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1. INTRODUCTION

For k =0, 1, 2, ..., let Jy (2) be the Bessel function of the first kind.
Put
P _ k/2 _ ¥ (="="
£ (&) = 7, (2V2) /2 Y oo (1.1)
and define the polynomial u,(k; x) by means of
1 - 2"
klf, (xz)/f, (2) —nzijum(k, )T T )1’ (1.2)

Certain congruences for w,(xr) = u,(0; x) and the integers w, = w,(0) were de-
rived by Carlitz [3] in 1955, and an interesting application was presented.

The purpose of the present paper is to extend Carlitz's results to the
polynomials u,(k; x) and the rational numbers u,(k) = u,(k; 0).

In particular, we show in 8§83 and 4 that, if p is a prime number, p > 2k,

and
m=cy+ep+e,p’+ (0S¢, <p -2k
(0<¢; <p for ¢ >0), (1.3)
then
Up(k) = u, (k) *we we, ... (mod p), (1.4)
u,k; x) = uco(k; x) - wgl(x) -wgf(x) «e. (mod p). (1.5)

In §5, we prove more general congruences of this type. 1In §6, applications of
these general results are given. Finally, in 87, we examine in more detail the
positive integers u,(1).

2. PRELIMINARIES

Throughout the paper, we use the notation w,(x) = u,(0; x) and Wy = w,(0).

In the proofs of Theorems 1-6, we use the divisibility properties of bino-
mial coefficients given in the lemmas below. These lemmas follow from well-
known theorems of Kummer [4] and Lucas [5].

Lemma 1: If p is a prime number, then

(7p) = (7)) @ea -

Also, if p - 2k > s 2 0, then, for j =s +1, s +2, ..., p — 1,

np +s + ky\(np +s + k
(o )

rp + g +k rp + g ) =0 (mod p).
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Lemma 2: Suppose p is a prime number and
ny +mp + o +upd (0 <ny; < p),
r=r,t+rp+ - +rpl (0< 7 <p),

N
1

If, for some fixed 7, we have r, > n, and T, > n;,, forv =1,...,¢t-1,

then " ‘
()

Lemma 3: Let p be a prime number, p > 2k. Then
Gl O

is integral (mod p) for »r = 0, 1, ..., n. Also
lp 5 /%)
(2 /(%)

0 (mod pt).

i

11

(m ; 1) (mod p),
(

1) mod p).

3. THE NUMBERS u, (k)

We first note that the numbers u, (k) were introduced in [2], where Carlitz
showed they cannot satisfy a certain type of recurrence formula.

It follows from (1.2) that
Zm

{f%(Z)}_l =3 u, k) mim ¥ k)L (3.1)

m=0
Thus, we have

uy (k) = uy (k) = (k1)?,

u, (k) = (kN?(k + 3)/(k + 1),
u, (k) = (K1DZ (K> + 8k + 19)/(k + 1),
and
= r(m+ kx/m+ k .
TG e =0 >0, (3.2)

It follows from (3.2) and Lemma 3 that if p is a prime number, p= 2k, then
the numbers u,(k) are integral (mod p); in particular, u,(0) and u,(l) are
positive integers for n =0, 1, 2,

Theorem 1: If p is a prime number and if 0 < s <p - 2k, then
unp+s(k) Zu (k) *w, (mod p). (3.3)
Proof: We use induction on the total index mp + s. If wp +s = 0, (3.3) holds

since w, = 1. Assume (3.3) holds for all rp + j < mp + s, with § <p - 2k. We
then have, by (3.2),

(_1)n+s+1<8 +'k)unp+s(k) 51351 .53 (_1)j+r(§ : i)(s + k)(n)zufp+j(k)

s r=0 Jg=0 J r

F e B e (G L s
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i

T (e £ (S TR § o

s-1 )
v v Eeni(s LR 1

Ju; (%)
. {o + (-1 er(® ; k)wnus(k) (mod p) if s > 0,

(-1)""Yw u (k) (mod p) if s = 0.
We see that (3.3) follows, and the proof is complete.

