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INTRODUCTION 

The Zeckendorf Theorem states that every positive integer can be repre-
sented as a sum of distinct Fibonacci numbers and that this representation is 
unique, provided no two consecutive Fibonacci numbers appear in any sum. 

In [2] the Zeckendorf Theorem is extended to a class of sequences obtained 
from the generalized Fibonacci polynomials; in particulars an analogous theorem 
holds for the generalized Fibonacci sequences. In Section 1, a collection of 
sequences called the Hoggatt sequences is introduced, and it is shown that 
these sequences also enjoy a "Zeckendorf Theorem"; in fact, the Hoggatt se-
quences share many of the representation and ordering properties of the gener-
alized Fibonacci sequences discussed in [2] and [3]. 

1. HOGGATT SEQUENCES AND ZECKENDORF REPRESENTATIONS 

For each fixed integer r with r ^ 2, the generalized Fibonacci polynomials 
yield a generalized Fibonacci sequence [2] which will be denoted {i?„}^=1. The 
generalized Fibonacci sequence associated with the integer r can be defined as 
follows [3]: 

R± - 1; 

R. = 2J'~2 for j = 2, 3, ..., r; 

Rk + r
 = Rk + r-l + Rk + r-2 + "* + Rk f o r a 1 1 P ° s i t i v e integers k. 

Note that with r = 2, 3, 4, and 5 we obtain, respectively, the Fibonacci num-
bers {Fn}, the Tribonacci numbers {Tn}, the Quadranacci numbers {§„}, and the 
Pentanacci numbers {Pw}. 

The Hoggatt sequence of degree r, where r is once again a fixed integer 
greater than 1, will be denoted {Rn} and can be obtained by taking differences 
of adjacent generalized Fibonacci numbers; more precisely, (Rn = Rn + 2~ Rn + i f o r 

all positive integers n. The defining properties of the sequences {Rn} and 
{(Rn} give rise to the following recursive description of the Hoggatt sequence 

322 [Nov. 



HOGGATT SEQUENCES AND LEXICOGRAPHIC ORDERING 

of degree r 

*3 (Rj = 2J'_1 for j = 1, 2, ..., r - 1; 

(5ir = 21'"1 ~ l = ®1 + ®2 + ••• +(Rr.1i 

% + r = ^k + r-i + ®-k+r~2 + * ° " + % f o r a 1 1 positive integers k. 
Note that the second-degree Hoggatt sequence coincides with the Fibonacci se-
quence; moreover, for r > 2 , the sequences {i?̂ } and {(Rn} differ in their ini-
tial (and subsequent) entries but share a common recursion relation. 

Identities similar (but not identical) to those developed for the general-
ized Fibonacci sequences in [3] can be obtained for the Hoggatt sequences. 

For v - 2 the Hoggatt sequence is the Fibonacci sequence {Fn }, and we have 
the two identities 

and 
r 2 T r h ^ ^ n In r2n+l L 

L3 x 5 ^ x 2 n + l L 2n + 2 

Let the third-degree Hoggatt sequence be denoted {3n}. Three identities 
arise in this case: 

(a2 + 33) + (35 + a6) + ••• ( 3 ^ + 33„) = s3n + 1 - 1; 
3, + (33 + 3,) + (36 + 37) + ••• + (33n + 33n+1) = 3 3 n + 2 - 1; 

32 + (3, + 35) + (3y + 38) + ••• + (33n + 1 + 33n+2) = 33„-+3 ~ 1-

In general, we have the following lemma. 

Lemma 1.1: For each integer r greater than 1, there arise r identities involv-
ing groupings of (p - 1) consecutive terms of the Hoggatt sequence of degree r. 

