THE RECIPROCAL OF THE BESSEL FUNCTION $J_{k}(z)$

F. T. HOWARD

Wake Forest University, Winston-Salem, NC 27109
(Submitted September 1985)

1. INTRODUCTION

For $k=0,1,2, \ldots$, let $J_{k}(z)$ be the Bessel function of the first kind. Put

$$
\begin{equation*}
f_{k}(z)=J_{k}(2 \sqrt{z}) / z^{k / 2}=\sum_{m=0}^{\infty} \frac{(-1)^{m} z^{m}}{m!(m+k)!} \tag{1.1}
\end{equation*}
$$

and define the polynomial $u_{m}(k ; x)$ by means of

$$
\begin{equation*}
k!f_{k}(x z) / f_{k}(z)=\sum_{m=0}^{\infty} u_{m}(k ; x) \frac{z^{m}}{m!(m+k)!}, \tag{1.2}
\end{equation*}
$$

Certain congruences for $\omega_{m}(x)=u_{m}(0 ; x)$ and the integers $w_{m}=w_{m}(0)$ were derived by Carlitz [3] in 1955, and an interesting application was presented.

The purpose of the present paper is to extend Carlitz's results to the polynomials $u_{m}(k ; x)$ and the rational numbers $u_{m}(k)=u_{m}(k ; 0)$.

In particular, we show in $\S \S 3$ and 4 that, if p is a prime number, $p>2 k$, and

$$
\begin{align*}
m=c_{0}+c_{1} p+c_{2} p^{2} & +\cdots\left(0 \leqslant c_{0}<p-2 k\right) \\
& \left(0 \leqslant c_{i}<p \text { for } i>0\right), \tag{1.3}
\end{align*}
$$

then

$$
\begin{align*}
& u_{m}(k) \equiv u_{c_{0}}(k) \cdot w_{c_{1}} w_{c_{2}} \cdots(\bmod p) \tag{1.4}\\
& u_{m}(k ; x) \equiv u_{c_{0}}(k ; x) \cdot w_{c_{1}}^{p}(x) \cdot w_{c_{2}}^{p^{2}}(x) \ldots(\bmod p) . \tag{1.5}
\end{align*}
$$

In §5, we prove more general congruences of this type. In §6, applications of these general results are given. Finally, in $\S 7$, we examine in more detail the positive integers $u_{n}(1)$.

2. PRELIMINARIES

Throughout the paper, we use the notation $w_{m}(x)=u_{m}(0 ; x)$ and $w_{m}=w_{m}(0)$.
In the proofs of Theorems $1-6$, we use the divisibility properties of binomial coefficients given in the lemmas below. These lemmas follow from wellknown theorems of Kummer [4] and Lucas [5].

Lemma 1: If p is a prime number, then

$$
\binom{m p}{r p} \equiv\binom{m}{p} \quad(\bmod p)
$$

A1so, if $p-2 k>s \geqslant 0$, then, for $j=s+1, s+2, \ldots, p-1$,

$$
\binom{n p+s+k}{r p+j+k}\binom{n p+s+k}{r p+j} \equiv 0 \quad(\bmod p)
$$

[Nov.

THE RECIPROCAL OF THE BESSEL FUNCTION $J_{k}(z)$
Lemma 2: Suppose p is a prime number and

$$
\begin{array}{ll}
n=n_{0}+n_{1} p+\cdots+n_{j} p^{j} & \left(0 \leqslant n_{i}<p\right), \\
r=r_{0}+r_{1} p+\cdots+r_{j} p^{j} \quad\left(0 \leqslant r_{i}<p\right),
\end{array}
$$

If, for some fixed i, we have $r_{i}>n_{i}$ and $r_{i+v} \geqslant n_{i+v}$ for $v=1, \ldots, t-1$, then

$$
\binom{n}{p} \equiv 0 \quad\left(\bmod p^{t}\right)
$$

Lemma 3: Let p be a prime number, $p>2 k$. Then

$$
\binom{n+k}{r+k}\binom{n+k}{p} /\binom{n+k}{k}
$$

is integral $(\bmod p)$ for $r=0,1, \ldots, n$ Also

$$
\begin{aligned}
& \binom{m p}{p p+k} /\binom{m p}{k} \equiv\binom{m-1}{p} \quad(\bmod p) \\
& \binom{m p}{m p-k} /\binom{m p}{k} \equiv\binom{m-1}{p-1} \quad(\bmod p)
\end{aligned}
$$

3. THE NUMBERS $u_{m}(k)$

We first note that the numbers $u_{m}(k)$ were introduced in [2], where Carlitz showed they cannot satisfy a certain type of recurrence formula.

