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1. INTRODUCTION 

For k = 09 1, 2, . .., let: Jk(z) be the Bessel function of the first kind. 
Put 

m „m 

and define the polynomial um(k; x) by means of 

klfk(xz)/fkW = Zum(k; x ) m l ( m
z

+ k ) l , (1.2) 

Certain congruences for wm(x) = um(0; x) and the integers wm = Wm(0) were de-
rived by Carlitz [3] in 1955, and an interesting application was presented. 

The purpose of the present paper is to extend Carlitzfs results to the 
polynomials um(k; x) and the rational numbers um(k) = um(k; 0). 

In particular, we show in §§3 and 4 that, if p is a prime number, p > 2k9 
and 

m = oQ + o±p + cjp2 + - - • (0 < cQ < p - 2k) 

(0 < oi < p for i > 0), (1.3) 
then 

um(k) = uCo(k) • wCiWC2 ... (mod p ) , (1.4) 

um(k; x) = uCo(k; x) • wCi(x) • w%2(x) ... (mod p) . (1.5) 

In §5, we prove more general congruences of this type. In §6, applications of 
these general results are given. Finally, in §7, we examine in more detail the 
positive integers un(l). 

2. PRELIMINARIES 

Throughout the paper, we use the notation Wm(x) - um(0; x) and wm = ZJOT(0). 

In the proofs of Theorems 1-6, we use the divisibility properties of bino-
mial coefficients given in the lemmas below. These lemmas follow from well-
known theorems of Kummer [4] and Lucas [5]. 

Lemma 1: If p is a prime number, then 

©M™) <~p>-
Also, if p - 2k > s ^ 0, then, for j = s + 1, s + 2 , . . . , p - l , 

,rvg +s +kunp + e + k\ B Q ( }> 
\rp + j + kl\ TV + j / r 
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Lemma 2: Suppose p is a prime number and 

n = nQ + n^p + ••- + n-p3 (0 < ni < p ) , 

p = P0 + Pxp + •.. + r^pJ (0 < vt < p)5 

If 5 for some fixed i, we have r- > n- and v. , > n-^ for y = l,...,t-l, 
then 

(£) ~ 0 (mod p*). 

Lemma 3: Let p be a prime number, p > 2fc. Then 

/n + /c\/n + fe\//n + k\ 
\r + &A r ) / \ k ) 

is integral (mod p) for v = 09 1, ... . , n. Also 

(^) / (7)MV) <-p>-

3- THE NUMBERS wm(fe) 

We first note that the numbers um(k) were introduced in [2], where Carlitz 
showed they cannot satisfy a certain type of recurrence formula. 

It follows from (1.2) that 

Thus , we have u0(k) = u±(k) = (kl)\ 

uAk) = (kl)2(k + 3)/(fc + 1), 

*3VAW - ^;2'7-2 -" °7- ̂  ^ / ^ - ^ 2 

and 

u3(k) = (k!)2(&2 + Sk + 19)/(fc + 1)2
S 

£<-l>r(ZtkT$k)u*™ - ' ° (/??>0)- (3-2) 

It follows from (3.2) and Lemma 3 that if p is a prime number9 p> 2k5 then 
the numbers um(k) are integral (mod p); in particulars un(0) and wn(l) are 
positive integers for n = 0 5 ls 25 ... . 

Theorem 1: If p is a prime number and if 0 ̂  s < p - 2k, then 
wwp + e(k) = u8(k) • wn' (mod p). (3.3) 

Proof: We use induction on the to t a l index np + s. If np + s = 0, (3.3) holds 
since U0 = 1. Assume (3.3) holds for a l l rp + j < np 4- s5 with j < p - 2fe. We 
then have, by (3.2) s 

, n w + s + i / s +• fe\ / 7 v -V*1 v- / i\J + r(s + ^ V s + k\(n\2
 n , 

+ wy^W(5:*)CJ*>.^«) 
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_ JO + (-l)n + S + 1 ( S + ̂ w^tfc) (mod p) if s > 0, 

i(-l)n + 1Wnuo(/c) (mod p) if s = 0. 
We see that (3.3) follows, and the proof is complete. 