((R2 + (R3 + • • ' + ( M + (®r+2 + ®r + 3 + " " " + <*2r ) + 
+ (®-r(n-l) + 2 + ®r(n- l ) + 3 + ' ° ° + ®-rns ~ ®rn+l ~ •*• > 

CRX + ((R3 +(R, + • • • +(Rr + 1 ) + (<*r + 3 + CRp + , + • • - + ( R 2 p + 1 ) + . . -

+ ( m r ( n - l ) + 3 + ^ ( n - l ) + ^ + B O ° + ( R r ^ + l ) = ( R m + 2 " ^ 

(R1 + (R2 + ((R4 + (R5 + • • • + ( R r + 2 ) + ((Rp + If + ( R p + 5 + • • • + ( R 2 p + 2 ) + • • " 

+ ( ^ ( n - D + ^ + ^ C ^ - D + S + -° +(*rn + 2^ =(Rrn + 3 ' ^ 

(Rx + (R2 + (R3 + • • • + (R p _ 2 + ((Rp +(Rr + 1 + - • • + ( R 2 r _ 2 ) + • • • 

+ Wrn
 +(&rn + l + ""* + ®-rn + r-2' = ^rn+r-1 ~ *> 

(R2 + (H3 + (R̂  + • • • + ( R r - 1 + (<Rr+1 + (RP + 2 + • • • + (R2r _ x ) + 

+ «Rrn + l + ^ n + 2 + ' ' ' + ®rn+r-l) = ^ r n + r " *• 
Proof: For a fixed r, each of the identities can be verified by adding 1 to 
the expression on the left and applying the appropriate recursion relation. 

In the first equation, note that 

1 + (R2 + <R3 + •• • + (Sir =(Rr + 1-

When the term (Rr + 1 is added to the next (r - 1) consecutive terms the result is 
(R2r+1, which can be added to the next (r - 1) consecutive terms; this process 
can be repeated until addition yields (Rrn + 1 ° 
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In general for the i th equation, where 2 < i < r - 1, note that 

1 + (Rx + (R2 + • •• + CRi_1 = 1 + 1 + 2 + + I1"2 = 2 i ~ 1 , = (Ri. 

Since the next parenthetic expression is 

the addition process described for the first equation can now be applied. 

The final identity follows by recalling that 1 + (R + (H + ••• + ^ - i = ^r 
and applying the addition process8 

In [1] a proof of a Zeckendorf Theorem for the generalized Fibonacci poly-
nomials is given;a consequence of this theorem is the existence and uniqueness 
of the Zeckendorf representation for positive integers in terms of the gen-
eralized Fibonacci numbers. A generalized Zeckendorf Theorem also holds for 
the Hoggatt numbers of degree r. That is, for a given rs every positive inte-
ger can be represented as the sum of distinct terms of the sequence {*Hn} pro-
vided no v consecutive terms of the sequence are used in the representation; 
however9 since the sum of the first (r - 1) terms of the sequence is (Rr9 in order 
to ensure uniqueness of the representation9 we must also require that no repre-
sentation use the first (r - 1) consecutive terms of {(Rn}. 

Theorem 1.2: For each fixed integer v ^ 2S every positive integer N has a 
unique representation in terms of {(Rn} of the form 

N = ii71(R1 + N2<R2 + ••• + i!^<Ri5 where ^ e {0, 1} for j = 1, 2 t, 

N±N2 Nr^ = 09 

and 
NkNk + 1 • ••• • Nk + r_1 = 0 for all positive integers k; 

i.e.., every integer has a unique Zeckendorf representation in terms of {<Rn}. 

Proof: Note that for r = 2, the Hoggatt sequence in question is the Fibonacci 
sequence and the Zeckendorf Theorem holds. 

The nature of the Inductive proof of the theorem can best be seen by con-
sidering a particular small value of p. We concentrate our efforts on the case 
in which v = 3« Suppose for some n every positive integer N < 3 3 n + 2 ~ * ̂ a s a 

unique Zeckendorf representation; it suffices to prove that every positive in-
teger N < 3 3 n + 3 ~ 1 ̂ a s a unique Zeckendorf representation. 

It follows from Lemma 1.1 that 

3 3 n + 2 - 1 = 3 ! + (33 + 3„) + (36 + 37) + ••• + (33n + 33 n + 1 ) s 

and this equation must give the unique Zeckendorf representation for 33n + 2~ ^ • 
Next* we note that the representation for 33n + 2 ~ i implies that the largest 
Integer which can be represented without using 33n+2

 o r a n Y succeeding term of 
{ 3 n } is 3 3 n + 2 - 1; therefore^ the term 33 n + 2 is itself the unique Zeckendorf 
representation for 3 ^ . 