Corollary (Carlitz): With the hypotheses of Theorem ! and with m defined by
(1.3) with k& = 0,

We, We, Ve, (mod p).

Corollary: With the hypotheses of Theorem 1 and with m defined by (1.3),
up(k) = uco(k) "W, We ... (mod p).

Theorem 2: 1If p is a prime number, p > 2k, then
Upp- 1 R) = (=D*u (F) *w, (mod p).

Proof: The proof is by induction on n. For n = 1 we have, by (3.1),

p-k-1

D7, 5 ) (D 0/ (F)

r=0

(=1)fu, 4 (k)

i

uo(k) = uo(k)~ W, (mod p).

Theorem 2 is therefore true for m = 1; assume it is true forn =1, ...,8 - 1.

Then
sptk-1

O, @ = T D7) (P /()

r=0

s-1
&, Y (rpsi k)(ig)”fp (k)/<87<p)
s-1

VE () s D)

r=1

1

s-1

T () o m, + E 7 (2)(ED ) Gom,

r

i

st \r(S)\? — s-1
4 () T 1" (3) wp = 177wy Gy (mod p)

This completes the proof of Theorem 2.
1f m is defined by (1.3) with ¢; = p - k, and if ¢; = p - 1 for 1<2<g-1
with ¢; <p - 1, then Theorem 2 says
Up(k) = uq, (k) - W4 g, Ve

J+1

We,,, (mod p).

In particular, if p > 2k, and n = pt - k,
U (k) = uy (k) = (~D*ug(k) = D*EDH? (mod p).
306 [Nov.
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THE RECIPROCAL OF THE BESSEL FUNCTION o, (2)

L. THE POLYNOMIALS u, (k; x)

We now consider the polynomials u,(k; x) defined by (1.2). It is clear
that
u,(k; 0) =u,(k), wu,(k, 1) =0 (m>0).

Also, it follows from (l1.1) and (1.2) that

(m Z k)um(k; x) = Pé)(_l)m-r(?; I i)(m ;— k)ur(k)xm—z’. .1

Theorem 3: If p is a prime number and if 0 < s < p - 2k, then
Uppr o (K3 @) = ug (k5 @) * wyp (x)  (mod p). (4.2)

Proof: The proof is by induction on the total index wp+s. We first note that
uo(k; x) = uo(k; x) * wo(x) (mod p),
since w,(x) = 1.

Assume (4.2) is true for all rp + j < mp + s with 0 < jJ < p - 2k. Then, by
(4.1) and (3.3),

(S : k)unp+s(k; x) = f%;:(_1)n—s-r(np4;?4—k)(np;;?;—k>ur(k)xnp+s_p
SR TG ALA TSI ST A IO S
TR )G e T My g ere
j=0 r=
) jzi:o (8 ; k)(j i 2)(‘1)8”% (k)xs_j'é:o(Z)z(—l)n_rwpx”P—fp
= <s Z k)us(k; x) »w,(x?) = <S ;k)us (ks @) * w0y (@) (mod p).

This completes the proof of Theorem 3. We note that Theorem 1 was used in the
proof.

Corollary (Carlitz): With the hypotheses of Theorem 3 and with m defined by
(1.3) with k = 0,

W, (@) = w, (@) +wl (@) vl @ ... (mod p).

Corollary: With the hypotheses of Theorem 3 and with m defined by (1.3),

u, (ks x) = uco(k; x) 'ng(x). wf:(x) «e. (mod p).