It follows from (1.2) that

$$
\begin{equation*}
\left\{f_{k}(z)\right\}^{-1}=\sum_{m=0}^{\infty} u_{m}(k) \frac{z^{m}}{m!(m+k)!} \tag{3.1}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
& u_{0}(k)=u_{1}(k)=(k!)^{2} \\
& u_{2}(k)=(k!)^{2}(k+3) /(k+1) \\
& u_{3}(k)=(k!)^{2}\left(k^{2}+8 k+19\right) /(k+1)^{2}
\end{aligned}
$$

and

$$
\begin{equation*}
\sum_{r=0}^{m}(-1)^{r}\binom{m+k}{r+k}\binom{m+k}{r} u_{r}(k)=0 \quad(m>0) \tag{3.2}
\end{equation*}
$$

It follows from (3.2) and Lemma 3 that if p is a prime number, $p \geqslant 2 k$, then the numbers $u_{m}(k)$ are integral (mod p); in particular, $u_{n}(0)$ and $u_{n}(1)$ are positive integers for $n=0,1,2, \ldots$.

Theorem 1: If p is a prime number and if $0 \leqslant s<p-2 k$, then

$$
\begin{equation*}
u_{n p+s}(k) \equiv u_{s}(k) \cdot w_{n}(\bmod p) \tag{3.3}
\end{equation*}
$$

Proof: We use induction on the total index $n p+s$. If $n p+s=0$, (3.3) holds since $w_{0}=1$. Assume (3.3) holds for all $r p+j<n p+s$, with $j<p-2 k$. We then have, by (3.2),

$$
\begin{aligned}
(-1)^{n+s+1}\binom{s+k}{s} u_{n p+s}(k) \equiv & \sum_{r=0}^{n-1} \sum_{j=0}^{s}(-1)^{j+r}\binom{s+k}{j+k}\binom{s+k}{j}\binom{n}{r}^{2} u_{r p+j}(k) \\
& +(-1)^{n} \sum_{j=0}^{s-1}(-1)^{j}\binom{s+k}{j+k}\binom{s+k}{j} u_{n p+j}(k)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv \sum_{r=0}^{n-1}(-1)^{r}\binom{n}{p}^{2} w_{r} \cdot \sum_{j=0}^{s}(-1)^{j}\binom{s+k}{j+k}\binom{s+k}{j} u_{j}(k) \\
& \quad+(-1)^{n} w_{n} \sum_{j=0}^{s-1}(-1)^{j}\binom{s+k}{j+k}\binom{s+k}{j} u_{j}(k) \\
& \equiv \begin{cases}0+(-1)^{n+s+1}\binom{s+k}{s} w_{n} u_{s}(k) & (\bmod p) \\
(-1)^{n+1} w_{n} u_{0}(k) & \text { if } s>0 \\
(\bmod p) & \text { if } s=0\end{cases}
\end{aligned}
$$

We see that (3.3) follows, and the proof is complete.
Corollary (Carlitz): With the hypotheses of Theorem 1 and with m defined by (1.3) with $k=0$,

$$
w_{m} \equiv w_{c_{0}} w_{c_{1}} w_{c_{2}} \cdots(\bmod p)
$$

Corollary: With the hypotheses of Theorem 1 and with m defined by (1.3),

$$
u_{m}(k) \equiv u_{c_{0}}(k) \cdot w_{c_{1}} w_{c_{2}} \cdots \quad(\bmod p)
$$

Theorem 2: If p is a prime number, $p>2 k$, then

$$
u_{n p-k}(k) \equiv(-1)^{k} u_{0}(k) \cdot w_{n} \quad(\bmod p)
$$

Proof: The proof is by induction on n. For $n=1$ we have, by (3.1),

$$
\begin{aligned}
(-1)^{k} u_{p-k}(k) & \equiv \sum_{r=0}^{p-k-1}(-1)^{r}\binom{p}{r+k}\binom{p}{p} u_{r}(k) /\binom{p}{k} \\
& \equiv u_{0}(k) \equiv u_{0}(k) \cdot w_{1}(\bmod p)
\end{aligned}
$$