Carollary (Carlitz): With the hypotheses of Theorem 1 and with m defined by 
(1.3) with k = 0, 

Wm = WaQ
Wc1^c2 • • • (mod p ) . 

Corollary: With the hypotheses of Theorem 1 and with m defined by (1.3), 

um(k) = uc (k) • wc w0 ... (mod p). 

Theorem 2: If p is a prime number, p > 2k9 then 

unp_k(k) = (-l)kuQ(k) • wn (mod p). 

Proof: The proof is by induction on n. For n = 1 we have, by (3.1), 

( - i ) k u p .^) , P E" o Vir( r ^)( p > r w/( | ) 

= uQ(k) = uQ(k) • wx (mod p ) . 

Theorem 2 is therefore true for n = 1; assume it is true for n = 1, ..., s - 1. 
Then 

+;?!<-i>--'(S)U'*K-«w>/m 

5 M,«)"E(-1)'( ° ) 2 » , 5 <-l)*"V(Ml>, (nod p). 
p = 0 V 

This completes the proof of Theorem 2. 

If 772 is defined by (1.3) with oQ = p - k9 and if ci = p - 1 for 1 < i < j - 1 
with Oj < p - 19 then Theorem 2 says 

wm(fe) = uCQ(k) «Wl + c.WCj + i Wc. + i ... (mod p ) . 

In particular, if p > 2/c, and n = pt - k9 

unW) = up_k(k) = (-l)kW(J(fc) = (~l)k(k\)2 (mod p). 
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k. THE POLYNOMIALS um(k; x) 

We now consider the polynomials um(k; x) defined by (1.2). It is clear 
that 

um(k; 0) = um(k)9 um(k9 1) = 0 (m > 0). 
Also, it follows from (1.1) and (1.2) that 

[ k )um(k; x) = £ (-1) (r + fc)( r )ur(k)x . (4.1) 

Theorem 3-' If p is a prime number and if 0 < s < p - 2fc, then 
w„p + s(fe; a?) = us(fc; a;) * wnp (#) (mod p). (4.2) 

Proof: The proof is by induction on the total index np + s. We first note that 

u0(k; x) = uQ(k; x) » wQ(x) (mod p ) , 

since WQ(x) = 1. 
Assume ( 4 . 2 ) i s t r u e f o r a l l rp + j < np + s w i t h 0 < J < p - 2k. Then, by 

( 4 . 1 ) and ( 3 . 3 ) , 

Is + k\„ (Vt ^ - nPYS (_-\>n- s-r(np + s + k\(np + s + k\ 
r=0 {*: "K„«; *> = "%\-ir'~*("p+r*k)(VXkh*™*"p*' 

?i iiVVNT+'jli)™""'^.,** np - rp + s - j 
-» IV J- / LA. i -• V t\. I 0~J 

j = o r - ( T rP + J A r p + J-

z ifflTJTIK"'"^^-'" j = 0 r = 0 J A J 

E ( S ^ )ws(fe; x ) » z ^ ( x p ) E (^ g )ws(fc; # ) • w„p (x) (mod p ) . 

T h i s c o m p l e t e s t h e p roo f of Theorem 3 . We n o t e t h a t Theorem 1 was u sed i n t h e 
p r o o f . 

C o r o l l a r y ( C a r l i t z ) : With t h e h y p o t h e s e s of Theorem 3 and w i t h m d e f i n e d by 
( 1 . 3 ) w i t h k = 0 , 

wm(x) E wc (X) • wv
Q (x) • wv

Q (x) . . . (mod p ) . 

Corollary: With the hypotheses of Theorem 3 and with m defined by (1.3), 
um(k; x) = UCQ (k; x) • w^ (x) * w^ (x) ... (mod p) . 