Since 3 3 n + 1 - 1 < 33n + 2 ~ 1»
 tlae integer 33 + 1 - 1 has a unique Zeckendorf 

representation. Moreover, this unique representation Is given by the following 
identity from Lemma 1.1: 

33„+l - 1 = (32 + 33) + (35 + 36) + ••• + -C33M-i + 5 3 « ) ' 

An immediate consequence of the preceding observations is that 

33«+2 + ° 3n+l " * 
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is uniquely representable by 

hn + 2 + (32 + 33) + (35 + 36) + ••• + (33n_! + 3 3 n ) . 

It also follows that, for any positive integer M less than 33n + 1, there is a 
unique Zeckendorf representation for 3 3 n + 2 +M consisting of adding 3 3 n + 2 to 
the unique Zeckendorf representation for M-. 

Finally, we apply the only remaining third-degree identity in Lemma 1.1. 
Since 33n - 1 < 33n + 2 - 1, the integer 33„ - 1 has a unique Zeckendorf repre-
sentation, and this representation is given by the identity 

33n - 1 = 32 + (34 + 35) + (37 + 38) + ••• + (a3„-2 + 33n-i). 

It follows immediately that 
33n+2 + 33 n + i + 33n - 1 

has the unique Zeckendorf representation 

3 3 n + 2 + 3 3« + l + f 3 2 + (\ + 3 5> + ( 3 7
 + 3 8> + • ' • + ( 3 3 „ - 2 + 3 3n - 1 > ^ ' 

It is also apparent that 3 3 n + 2 + M has a unique Zeckendorf representation for 
every positive integer M less than 3 3 n + 1 + 33n. 

Noting that 

33n+2 + a 3 n + l + 3 3n "" l 3 3 n + 3 " l 

concludes the proof of the theorem in the case v = 3. 

The only major difference between the proof for v = 3 and the proof for an 
arbitrary value of v is that in the general case all r identities appearing in 
Lemma 1.1 must be used. 

2. THE HOGGATT SEQUENCE OF DEGREE 3 

If v = 35 the associated Hoggatt sequence {3n } is defined by taking 

3X = 1, 32 = 2, 33 = 3X + 32 = 1 + 2 = 3 
and 

3i = 3*.,. + 3 i _ 2 + 3;-3 f o r ^ > 45 
the first seven terms of the resulting sequence are: 

31 32 33 3^ 35 36 37 

1 2 3 6 11 20 37 

By Theorem 1.2? every positive integer has a unique Zeckendorf representation 
in terms of the third-degree Hoggatt numbers. In the next theorem, we prove 
that the terms used in the Zeckendorf representation of integers give informa-
tion about the natural ordering of the integers being represented; in particu-
lar, we investigate lexicographic orderings which were defined and examined in 
[3] and [5]. We now define this kind of ordering as in [3]. 

Let the positive integers be represented in terms of a strictly increasing 
sequence of integers, {An}, so that for integers M and N, 

k k 
M = Z MiAt and N = E ^ , 

i = 1 i = l 

where the coefficients Mi and N^ lie in the set {0, 1, 2, . . . , q] for some fixed 
integer q; moreover, suppose m is an integer such that Mi = N^ for all i > m. 
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If, for every pair of integers M and N9 Mm > Nm implies M > N9 then the repre-
sentation is a lexicographic ordering* 

In [3], identities analogous to those in Lemma 1,1 are used to show that 
the Zeckendorf representation of the positive integers In terms of the Tribo-
nacci numbers is a lexicographic ordering; a similar proof is used in the fol-
lowing theorem. 

Theorem 2.1: The Zeckendorf representation of the positive integers in terms 
of the third-degree Hoggatt sequence {3n} is a lexicographic ordering. 

Proof: Let M and N be two positive integers expressed in Zeckendorf form in 
terms of the third-degree Hoggatt numbers; then, for some positive integer t9 

t t 
M = E M-iH and N = £ Ni3i, 

i = l i = 1 

where Mi, Ni e {0, 1}, M1M2 = N1N2 = 0 and, for all i9 

M,Mi + 1Mi + 2 = ^ ^ + 1 ^ + 2 = 0. 