Theorem 2 is therefore true for $n=1$; assume it is true for $n=1, \ldots, s-1$. Then

$$
\left.\begin{array}{rl}
(-1)^{s+k+1} u_{s p-k}(k) \equiv & \sum_{r=0}^{s p+k-1}(-1)^{r}\binom{s p}{r+k}\binom{s p}{p} u_{r}(k) /\binom{s p}{k} \\
\equiv & \sum_{r=0}^{s-1}(-1)^{r}\binom{s p}{r p} k \\
& +\sum_{r=1}^{s p-1}(-1)^{r-k}\binom{s p}{r p} u_{r p}(k) /\binom{s p}{k p} \\
r p-k
\end{array}\right) u_{r p-k}(k) /\binom{s p}{k} .
$$

This completes the proof of Theorem 2.
If m is defined by (1.3) with $c_{0}=p-k$, and if $c_{i}=p-1$ for $1 \leqslant i \leqslant j-1$ with $c_{j}<p-1$, then Theorem 2 says

$$
u_{m}(k) \equiv u_{c_{0}}(k) \cdot w_{1+c_{j}} w_{c_{j+1}} w_{c_{j+2}} \cdots \quad(\bmod p)
$$

In particular, if $p>2 k$, and $n=p^{t}-k$,

$$
u_{n}(k) \equiv u_{p-k}(k) \equiv(-1)^{k} u_{0}(k) \equiv(-1)^{k}(k!)^{2} \quad(\bmod p)
$$

4. THE POLYNOMIALS $u_{m}(k ; x)$

We now consider the polynomials $u_{m}(k ; x)$ defined by (1.2). It is clear that

$$
u_{m}(k ; 0)=u_{m}(k), \quad u_{m}(k, 1)=0 \quad(m>0) .
$$

A1so, it follows from (1.1) and (1.2) that

$$
\begin{equation*}
\binom{m+k}{k} u_{m}(k ; x)=\sum_{r=0}^{m}(-1)^{m-r}\binom{m+k}{r+k}\binom{m+k}{r} u_{r}(k) x^{m-r} \tag{4.1}
\end{equation*}
$$

Theorem 3: If p is a prime number and if $0 \leqslant s<p-2 k$, then

$$
\begin{equation*}
u_{n p+s}(k ; x) \equiv u_{s}(k ; x) \cdot w_{n p}(x) \quad(\bmod p) . \tag{4.2}
\end{equation*}
$$

Proof: The proof is by induction on the total index $n p+s$. We first note that

$$
u_{0}(k ; x) \equiv u_{0}(k ; x) \cdot w_{0}(x) \quad(\bmod p),
$$

since $w_{0}(x)=1$.
Assume (4.2) is true for all $r p+j<n p+s$ with $0 \leqslant j<p-2 k$. Then, by (4.1) and (3.3),

$$
\begin{aligned}
& \binom{s+k}{s} u_{n p+s}(k ; x) \equiv \sum_{r=0}^{n p+s}(-1)^{n-s-r}\binom{n p+s+k}{p}\binom{n p+s+k}{r+k} u_{r}(k) x^{n p+s-r} \\
& \equiv \sum_{j=0}^{s} \sum_{r=0}^{n}\binom{n p+s+k}{r p+j}\binom{n p+s+k}{r p+j+k}(-1)^{n+s+j+r} u_{r p+j}(k) x^{n p-r p+s-j} \\
& \equiv \sum_{j=0}^{s} \sum_{r=0}^{n}\binom{n}{r}^{2}\binom{s+k}{j}\binom{s+k}{j+k}(-1)^{n+s+j+r} w_{r} u_{j}(k) x^{n p-r p+s-j} \\
& \equiv \sum_{j=0}^{s}\binom{s+k}{j}\binom{s+k}{j+k}(-1)^{s+j} u_{j}(k) x^{s-j} \cdot \sum_{r=0}^{n}\binom{n}{r}^{2}(-1)^{n-r} w_{r} x^{n p-r p} \\
& \equiv\binom{s+k}{k} u_{s}(k ; x) \cdot w_{n}\left(x^{p}\right) \equiv\binom{s+k}{s} u_{s}(k ; x) \cdot w_{n p}(x) \quad(\bmod p) .
\end{aligned}
$$

This completes the proof of Theorem 3. We note that Theorem 1 was used in the proof.