5. GENERAL RESULTS

For each integer k = 0, let {F,(k)} and {G,(k)}, n =0, 1, 2, ..., be poly-
nomials in an arbitrary number of indeterminates with coefficients that are
integral (mod p) for p > 2k. We use the notation F,(0) = F, and G,(0) = G,,

and we assume FO =G, = 1. For each m of the form (1.3), suppose

F (k) =F, (k) F. -Eﬁj... (mod p), (5.1)
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Gn(k) = Go, (k) GE - GL ... (mod p). (5.2)
For each integer k 2> 0, define H,(k) and ¢,(k) by means of
n+ k _n _«n—r?’l‘i‘k n+ k
e - B s 5
an :
n+ k R wm-r(n + ky/n + k
(59700 = £ ot LR L E)e w06, 0. o

Theorem 4: Let the sequences {H,(k)} and {g,(k)} be defined by (5.3) and (5.4),
respectively, and let H; =H;(0), Qj=Qj(O). If p is a prime, 0 <s <p - 2k,
then '

Hopso(k) = Hy(k) ~ By (mod D). (5.5)
If Gy(k) # 0 (mod p), we also have

@pisk) = @,(k) g, (mod p). (5.6)

Proof: From (5.3), we have

(s ;—k) NG J‘_['o r}:o( I)MSH”(ZZ;) (s ; k)(j i ;z) Frpis GGy iy (KD

11

}i:o -1 S+J(S :; k><J >F (G, () - Z”: (_l)mr(@z&pai}_r

= (s +k)H (k) - anz (s +Z<>H (%) -

This completes the proof of (5.5).

H,, (mod p).

As for (5.6), we first observe that for n = 0 and 0 < ¢ <p - 2k, congru-
ence (5.6) is valid. Assume that (5.6) is true for all rp + J < np + s with
0<j<p-2k. Then, from (5.4), we have

‘7<S : k>Fw.p+s(k) = ] n+s+f’+j<”p)r (S ; k)( j i) Drpsj KIGrp = rpt s~ 7(K)

™
M

rp J

I
L0
~

R B, E e

- (7 F)e, g, 06F + (7 F ., toe, (0

i
T~
[va)
+

I E R L () IO LT

(8“;'7(

Now, since F, ., (k) = F, (k) *

+ )an+s(k)GO (k) - (mod p).

np (mod p), we have

Qpss®) 2 QG0+ Q) = Q (k) - (mod p),

9.
and the proof is complete.
Corollary (Carl itz): Using the hypotheses of Theorem 4 with » defined by (1.3)
and kK =
- P p?
H, =H, *H, *H, ... (modp),
308 ! [Nov.
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2

Q, =@, -, - e (mod p).

m ey e,
Corollary: Using the hypotheses of Theorem 4 with m defined by (1.3),
B,(k) = H, (k) - HE +HD ... (mod p).
If Gy(k) 2 0 (mod p), we also have
9, () =@, () -QF +QF ... (mod p).

6. APPLICATIONS

As an application of Theorem 4, for each integer k¥ 2 0 consider the expan-
sion
f%(xlz) cee f%(xrz) ©

= 2 F (k)

(k1)Fre-! ~'__Z_’"___T
w2 - 2 T nl(n + k)!

(6.1)

where f) (z) is defined by (1l.1), », s are arbitrary nomnegative integers, and
the x;, y, are indeterminates (not necessarily distinct). By (l.1) and (3.1),
F,(k) is a polynomial in &;s «+.s Tp> and y;5 ..., ¥ with coefficients that are
integral (mod p) if p > 2k. The following result may be stated.

Theorem 5: If m is of the form (1.3), then the polynonial F, (k) defined by
(6.1) satisfies
2
Fo(k) = F, (k) +F; +Fy ... (modp),

Cy

where F; = F;(0). 1In particular, if the x, y, are replaced by rational num-
bers that are integral (mod p), then

F,(k) = F, (k) *F, F, ... (mod p).
As a special case of (6.1), we may take

Z?Z

D" Hf (T = ;g%uﬁ”<k)%7?;—;—;y;-

Then the u%ﬁ(k) are integral (mod p) if p > 2k, and they satisfy
ul(k) = u(:o)(k) - u(0) - ug;><0) ... (mod p)

for all r (positive or negative).