5. GENERAL RESULTS 

For each integer k > 0, let {Fn(k)} and {Gn(k)}, n = 0 , l,2,...5be poly-
nomials in an arbitrary number of indeterminates with coefficients that are 
integral (mod p) for p > 2k. We use the notation Fn(0) = Fn and Gn(0) = Gn, 
and we assume F - G = 1. For each m of the form (1.3), suppose 

Fm (k) = FCn (k) • F? • F**. . . (mod p) , (5.1) 
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Gm(k) = GCQ (fc) • GP
Ci -G%2... (mod p ) . (5.2) 

For each integer k > 09 define Hn(k) and Qn(k) by means of 

(" ̂  >„<*> = i:o(-l)B-r(n J
 k)(r +

+ l)Fr^n-riK) (5-3) 
and 

(n J *)*„<*> = £ o ( - i > - T r *)(" t £)«,<*>*».,<*)• <^> 
Theorem k: Let the sequences {Hn(k)} and {§n(fc)} be defined by (5.3) and (5.4), 
respectively, and let Hj=Hj(0)9 $j- = Gj(0). If p is a prime, 0 <s <p - 2&, 
then 

Hnp + S(k) = Hs(k) *Hnp (modp). (5.5) 

If G0(k) ? 0 (mod p) , we also have 

Qnp + S(k) = Qs(k) • Qnp (mod p). (5.6) 

Proof: From (5.3), we have 

£,.„.«(.; *)(;+ *fc<»e..,<» • s<-.)"'(;)'« 7 / S + k\(S + fc\„ , 7 . N ^ /7.N . V* / 1\n + Vin\2TjP^P 
r 

= (S + *)*„(*> • Hl= (S + fc)ffs(fe) • Hnp (mod p ) . 

This completes the proof of (5.5). 

As for (5.6), we first observe that for n = 0 and 0 K s < p - 2k9 congru-
ence (5.6) is valid. Assume that (5.6) is true for all rp + j < np + s with 
0 < j < p - 2k. Then, from (5.4), we have 

- ( s + *)«,<*)<?„.(*>«» + ( s + fe)^p+s(fe)G0(« 

= (S +
s
 k)Fe(k) • FV

n - (S +
s
 k)Qs{k)G,{k)Ql 

+ (* s k)QnP + s(k)G0(k) (mod p ) . 

Now, s i n c e Fnp + S (k) = Fs (k) • Fnp (mod p ) , we have 

and t h e p roof i s c o m p l e t e . 

C o r o l l a r y ( C a r l i t z ) : Using t h e h y p o t h e s e s of Theorem 4 w i t h m d e f i n e d by ( 1 . 3 ) 
and k = 0 , 

Em =H0Q • < °H^ . . . ( m o d p ) , 
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Qm = Qao • < • QP
C2 • • • (mod p ) . 

Corol la ry : Using the hypotheses of Theorem 4 with m defined by ( 1 . 3 ) , 

Hm(k) = HCQ (k) • HP
C± • El] • * " (m o d P> • 

If £Q(fc) t 0 (mod p ) 5 we a l so have 

«*,<*> E «*,<*>•< ' « £ ••• (™dp). 

6. APPLICATIONS 

As an application of Theorem 4, for each integer k ^ 0 consider the expan-
sion 

4 (^i s ) "m fk^8Z^ n = 0
n n l ( n + k)l 

where fk(z) is defined by (1.1), r, s are arbitrary nonnegative integers, and 
the xi , z/£ are indeterminates (not necessarily distinct). By (1.1) and (3.1), 
Fn(k) is a polynomial and y±9 . .., z/s with coefficients that are 
integral (mod p) if p > 2fc. The following result may be stated. 

Theorem 5- If w? is of the form (1.3), then the polynonial Fm (k) defined by 
(6.1) satisfies 

Fm (fc) E FCQ (k) • *£ • F?o . . . (mod p) , 

where Î- = Fj (0) . In particular, if the x^9 y. are replaced by rational num-
bers that are integral (mod p), then 

Fm (k) = Fao (k) • FCi FC2 ... (mod p). 

As a special case of (6.1), we may take 

(feir^wr-Byft)nl(;+fc), 
Then the u^\k) are integral (mod p) if p > 2/c5 and they satisfy 

w^fc) = *<£(&) • M^(0) • «<£((>) . . . (mod p) 

for all v (positive or negative). 