Corollary (Carlitz): With the hypotheses of Theorem 3 and with m defined by (1.3) with $k=0$,

$$
w_{m}(x) \equiv w_{c_{0}}(x) \cdot w_{c_{1}}^{p}(x) \cdot w_{c_{2}}^{p^{2}}(x) \ldots \quad(\bmod p) .
$$

Corollary: With the hypotheses of Theorem 3 and with m defined by (1.3),

$$
u_{m}(k ; x) \equiv u_{c_{0}}(k ; x) \cdot w_{c_{1}}^{p}(x) \cdot w_{c_{2}}^{p^{2}}(x) \ldots(\bmod p)
$$

5. GENERAL RESULTS

For each integer $k \geqslant 0$, let $\left\{F_{n}(k)\right\}$ and $\left\{G_{n}(k)\right\}, n=0,1,2, \ldots$, be polynomials in an arbitrary number of indeterminates with coefficients that are integral $(\bmod p)$ for $p>2 k$. We use the notation $F_{n}(0)=F_{n}$ and $G_{n}(0)=G_{n}$, and we assume $F_{0}=G_{0}=1$. For each m of the form (1.3), suppose

$$
\begin{equation*}
F_{m}(k) \equiv F_{c_{0}}(k) \cdot F_{c_{1}}^{p} \cdot F_{c_{2}}^{p^{2}} \cdots(\bmod p), \tag{5.1}
\end{equation*}
$$

1987]

$$
\begin{equation*}
G_{m}(k) \equiv G_{c_{0}}(k) \cdot G_{c_{1}}^{p} \cdot G_{c_{2}}^{p^{2}} \cdots(\bmod p) \tag{5.2}
\end{equation*}
$$

For each integer $k \geqslant 0$, define $H_{n}(k)$ and $Q_{n}(k)$ by means of

$$
\begin{equation*}
\binom{n+k}{n} H_{n}(k)=\sum_{r=0}^{n}(-1)^{n-r}\binom{n+k}{r}\binom{n+k}{r+k} F_{r}(k) G_{n-r}(k) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{n+k}{k} F_{n}(k)=\sum_{r=0}^{n}(-1)^{n-r}\binom{n+k}{r}\binom{n+k}{r+k} Q_{r}(k) G_{n-r}(k) . \tag{5.4}
\end{equation*}
$$

Theorem 4: Let the sequences $\left\{H_{n}(k)\right\}$ and $\left\{Q_{n}(k)\right\}$ be defined by (5.3) and (5.4), respectively, and let $H_{j}=H_{j}(0), Q_{j}=Q_{j}(0)$. If p is a prime, $0 \leqslant s \leqslant p-2 k$, then

$$
\begin{equation*}
H_{n p+s}(k) \equiv H_{s}(k) \cdot H_{n p}(\bmod p) \tag{5.5}
\end{equation*}
$$

If $G_{0}(k) \not \equiv 0(\bmod p)$, we also have

$$
\begin{equation*}
Q_{n p+s}(k) \equiv Q_{s}(k) \cdot Q_{n p} \quad(\bmod p) \tag{5.6}
\end{equation*}
$$

Proof: From (5.3), we have

$$
\begin{aligned}
\binom{s+k}{s} H_{n p+s}(k) & \equiv \sum_{j=0}^{s} \sum_{r=0}^{n}(-1)^{n+s+r+j}\binom{n p}{r p}^{2}\binom{s+k}{j}\binom{s+k}{j+k} F_{r p+j}(k) G_{n p-r p+s-j}(k) \\
& \equiv \sum_{j=0}^{s}(-1)^{s+j}\binom{s+k}{j}\binom{s+k}{j+k} F_{j}(k) G_{s-j}(k) \cdot \sum_{r=0}^{n}(-1)^{n+r}\binom{n}{r}^{2} F_{r}^{p} G_{n-r}^{p} \\
& \equiv\binom{s+k}{s} H_{s}(k) \cdot H_{n}^{p} \equiv\binom{s+k}{s} H_{s}(k) \cdot H_{n p}(\bmod p) .
\end{aligned}
$$

