rep-
resentation for /N, the term J; can be replaced by

(3, +3,) + (3, +3) + - + (5 + 3

3m+1 3m+2);

moreover, this is the only admissible representation for 3J;. These observa-
tions and the uniqueness of the Zeckendorf representation imply the uniqueness
of this new representation for V.

= 1 (mod 3), again N lies in S, and, for some nonnegative integer m,
k =3m + 1. 1In this case, J, must be replaced by

I+ (3, +3) + (35 +a) + o0+ (3, + 35D

This illustrates the reason for permitting N,N,N, = 1. Again, this new
representation for N is the unique allowable representation.

Finally, if kX = 2 (mod 3), then N lies in S, and, for some nonnegative in-
teger m, kK = 3m + 2. From Lemma 1.1, we have

e =1+ 3+ (33 +3,) + (3g +3,) + = + (I3, + Igp41)
I =3, + (3, +3,) + (3 +3,) + =o- + (T, + 33,.1)-
In this case, we see that N,N,V, = 1 may be necessary in representing some in-—

tegers. The uniqueness of this new representation for N follows as in the
previous cases.
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The preceding theorem suggests a definition for a second canonical repre-
sentation with respect to {3,}: a positive integer N is being represented in
second canonical form in terms of the sequence {3,} if, for some m,

N=N3, +N,3, + N3, + - + 1,3,
where (1) each V; € {0, 13},

(2) at least one of N, and N, is nonzero,

(3) if N, =1, then N;N;,,N;,, = 0 for all 7 > 1,
and (4) if N, = 1, then N;N; N;,, = 0 for all Z > 2.

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3: Every positive integer can be uniquely represented in second
canonical form in terms of the Hoggatt sequence of degree 3.

In [3], it is noted that the representation of the positive integers in
second canonical form with respect to the Tribonacci numbers is a lexocigraphic
ordering. Although the second canonical form of a representation with respect
to {J»} is not defined in the same way as the second canonical form with re-
spect to {T»}, the two forms are similar and an analogous theorem holds for the
third-degree Hoggatt numbers.

Theorem 2.4: The second canonical representation of the positive integers in
terms of the sequence {3,} is a lexicographic ordering.

Proof: We begin as in the proof of Theorem 2.1.

Let M and N be two positive integers expressed in second canonical form in
terms of {J,}. There is some positive integer ¢ such that, in second canoni-
cal form,

t
M= 3% M3, ad N= ) N;3,.
=1

Let m be a positive integer such that M; = N; for all ¢ > m; further, suppose

M, =1 and N,, = 0. Consider the following truncations of M and N:
M =M3 +M3, + -0 +M 3+ T

and
N® =N.3, +N,3, 4+ +N, _,5, ;-

Since M has been represented in second canonical form, either M; or ¥, is non-
zero; therefore, M* > J, +3, > 3,. Again, in order or maximize N*, we must
have N, _, = N,_, = 1. Let K be a positive integer such that m=3k+j for some
Jg =1, 2, or 3. Conisder the three appropriate identities in Lemma 1.1, and
the three possible values of j.

If m = 3k + 1, then the maximum possible value of N* is

Sgpsr ~ L H 30 = 3541 =3n-
If m = 3k + 2, then the maximum value for N* is
Sgpo — 1 =9 — 1.

Finally, if m = 3k + 3, then the maximum possible N* is

Igppy — L+ 33 = 35,5 =3p-

In any case, N* does not exceed J, in value, and we have N* < 3, < M*; conse-
quently, N < M.
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Before proceeding to the generalizations of the preceding theorems in this
section to degree r, we note a special property of the third-degree Hoggatt
sequence.

Let S;, 5,5 ..., Sn be nonempty sequences of positive integers such that
every positive integer appears exactly once in exactly one of the sequences;
in [1], such sequences are called complementary or a complementary system. In
[3], properties of {T,} and a theorem of Lamdek and Moser [4] are used to dem-
onstrate the existence of a pair of complementary sequences {X,} and {Y,} in
natural order with the property that {X, + Y,} and {Y, - X,} is another pair
of complementary sequences of positive integers in natural order. In the next
theorem, we prove the existence and uniqueness of {X,} and {Y,}.

Theorem 2.5: There exist exactly two sequences, {X,}; ., and {Y,};.,, of posi-
tive integers in natural order such that {X,} and {Y,} are complementary se-
quences and the sequences {X, + Y,} and {Y, - X,} are also complementary se—
quences in natural order.

Proof: We develop four sequences {X,}, {¥,}, {P,}, and {Q,} as follows: let

Xi =1, P1 =1, Yl =X, +P, =2, and Ql = X1 + Yl = 3; in general, to find
X, P,, Y,, and @,, let
(1) X, = the first positive integer not yet appearing as an X; or a Y,
(2) P, = the first positive integer not yet appearing as a P, or a Qi’
3 Y, =X, +P,, and
4) q,=Xx,+7,.
The following array arises.
Table 2
n XVZ P’Vl Y?l Q}’Z
1 1 1 2 3
2 3 2 5 8
3 4 4 8 12
4 6 5 11 17
5 7 6 13 20
6 9 7 16 25
7 10 9 19 29
8 12 10 22 34
9 14 11 25 39
10 15 13 28 43

Note that (1)~(4) guarantee that {X,} and {Y,} are complementary sequences in
natural order, as are {P,} and {@,}. From (3) and (4) it follows that

{Pn} = {.Yn - Xn} and {Qn} = {Xn + yn}’

as desired. Hence, the exixtence of the sequences {X,} and {Y,} has been es-
tablished.