Let 777 be a positive integer such that M^ = N^ for all i > 77?, and suppose that 
A/m > Wm. Then Mm = 1 and î OT = 0. In order to prove that M > Ny we consider 
the following truncated portions of M and Ni 

M* = 7 ^ 3 , + M 2 a 2 + . . . + « m _ 1 sm_1+ am > am 
and 

N* = N 3 + N 3 + - - • + iy a 
1 1 2 2 m-1 m-1 

It is clear from the nature of the Zeckendorf representation and the recursion 
relation for members of {3n } that in order to maximize N* we must have Nm_i = 
Nm„2 = 1. Let k be a positive integer so that 7?? = 3k + j, where j = 1, 2, or 
3. The three pertinent identities in Lemma 1.1 imply that, for any of the three 
possible values of j , the maximal possible value of N* Is 3m - 1. Consequent-
ly, N* < 3m < M*9 and it follows that N < M. 

In [3], it was demonstrated that the positive integers can be represented 
In terms of the Tribonacci numbers by means of a "second canonical form," and 
it was proved that this new representation also gives rise to a lexicographic 
ordering. Analogous results hold for the sequence {:3n}. We begin by develop-
ing the second canonical form for a representation. 

For each positive integer Ns let 3k be the least term of {3n} used in the 
Zeckendorf representation for N; of course, the subscript k depends on the par-
ticular integer N being examined. The uniqueness of the Zeckendorf represen-
tation implies it is possible to partition the positive integers into two sets 
as follows: 

and 

51 Is the set of all positive integers N such that 
k = 0 (mod 3) or k = 1 (mod 3), 

52 is the set of all positive integers N such that 
k = 2 (mod 3). 

Suppose the elements of the sets S1 and S2 are written In natural order, and 
let SiiYl denote the nth e 
ten entries in each set. 
let SiiYl denote the nth element in the set 57- for i= 1 or 2. We list the first 
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Table 1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
3 
4 
6 
7 
9 
10 
12 
14 
15 

= 
= 
= 
= 
= 
= 
= 

: 
= 

Sl,n 

3l 
33 
33 + 
\ 
\ + 
3^ + 
\ + 
35 + 
35 + 
35 + 

31 

3l 
33 
33 
31 
33 
33 

+ 

+ 

31 

31 

2 
5 
8 
11 
13 
16 
19 
22 
25 
28 

= 
= 
= 
= 
= 
= 
= 

= 
= 

S2,n 

32 

33 + 
3h + 
35 
35 + 
35 + 
35 + 
3B + 

36 + 
36 + 

3 2 

3 2 

32 
33 
^ 
32 
33 
3-

+ 32 

+ 32 

+ 32 

+ 32 

Theorem 2.2: The sets S1 and S2 can be characterized as follows: 

Si is the set of all positive integers N which can be 
represented in the form 31 + N232 + ̂ 3^3 + •••» where 
each Ni e {09 1} and NiNi+1Ni + 2 = 0 if i > 1; 

52 is the set of all positive integers N which can be 
represented in the form 32 + N333 4- N^3h + • • * , where 
each Ni G {0S 1} and NiNi + 1Ni + 2 = 0 if i > 2, 

Moreover, every positive integer has a unique representation in one of the 
above two forms. 

Proof: Let N be a positive integer and let 3^ be the least member of {3n} used 
in the Zeckendorf representation of N in terms of {3n}a There are three cases 
to consider depending on whether k is congruent to 0, 13 or 2 modulo 3. 

If k E 0 (mod 3), then N is an element of S1 ands for some nonnegative in-
teger ms k = 3m+3o Using the identities in Lemma 1.1 and the Zeckendorf rep-
resentation for N9 the term 3y. can be replaced by 

(3, + 32) + (3, + 35) + ••• + (33m+1 + 3 3 m + 2 ) ; 

moreover, this is the only admissible representation for 3^. These observa-
tions and the uniqueness of the Zeckendorf representation imply the uniqueness 
of this new representation for N. 