This completes the proof of (5.5).
As for (5.6), we first observe that for $n=0$ and $0 \leqslant s<p-2 k$, congruence (5.6) is valid. Assume that (5.6) is true for all $r p+j<n p+s$ with $0 \leqslant j<p-2 k$. Then, from (5.4), we have

$$
\begin{aligned}
\binom{s+k}{s} F_{n p+s}(k) \equiv & \sum_{j=0}^{s} \sum_{r=0}^{n}(-1)^{n+s+r+j}\binom{n p}{r p}^{2}\binom{s+k}{j}\binom{s+k}{j+k} Q_{r p+j}(k) G_{n p-r p+s-j}(k) \\
\equiv & \sum_{j=0}^{s}(-1)^{s-j}\binom{s+k}{j}\binom{s+k}{j+k} Q_{j}(k) G_{s-j}(k) \cdot \sum_{r=0}^{n}(-1)^{n-r}\binom{n}{p}^{2} Q_{r}^{p} G_{n-r}^{p} \\
& -\binom{s+k}{s} Q_{s}(k) G_{0}(k) Q_{n}^{p}+\binom{s+k}{s} Q_{n p+s}(k) G_{0}(k) \\
\equiv & \binom{s+k}{s} F_{s}(k) \cdot F_{n}^{p}-\binom{s+k}{s} Q_{s}(k) G_{0}(k) Q_{n}^{p} \\
& +\binom{s+k}{s} Q_{n p+s}(k) G_{0}(k)(\bmod p) .
\end{aligned}
$$

Now, since $F_{n p+s}(k) \equiv F_{s}(k) \cdot F_{n p}(\bmod p)$, we have

$$
Q_{n p+s}(k) \equiv Q_{s}(k) \cdot Q_{n}^{p} \equiv Q_{s}(k) \cdot Q_{n p}(\bmod p),
$$

and the proof is complete.
Corollary (Carlitz): Using the hypotheses of Theorem 4 with m defined by (1.3) and $k=0$,

$$
H_{m} \equiv H_{c_{0}} \cdot H_{c_{1}}^{p} \cdot H_{c_{2}}^{p^{2}} \cdots \quad(\bmod p),
$$

$$
Q_{m} \equiv Q_{c_{0}} \cdot Q_{c_{1}}^{p} \cdot Q_{c_{2}}^{p^{2}} \cdots \quad(\bmod p)
$$

Corollary: Using the hypotheses of Theorem 4 with m defined by (1.3), $H_{m}(k) \equiv H_{c_{0}}(k) \cdot H_{c_{1}}^{p} \cdot H_{c_{2}}^{p^{2}} \cdots(\bmod p)$.

If $G_{0}(k) \not \equiv 0(\bmod p)$, we also have

$$
Q_{m}(k) \equiv Q_{c_{0}}(k) \cdot Q_{c_{1}}^{p} \cdot Q_{c_{2}}^{p^{2}} \cdots(\bmod p)
$$

6. APPLICATIONS

As an application of Theorem 4, for each integer $\mathcal{k} \geqslant 0$ consider the expansion

$$
\begin{equation*}
(k!)^{r+s-1} \frac{f_{k}\left(x_{1} z\right) \cdots f_{k}\left(x_{r} z\right)}{f_{k}\left(y_{1} z\right) \cdots f_{k}\left(y_{s} z\right)}=\sum_{n=0}^{\infty} F_{n}(k) \frac{z^{m}}{n!(n+k)!} \tag{6.1}
\end{equation*}
$$

where $f_{k}(z)$ is defined by (1.1), r, s are arbitrary nonnegative integers, and the x_{i}, y_{i} are indeterminates (not necessarily distinct). By (1.1) and (3.1), $F_{n}(k)$ is a polynomial in x_{1}, \ldots, x_{r}, and y_{1}, \ldots, y_{s} with coefficients that are integral $(\bmod p)$ if $p>2 k$. The following result may be stated.