To verify the uniqueness of the sequences {X,} and {Y,}, we note that the
method of generating the four sequences yields exactly one pair of sequences
satisfying the conditions in the statement of the theorem; therefore, any other
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pair of sequences satisfying these conditions must be obtained by some method
other than that used to generate {X,} and {Y,}.

Suppose there is another pair of sequences, denoted {Yn} and {Yn}, satis-
fying the conditions of the theorem. Let {§,} and {P,} represent, respective=
ly, the sum and difference sequences {X, + Y,} and {Y, - X,}; it follows that
properties (3) and (4) hold for the four new sequences.  Suppose property (1)
does not hold. Then, for some m, X, is not the first positive integer not yet
appearing as an Xi or a Yi; since {YH} and {Y,} are complementary and in natu-
ral order, X, > Y,. Consequently, ¥, - X, < 0 and 7, is not a positive inte-
ger, a contradiction. Therefore, property (1) is necessary to the solution of
the problem; similarly, property (2) must hold. Hence, the method used to
generate {X,} and {Y,} provides the only pair of sequences satisfying the con-
ditions of the theorem.

Consider the sets S, and S5, defined earlier in this section. Recall that
S, and S, are written in natural order, and S;,, denotes the nth element of S,
for £ = 1 or 2. We have seen that {5, ,} and {5, ,} are complementary sequences
of positive integers in natural order. It has also been shown in [3] that

{Slsn + 52,1’1} and {3237’1 - Sl,n}

are complementary sequences in natural order. It follows that {Slﬂﬁ and {Sz,n}
are the sequences {X,} and {Y,} of Theorem 2.5. Therefore, the sets S, and 3,
can be generated by the method described in the proof of Theorem 2.5; no appeal
to representations in terms of {J,} is necessary.

3. THE HOGGATT SEQUENCE OF DEGREE r

In this section, we note that the theorems of Section 2 involving lexico-
graphic ordering have analogs for the rth-degree Hoggatt sequence. Since the
theorems of this section can be proved by using the same techniques as in Sec-
tion 2, only sketches of proofs are given. Recall that from Section 1 we have
r identities involving the sequence {®,} and a unique Zeckendorf representa-
tion for every positive integer in terms of {®,}.

Theorem 3.1: The Zeckendorf representation of the positive integers in terms
of the rth-degree Hoggatt sequence {®,} is a lexicographic ordering.

Proof: Let M and N be two positive integers expressed in Zeckendorf form:
¢
and N =73 N, ®,
=1

where M., N; € {0, 1},

MM, > e M =N, s e e, =0,
and MM, ¢ ccc o My, =N;N;y ¢ ccc o Ny, =0 for all <.
Let m be a positive integer such that M; = N; for all < > m, letM, =1, and

let N, = 0. Consider the truncations M* and N* as in the proof of Theorem 2.1,
and note that M* 2 ®,. In order to maximize N*, we must let

N =N = «e. =J = 1.

m-1 m=2 m-(r-1)
From the r identities in Lemma 1.1, it follows that N* <®, < M*, and conse-
quently, N < M.
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We next develop the second canonical form for a representation in terms of

{®n}.

For a particular positive integer N, let ®; be the smallest term of {®,}
used in the Zeckendorf representation for N. Using the uniqueness of the Zeck-
endorf representation, the positive integers can be partitioned into (r - 1)
sets as follows:

S, is the set of all positive integers N such that
k =0 (mod ») or k = 1 (mod r),

and for integers 7 such that 2 S Z <» -1,

S; is the set of all positive integers N such that

k = 71 (mod r).
Let the elements of the sets Sl, Sz’ cees S;_l be written in natural order.
Theorem 3.2: The sets Sl, Sz’ e Sr~1 can be characterized as follows: for
Jg=1,2, «c., » -1,

S; is the set of all positive integers which can be represented in
the form ¥ = ®; + Nj+1®j+1 + Nj+2®Rj4+2 + -+, where each N; € {0, 1}
and N; N, e vre o Npypoy =0 if 22> 4.

181 +1

Moreover, every positive integer has a unique representation in terms of {®,}
in one of these (r» - 1) forms.

Proof: Let N be a positive integer and let ®; be the least term of {®,} used
in the Zeckendorf representation of N. There are » cases to consider depending
on whether k is congruent to 0, 1, 2, ..., or (r - 1) modulo r. In each of
these cases, the uniqueness of Zeckendorf representations and one of the iden-
tities in Lemma 1.1 yield the desired representation for N; moreover, the new
representation is unique.

A positive integer N is represented in second canonical form in terms of
the sequence {®,} if, for some m,

N=NG& +N,®R, + «+ + Np@Rp»
where

(1) each v; € {0, 1},
(2) at least one of the coefficients N;, Ny, ..., Npr_; is nonzero, and
(3) if Nj = 1, then N;N; q © =+« * N;ypy =0 for all ¢ > 4.

We immediately have the following corollary to Theorem 3.2.
Corollary 3.3: Every positive integer can be uniquely represented in second
canonical form in terms of the sequence {®,}.

Finally, we have the analog to Theorem 2.4.

Theorem 3.4: The second canonical representation of the positive integers in
terms of the sequence {®,} is a lexicographic ordering.

Proof: With notation as in the proof of Theorem 3.1, but with the representa-
tion in second canonical form, consider the truncations of M and N:

M = MR, + MR, + -+ + M _®& + @,

m-1
and

N* = N®, + N,®, + o+ + N, _®,_,.
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of the coefficients My, My, «.., M,_; is nonzero; therefore,
M2 R, + Ry > Ry
In order to maximize N*, we let

Nm—l = ]Vm_2 = e e = Nm—(r’—l) = ]
note that the identities in Lemma 1.1 imply that the maximum possible value

N* is ®,; therefore, V* < &, < M* and N < M.
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