If k = 1 (mod 3), again N lies in S± and, for some nonnegative integer m5 
k = 3m + 1. In this case, 3k must be replaced by 

3, + (32 + 33) + (35 + 36) + ••• + (33n_1 + 33 m). 

This illustrates the reason for permitting N1N2N3 = 1. Again, this new 
representation for N is the unique allowable representation. 

Finally, if k = 2 (mod 3), then N lies in S2 and, for some nonnegative in-
teger m9 k = 3m + 2. From Lemma 1.1, we have 

3k = 1 + 3, + (33 + 3„) + (36 + 37) + ••• + (33m + 33m+1) 

h = 32 + O3 + ^ ) + (36 + 37> + ••" + ^ + 33m + l)-
In this case, we see that N1N2N3 = 1 may be necessary in representing some in-
tegers. The uniqueness of this new representation for N follows as in the 
previous cases. 
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The preceding theorem suggests a definition for a second canonical repre-
sentation with respect to {3n}: a positive integer N is being represented in 
second canonical form in terms of the sequence {3n} if9 for some m, 

N = N131 + N232 + N333 + .-• + Nm3m, 

where (1) each Nj, G {0, 1}, 
(2) at least one of N2 and N2 is nonzero, 
(3) if N± = 1, then NiNi + 1Ni + 2 = 0 for all i > 1, 

and (4) if N2 = 1, then NiNi + 1Ni + 2 = 0 for all i > 2. 

The following corollary is an immediate consequence of Theorem 2.2. 

Corollary 2.3: Every positive integer can be uniquely represented in second 
canonical form in terms of the Hoggatt sequence of degree 3. 

In [3], it is noted that the representation of the positive integers in 
second canonical form with respect to the Tribonacci numbers is a lexocigraphic 
ordering. Although the second canonical form of a representation with respect 
to {3n} is not defined in the same way as the second canonical form with re-
spect to {Tn}, the two forms are similar and an analogous theorem holds for the 
third-degree Hoggatt numbers. 

Theorem 2.4: The second canonical representation of the positive integers in 
terms of the sequence {3n} is a lexicographic ordering. 

Proof: We begin as in the proof of Theorem 2.1. 

Let M and N be two positive integers expressed in second canonical form in 
terms of {3n}. There is some positive integer t such that, in second canoni-
cal form, 

t t 
M= "L^i^i and N= £ ^ 3 ^ . 

Let m be a positive integer such that M± = N^ for all i > m; further, suppose 
Mm = 1 and Nm = 0. Consider the following truncations of M and N: 

M* =Ml3l +M232 + ••• +Mm_13m_1 + 3 m 

and 
ff* = N^ +N232 + ••• +Nm_13m_1. 

Since M has been represented in second canonical form, either M1 or M2 is non-
zero; therefore, A/* ̂  3± + 3m > 3m. Again, in order or maximize N*, we must 
have Nm_± = Nm_2 = 1. Let K be a positive integer such that m=3k + j for some 
j = 1, 2, or 3. Conisder the three appropriate identities in Lemma 1.1, and 
the three possible values of j. 

If m = 3k + 1> then the maximum possible value of N* is 

33k+l " l + 31 = 33fc+l = 3™ ' 
I f m = 3k + 2 , t h e n t h e maximum v a l u e f o r N* i s 

33fe+2 - X = 3m - L 
F i n a l l y , ±fm=3k+3s t h e n t h e maximum p o s s i b l e N* i s 

3 3 f c + 3 * + 3 1 33k+3 = ^ » 

In any case, N* does not exceed 3m in value, and we have N* < 3^ < M*; conse-
quently, N < M. 
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Before proceeding to the generalizations of the preceding theorems in this 
section to degree r9 we note a special property of the third-degree Hoggatt 
sequence. 

Let S±9 S2, ..., Sn be nonempty sequences of positive integers such that 
every positive integer appears exactly once in exactly one of the sequences; 
in [1], such sequences are called complementary or a complementary system. In 
[3], properties of {Tn} and a theorem of Lamdek and Moser [4] are used to dem-
onstrate the existence of a pair of complementary sequences {Xn} and {Yn} in 
natural order with the property that {Xn + Yn] and {Yn - Xn} is another pair 
of complementary sequences of positive integers in natural order. In the next 
theorem, we prove the existence and uniqueness of {Xn} and {Yn}. 