Theorem 5: If m is of the form (1.3), then the polynonial $F_{m}(k)$ defined by (6.1) satisfies

$$
F_{m}(k) \equiv F_{c_{0}}(k) \cdot F_{c_{1}}^{p} \cdot F_{c_{2}}^{p^{2}} \cdots \quad(\bmod p)
$$

where $F_{j}=F_{j}(0)$. In particular, if the x_{i}, y_{i} are replaced by rational numbers that are integral $(\bmod p)$, then

$$
F_{m}(k) \equiv F_{c_{0}}(k) \cdot F_{c_{1}} F_{c_{2}} \cdots \quad(\bmod p)
$$

As a special case of (6.1), we may take

$$
(k!)^{r-1}\left\{f_{k}(z)\right\}^{-r}=\sum_{n=0}^{\infty} u_{n}^{(r)}(k) \frac{z^{n}}{n!(n+k)!} .
$$

Then the $u_{n}^{(r)}(k)$ are integral $(\bmod p)$ if $p>2 k$, and they satisfy

$$
u_{m}^{(r)}(k) \equiv u_{c_{0}}^{(r)}(k) \cdot u_{c_{1}}^{(r)}(0) \cdot u_{c_{2}}^{(r)}(0) \ldots \quad(\bmod p)
$$

for all r (positive or negative).

7. THE NUMBERS $u_{n}(1)$

For $n=0,1,2, \ldots$, let $w_{n}=u_{n}(0)$ and let $u_{n}=u_{n}(1)$. The positive integers w_{n} were studied by Carlitz [3] and were shown to satisfy (1.4) (with $k=$ 0). Since the u_{n} are also positive integers, it may be of interest to examine their properties in more detail. The generating function and recurrence formula are given by (1.1), (3.1), and (3.2) with $k=1$. From them we can compute the following values:

$$
\begin{array}{ll}
u_{0}=u_{1}=1 & u_{5}=321 \\
u_{2}=2 & u_{6}=3681 \\
u_{3}=7 & u_{7}=56197 \\
u_{4}=39 & u_{8}=1102571
\end{array}
$$

Suppose that p is an odd prime number and that m is defined by (1.3) with $0 \leqslant c_{0} \leqslant p-3$. Then, by Theorems 1 and 2 , we have

$$
\begin{align*}
& u_{m} \equiv u_{c_{0}} w_{c_{1}} w_{c_{2}} \cdots \quad(\bmod p), \tag{7.1}\\
& u_{n p+(p-1)} \equiv-w_{n+1} \quad(\bmod p) . \tag{7.2}
\end{align*}
$$

The case $c_{0}=p-2$ is considered in the next theorem. This theorem makes use of the positive integers h_{n} defined by means of

$$
\begin{equation*}
\left\{J_{1}(z)\right\}^{2} /\left\{J_{0}(z)\right\}^{3}=\sum_{n=0}^{\infty} h_{n} \frac{(z / 2)^{2 n}}{n!n!} \tag{7.3}
\end{equation*}
$$

These numbers are related to the integers α_{n} defined by Carlitz [1]:

$$
\alpha_{n}=2^{2 n} n!(n-1)!\sigma_{2 n}(0)
$$

where $\sigma_{2 n}(0)$ is the Rayleigh function. It can be determined from properties of a_{n} that a generating function is

$$
\begin{equation*}
J_{1}(z) / J_{0}(z)=\sum_{n=1}^{\infty} a_{n} \frac{(z / 2)^{2 n-1}}{n!(n-1)!} \tag{7.4}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left\{J_{1}(z) / J_{0}(z)\right\}^{2}=\sum_{n=1}^{\infty} a_{n+1} \frac{(z / 2)^{2 n}}{n!n!} \tag{7.5}
\end{equation*}
$$

Now it follows from (3.1), (7.3), and (7.5) that

$$
\begin{align*}
& h_{n}=\sum_{r=0}^{n-1}\binom{n}{r}^{2} w_{r} a_{n+1-r} \quad(n>0) \tag{7.6}\\
& (-1)^{n} a_{n+1}=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}^{2} h_{r} \quad(n>0) \tag{7.7}
\end{align*}
$$

The first few values of h_{n} are $h_{0}=0, h_{1}=1, h_{2}=8, h_{3}=96, h_{4}=1720$.
In the proof of Theorem 6, we use the relationship

$$
\begin{equation*}
\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{r}\binom{n}{r+1} w_{r+1}=(-1)^{n+1} a_{n+1} \tag{7.8}
\end{equation*}
$$

which follows from (7.4).
Theorem 6: If p is an odd prime number, then

$$
u_{n p+(p-2)} \equiv u_{p-2} w_{n}-h_{n}(\bmod p),
$$

where h_{n} is defined by (7.3).
Proof: The proof is by induction on n. The theorem is true for $n=0$, since $h_{0}=0$ and $w_{0}=1$. Assume that Theorem 6 is true for $n=0, \ldots, s-1$. Then by (3.2), (7.1), (7.2), and (7.8) we have