7. THE NUMBERS u, (1)

For n = 0,1, 2, ..., let w, = u,(0) and let u, = u,(l). The positive inte-
gers w, were studied by Carlitz [3] and were shown to satisfy (1.4) (with k =
0). Since the u, are also positive integers, it may be of interest to examine
their properties in more detail. The generating function and recurrence for-
mula are given by (1.1), (3.1), and (3.2) with kK = 1. From them we can compute
the following values:

Uy = u; =1 ug = 321

y Up = 2 ug = 3681
Uy =7 u, = 56197
u, = 39 ug = 1102571
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Suppose that p is an odd prime number and that m is defined by (1.3) with
0 < c, < p - 3. Then, by Theorems 1 and 2, we have

U, = Ue,We, We, = «- (mod p), (7.1)

m

Unp+ (p-1) = W,y (mod p). (7.2)

The case ¢, = p - 2 is considered in the next theorem. This theorem makes
use of the positive integers %, defined by means of

2n
(7, () Y217, () }® = ): B, B2 (7.3)

nin!

These numbers are related to the integers a, defined by Carlitz [1]:
a, = 2""nt(n - 1)1o, (0),

where 0,, (0) is the Rayleigh function. It can be determined from properties of
a, that a generating function is

o 2 2n -1
HOVZNORES S LD (7.4)
as well as
o 2n
U, @) = % a,,, EE— (7.5)

n=1

Now it follows from (3.1), (7.3), and (7.5) that

h, = % (”)zwranu_p (n>0), (7.6)

- )’:_1;0 (-1)1”(?,)2;1? > 0). (7.7)

The first few values of h, are hy =0, h, =1, h, = 8, hy = 96, h, = 1720.

In the proof of Theorem 6, we use the relationship

g;( D ( >(T Z 1) 1 (—1)n+1an+1’ (7.8)

which follows from (7.4).

Theorem 6: 1If p is an odd prime number, then

Upps (p-2) = Up_o¥0, = h, (mod p),

where h, is defined by (7.3).

Proof: The proof is by induction on n. The theorem is true for = = 0, since
hy = 0 and wy = 1. Assume that Theorem 6 is true for n = 0, ..., 8 — 1. Then
by (3.2), (7.1), (7.2), and (7.8) we have

8 -3
~1)s-1 = _1yrti(sp tp - yep +p -1 ,
D" Ugpr -2y = 2 _;0( b rp + § )(rp +7 + 1)
5t +p -1 +p -1
FEE (P S E LT D e

r=0 j=p-2 rp +J
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= r‘zj“,()(—l)”(f,)zwp : :Z;i(j(-l)j(p PR A “p-zj,z;:;(‘”r(fz)z”r
A 1 P

1l

s-1 s s-1 s
(-1 up-zws + (1), + (-1) Ay (-1 As 41

i

(-1)3’1(“p-zws - hy) (mod p).

This completes the proof of Theorem 6.
Using (7.7) we can prove, for p > 2,
Puprs = hew, (mod p) (0K s<p - 2),

h = h,_w, +h, (modp).

np+ (p-1)

Theorem 6 can be refined by means of these congruences. For example, if m is
defined by (1.3) with ¢; = p - 2 and ¢, = 0, we have

Uy = Ug Wo W, «-- (mod p).

The proofs in this section are not valid for p = 2. However, it is not
difficult to show by induction that if m # 2 (mod 4) then u, is odd. The proof
is similar to the proofs of Theorems 1-6. If m = 2 (mod 4), we can write

m=tdn+ 2 =2"%17 4+ 27 -2
for some v > 1. Using (3.2) and induction on »n, we can prove

0 (mod 2) if v is even,
1 (mod 2) if v is odd.

um
Thus, for p = 2, we have the following theorem.

Theorem 7: If m = ¢, + ¢,2 + ¢,2* + +-+, with each ¢, = 0 or 1, then

Uu

m = Up Yo e, woe (mod 2),

unless m = 2°%1j 4+ 2Y - 2 with v even, v = 2.
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