Theorem 2.5: There exist exactly two sequences, {Xn}™=1 and {Jn}^= 1, of posi-
tive integers in natural order such that {Xn} and {Yn} are complementary se-
quences and the sequences {Xn + Yn] and {Yn - Xn} are also complementary se-
quences in natural order. 

Proof: We develop four sequences {X n] 9 {Yn}3, {Pn}, and {Qn} as follows: let 
X± = 1, P1 = 1, J1 = Zx + P± = 2, and Q± = X1 + Y1 = 3; in general, to find 
& n 5 ^n ' Yy,, and let 

(1) 
(2) 
(3) 
(4) 

Xn = the first positive integer not yet appearing as an X^ or a Yi , 
Pn = the first positive integer not yet appearing as a P. or a Q., 
Yn = Xn + Pn, and 
Q„ — X„ + Y„. 

The following array arises. 

Table 2 

ft 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

^n 

1 
3 
4 
6 
7 
9 
10 
12 
14 
15 

Pn 

1 
2 
4 
5 
6 
7 
9 
10 
11 
13 

7 

2 
5 
8 
11 
13 
16 
19 
22 
25 
28 

Qn 

3 
8 
12 
17 
20 
25 
29 
34 
39 
43 

Note that (l)-(4) guarantee that {Xn} and {Yn} are complementary sequences in 
natural order, as are {Pn} and {Qn}. From (3) and (4) it follows that 

{Pj = {Yn - X„} and {Qn} = {Xn + Yn}9 

as desired. Hence, the exixtence of the sequences {Xn} and {Yn} has been es-
tablished. 

To verify the uniqueness of the sequences {Xn} and {Yn}, we note that the 
method of generating the four sequences yields exactly one pair of sequences 
satisfying the conditions in the statement of the theorem; therefore, any other 
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pair of sequences satisfying these conditions must be obtained by some method 
other than that used to generate {Xn} and {Jn}. 

Suppose there is another pair of sequences, denoted {Xn} and {Yn}, satis-
fying the conditions of the theorem. Let {Qn} and {Pn} represent, respective-
ly, the sum and difference sequences {Xn + Yn} and {ln - Xn}'9 it follows that 
properties (3) and (4) hold for the four new sequences. Suppose property (1) 
does not hold. Then, for some n, Xn is not the first positive integer not yet 
appearing as an Xi or a Yi ; since {Xn} and {jn} are complementary and in natu-
ral order, Xn"> Yn . Consequently, Yn - Xn < 0 and ~Pn is not a positive inte-
ger, a contradiction. Therefore, property (1) is necessary to the solution of 
the problem; similarly, property (2) must hold. Hence, the method used to 
generate {Xn} and {Yn } provides the only pair of sequences satisfying the con-
ditions of the theorem. 

Consider the sets S1 and S2 defined earlier in this section. Recall that 
S1 and S2

 a r e written in natural order, and Si,n denotes the nth element of S^ 
for i = 1 or 2. We have seen that {S1 n} and {S2 n} are complementary sequences 
of positive integers in natural order. It has also been shown in [3] that 

are complementary sequences in natural order. It follows that {S± n} and {S2tYj} 
are the sequences {Xn} and {Yn} of Theorem 2.5. Therefore, the sets S± and S2 
can be generated by the method described in the proof of Theorem 2.5; no appeal 
to representations in terms of {3n} is necessary. 

3. THE HOGGATT SEQUENCE OF DEGREE v 

In this section, we note that the theorems of Section 2 involving lexico-
graphic ordering have analogs for the rth-degree Hoggatt sequence. Since the 
theorems of this section can be proved by using the same techniques as in Sec-
tion 2, only sketches of proofs are given. Recall that from Section 1 we have 
v identities involving the sequence {(Hn} and a unique Zeckendorf representa-
tion for every positive integer in terms of {&n}. 