7* THE NUMBERS w„(1) 

For n = 0,1,2,..., let Wn = wn(0) and let wn = wn(l). The positive inte-
gers wn were studied by Carlitz [3] and were shown to satisfy (1.4) (with k = 
0). Since the un are also positive integers, it may be of interest to examine 
their properties in more detail. The generating function and recurrence for-
mula are given by (1.1), (3.1), and (3.2) with k = 1. From them we can compute 
the following values: 

1 u5 = 321 
u6 = 3681 
u7 = 56197 
ua = 1102571 

u0 
u2 
u3 
uh 

= ux 
= 2 
= 7 
= 39 
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Suppose that p is an odd prime number and that m is defined by (1.3) with 
0 < c < p - 3. Then9 by Theorems 1 and 2, we have 

um = UCQWCIWC2 ... (mod p ) , (7.1) 

Wnp+(p-l) =~Wn+l (m° d P)- <7*2) 

The ease oQ = p - 2 is considered in the next theorem. This theorem makes 
use of the positive integers hn defined by means of 

{^wy/iJowy = i hn
 {Z'}]T (7.3) i2n 

n-^o ninl 

These numbers are related to the integers an defined by Carlitz [1]: 

an = 22nnl(n - l)!a2n(0), 

where a2 (0) is the Rayleigh function,. It can be determined from properties of 
an that a generating function is 

as well as 

y ^ u ^ v = f « „ + 1 ^ . (7.5) 

Now it follows from (3.1), (7.3), and (7.5) that 

n-l 

E 
r= 0 

hn = E ( " ) w r a w + 1 . r (n > 0 ) , (7.6) 

( - D n « „ + 1 = r E o ( - l ) r ( p ) 2 ? J - ( n > 0 ) . (7.7) 

^IXI iK"-^ 1 ^ ' (7-8) 

The f i r s t few values of 7zn a re /zQ = 09 h1 = 1, 7z2 = 8, h3 = 96, Tẑ  = 1720. 

In the proof of Theorem 6, we use the r e l a t i o n s h i p 

n - i 

£( 
which follows from (7.4). 

Theorem 6: If p is an odd prime number, then 

^np+(p-2)E u
p-2Wn " ̂  (mod P>» 

where /zn is defined by (7.3). 

Proof: The proof is by induction on n. The theorem is true for rc = 0, since 
hQ = 0 and W0 = 1- Assume that Theorem 6 is true for n = 0, ..., s - 1. Then 
by (3.2), (7.1), (7.2), and (7.8) we have 

r_n*-i„ - f Pv\-i^+^pP + P ~ l\(sP + P ™ MM 

(1) W s p + ( p- 2 )-^ o ^ Q ̂  ̂  ^ pp + j )[rp + j + l)Urp + j 

p = 0 j = p - 2 ^ ^ ^ ^ 
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•;?w^)^+;?w+,(;)u>«> 
= <-l)*-\.2», + (-1)**. + < - » - \ + l + (-D*a,„ 

s (-l)""1^,^, - hs) (mod p). 

This completes the proof of Theorem 6. 

Using (7.7) we can prove, for p > 2S 

n̂p + s = ̂ s
un (mod P) (0 < S < p - 2), 

hnp+(p-l)E hp-lWn + hn (mod P>-

Theorem 6 can be refined by means of these congruences. For example, if m is 
defined by (1.3) with cQ = p - 2 and c1 = 05 we have 

Ww E
 uo^o^cz ••• (mod P)-

The proofs in this section are not valid for p = 2. However, it is not 
difficult to show by induction that if 777 ̂  2 (mod 4) then um is odd. The proof 
is similar to the proofs of Theorems 1-6. If m = 2 (mod 4)9 we can write 

m = 4n + 2 = 2y+1j + 2y - 2 
for some v > 1. Using (3.2) and induction on n9 we can prove 

_ (0 (mod 2) if V is evens 
^m " \l (mod 2) if z; is odd. 

Thuss for p = 29 we have the following theorem. 

Theorem 7̂  If w = c0 + ex2 +. c222 + •••, with each e. = 0 or 13 then 

um = uc uc uc ... (mod 2), 

unless 772 = 2v + 1j + 2y - 2 with z; evens V > 2. 
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