$$
\begin{aligned}
(-1)^{s-1} u_{s p+(p-2)} \equiv & \sum_{r=0}^{s} \sum_{j=0}^{p-3}(-1)^{r+j}\binom{s p+p-1}{r p+j}\binom{s p+p-1}{p p+j+1} u_{r p+j} \\
& +\sum_{r=0}^{s-1} \sum_{j=p-2}^{p-1}(-1)^{r+j}\binom{s p+p-1}{r p+j}\binom{s p+p-1}{r p+j+1} u_{r p+j}
\end{aligned}
$$

$$
\begin{aligned}
\equiv & \sum_{r=0}^{s}(-1)^{r}\binom{s}{p}^{2} w_{r} \cdot \sum_{j=0}^{p-3}(-1)^{j}\binom{p-1}{j}\binom{p-1}{j+1} u_{j}+u_{p-2} \sum_{r=0}^{s-1}(-1)^{r}\binom{s}{r}^{2} w_{r} \\
& +\sum_{r=0}^{s-1}(-1)^{r+1}\binom{s}{r}^{2} h_{r}+\sum_{r=0}^{s-1}(-1)^{r+1}\binom{s}{r}\binom{s}{r+1} w_{r+1} \\
\equiv & (-1)^{s-1} u_{p-2} w_{s}+(-1)^{s} h_{s}+(-1)^{s-1} a_{s+1}+(-1)^{s} a_{s+1} \\
\equiv & (-1)^{s-1}\left(u_{p-2} w_{s}-h_{s}\right) \quad(\bmod p) .
\end{aligned}
$$

This completes the proof of Theorem 6.
Using (7.7) we can prove, for $p>2$,

$$
\begin{aligned}
& h_{n p+s} \equiv h_{s} w_{n} \quad(\bmod p) \quad(0 \leqslant s \leqslant p-2), \\
& h_{n p+(p-1)} \equiv h_{p-1} w_{n}+h_{n} \quad(\bmod p) .
\end{aligned}
$$

Theorem 6 can be refined by means of these congruences. For example, if m is defined by (1.3) with $c_{0}=p-2$ and $c_{1}=0$, we have

$$
u_{m} \equiv u_{c_{0}} w_{c_{1}} w_{c_{2}} \cdots \quad(\bmod p)
$$

The proofs in this section are not valid for $p=2$. However, it is not difficult to show by induction that if $m \nexists 2$ (mod 4) then u_{m} is odd. The proof is similar to the proofs of Theorems $1-6$. If $m \equiv 2(\bmod 4)$, we can write

$$
m=4 n+2=2^{v+1} j+2^{v}-2
$$

for some $v>1$. Using (3.2) and induction on n, we can prove

$$
u_{m} \equiv\left\{\begin{array}{l}
0(\bmod 2) \\
1(\bmod 2)
\end{array} \text { if } v \text { is even },\right.
$$

Thus, for $p=2$, we have the following theorem.
Theorem 7: If $m=c_{0}+c_{1} 2+c_{2} 2^{2}+\cdots$, with each $c_{i}=0$ or 1 , then $u_{m} \equiv u_{c_{0}} u_{c_{1}} u_{c_{2}} \ldots(\bmod 2)$,
unless $m=2^{v+1} j+2^{v}-2$ with v even, $v \geqslant 2$.

REFERENCES

1. L. Carlitz. "A Sequence of Integers Related to the Bessel Functions." Proc. Amer. Math. Soc. 14 (1963):1-9.
2. L. Carlitz. "The Coefficients of the Reciprocal of a Bessel Function." Proc. Amer. Math. Soc. 15 (1964):318-20.
3. L. Carlitz. "The Coefficients of the Reciprocal of $J_{0}(x) . "$ Arc. Math. 6 (1955):121-27.
4. E. Kummer. "Über die Ergänzungssätze zu den Allgemeinen Reciprocitätsgesetzen." J. Reine Angew. Math. 44 (1852):93-146.
5. E. Lucas. "Sur les congruences des nombres eulériens et des coefficients différentiéls...". Bull. Soc. Math. France 6 (1878):49-54.