Theorem 3-1: The Zeckendorf representation of the positive integers in terms 
of the Pth-degree Hoggatt sequence {(Rn} is a lexicographic ordering. 

Proof: Let M and N be two positive integers expressed in Zeckendorf form: 

t t 
M = £ Mi(Ri and N = £ il/^, 

i = l i = 1 

where Mi9 Ni e {0, l}, 

MXM2 Mr_± = N1N2 Nr_± = 0, 

and M-M. + 1 Mi+r_± = N,Ni + 1 Ni + r_± = 0 for all i . 

Let m be a positive integer such that M± = Ni for all i > m9 letMm = 1, and 
let Nm = 0. Consider the truncations M" and #* as in the proof of Theorem 2.1, 
and note that M* ̂  Glm. In order to maximize N*9 we must let 

N
m-1 = Nm-2 = ••• =^-(r-l) = !' 

From the r identities in Lemma 1.1, it follows that N* < (Rm < M* 9 and conse-
quently, N < M. 

330 [Nov. 



HOGGATT SEQUENCES AND LEXICOGRAPHIC ORDERING 

We next develop the second canonical form for a representation in terms of 

For a particular positive integer N9 let (Rk be the smallest term of {(Rn) 
used in the Zeckendorf representation for N. Using the uniqueness of the Zeck-
endorf representation, the positive integers can be partitioned into (r - 1) 
sets as follows: 

S± is the set of all positive integers N such that 
k = 0 (mod r) or k = 1 (mod r), 

and for integers i such that 2 ̂  i ^ v - 1, 

Si is the set of all positive integers N such that 
k = i (mod r) . 

Let the elements of the sets g., , 5o , ...,5 n be written in natural order. 
1 2 r - l 

Theorem 3«2: The sets £> > S2, . .., 6^ 1 can be characterized as follows: for 
j = 1, 2, ..., r - 1, 

Sj is the set of all positive integers which can be represented in 
the form N = (Rj + Nj+i(Rj + 1 + Nj + 2(Rj + z + ' ' ' » where each Nf e {0, 1} 
and NiNi + 1 î + r-i = 0 if i > j. 

Moreover, every positive integer has a unique representation in terms of {(Hn} 
in one of these (r - 1) forms. 

Proof: Let N be a positive integer and let (R̂  be the least term of {(Rn} used 
in the Zeckendorf representation of N. There are r cases to consider depending 
on whether k is congruent to 0, 1, 2, ..., or (r - 1) modulo r. In each of 
these cases, the uniqueness of Zeckendorf representations and one of the iden-
tities in Lemma 1.1 yield the desired representation for N; moreover, the new 
representation is unique. 

A positive integer N is represented in second canonical form in terms of 
the sequence {(Rn} if, for some m9 

N = N1(R1 + N2(R2 + . . . + Nm(Rm9 

where 

(1) each Nt e {0, 1}, 
(2) at least one of the coefficients N19 N2, ...*Nr-i i s nonzero, and 
(3) if N-j = 1, then NtNi + 1 h + r-i = 0 f o r a 1 1 i > J-

We immediately have the following corollary to Theorem 3.2. 

Corollary 3-3: Every positive integer can be uniquely represented in second 
canonical form in terms of the sequence {(Rn}. 

Finally, we have the analog to Theorem 2.4. 

Theorem 3»^: The second canonical representation of the positive integers in 
terms of the sequence {(Hn} is a lexicographic ordering. 

Proof: With notation as in the proof of Theorem 3.19 but with the representa-
tion in second canonical form, consider the truncations of M and Nt 

M* = M1(R1 + M2(RZ + •.. +Mm_1<Rm_1 +<Rm 
and 

N* = /V1(R1 + N2(R2 + ••• +N„_&m_1. 
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One of the coefficients M1, Af2 , . .., Mv_1 is nonzero; therefore, 

Af* > (R1 + (Rm > <Rm. 

In order to maximize N*9 we let 

Nm-1 = Nm-2 = ••• = ^-<r-i) = 1 

and note that the identities in Lemma 1.1 imply that the maximum possible value 
for N* is <Rm; therefore, Fv < (Rm < M* and N < M. 
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