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1. INTRODUCTION 

Stirling numbers and some of their generalizations have been investigated 
Intensively during the past several decades. Useful references for various 
results may be found in [1], [2, ch. 5],' [3], [6], [7], etc. 

The main object of this note is to show that the concept of a generalized 
Stirling number pair can be characterized by a pair of inverse relations. Our 
basic idea is suggested by the well-known inverse relations as stated explicit-
ly in Riordan's classic book [7], namely 

n n 
n-n = L S1{n9 k)bk> bn = £ S2(?i9 k)ak, 

k=0 k=0 

where S1(n9 k) and S2(n> k) are Stirling numbers of the first and second kind, 
respectively. Recall that S1(n9 k) and S2(n9 k) may be defined by the exponen-
tial generating functions 

(log(i + t))klk\ and (et - l)k/kU 
respectively, where 

f(t) = log(l + t) and g(t) = et - 1 

are just reciprocal functions of each other, namely f(g(t)) = g(f(t)) = t with 
f(0)=g(0) = 0. What we wish to elaborate is a comprehensive generalization of 
the known relations mentioned above. 

2. A BASIC DEFINITION AND A THEOREM 

Denote by r = (T, +, e) the commutative ring of formal power series with 
real or complex coefficients, in which, the ordinary addition and Cauchy multi-
plication are defined. Substitution of formal power series is defined as usual 
(cf. Comtet [2]). 

Two elements / and g of T are said to be reciprocal (inverse) of each other 
if and only if f(g(t)) = g(f(t)) = t with /(0) = g(0) = 0. 

Definition: Let / and g belong to T, and let 

JY(f(t))k = £ A^n, k)~;, (2.1) 
n> 0 

jrv(9(t))k = EA2(n, k)^-. (2.2) 
n^ 0 
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Then A1(n9 k) and A2(n9 k) are called a generalized Stirling number pair, or a 
GSN pair if and only if / and g are reciprocal of each other. 

From (2.1) and (2.2), one may see that every GSN pair has the property 

A^n, k) = A2(n9 k) = 0 for n < k. 
Moreover, one may define 

i4i(0, 0) = A2(09 0) = 1. 

Let us now state and prove the following: 

Theorem: Numbers A1(n9 k) and A2(n, k) defined by (2.1) and (2.2) just form a 
GSN pair when and only when there hold the inverse relations 

n n 
an = E ^ i O ^ k)bk, bn = E A2(n, k)ak9 (2.3) 

k = 0 k = 0 

where n = Q, 1, 2, . .., and either {ak} or {bk} is given arbitrarily. 

Proof: We have to show that (2.3) <=> f(g(t)) = g(f(t)) = t with f(0) = g(0) = 0. 
As may easily be verified, the necessary and sufficient condition for (2.3) to 
hold is that the orthogonality relations 

ZA1(m9 n)A2(n9 k) = E A2(m, n)Ax{n9 k) = Smk 9 (2.4) 
n>0 n> 0 

hold, where Smk is the Kronecker symbol. Clearly, both summations contained in 
(2.4) consist of only a finite number of terms inasmuch as 

A1{m9 ri) = A2(m5 ri) = 0 for n > m« 
Let us prove =>. Since (2.4) is now valid, we may substitute (2.1) into 

(2.2), and by the rule of function composition we obtain 

i~(g(f(t)))k - E A2(n9 k) E ^ i ( ^ n)^ 

i m I \ JL/77 f k 

= E ^ E^O*' n)Az(n, k) = E ^T 6 ^ = ̂ 7°  

Thus, it follows that g{f(t)) = £. Similarly, we have f(g(t)) = £. This proves 

To prove «==, suppose that f(g(t)) = g(f(t)) = t5 /(0)=#(0) = 0. Substi-
tuting (2.2) into (2.1), we obtain 

1 1 i-m / 

± tk =-^T(f(g(t)))k = E h i Y,A2(m9 n)A^n> k) 

Comparing the coefficients of t on both sides, we get 

E A2Qn, n)A1(n9 k) = &mk. 

In a similar manner, the first equation contained in (2.4) can be deduced. Re-
calling that (2.4) is precisely equivalent to (2.3), the inverse implication 
<= is also verified; hence, the theorem. 

Evidently, the theorem just proved may be restated as follows: 
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Equivalence Proposition: The following three assertions are equivalent to each 
other. 

( i) {A1(n9 k) 9 A2(n9 k)} i s a GSN p a i r . 
(ii) Inverse relations (2.3) hold. 

(iii) {/, g] is a pair of reciprocal functions of T. 

3. EXAMPLES AND REMARKS 

Examples: Some special GSN pairs may be displayed as shown below. 

fit) 
l o g ( l + 
tan t 
s in t 
sinh t 
tanh t 
t/(t -

t) 

1) 

git) 

et - 1 
arc tan t 
arc s in t 
arc sinh t 
arc tanh t 
t/(t - 1) 

A1(n9 k) 

S1in9 k) 
T1(n, k) 

Sx(n, k) 
o1(n, k) 
Ti(n , k) 

(-l)n-kL(n9 k) 

A2in9 k) 

S2in9 k) 
T2(n9 k) 
s 2 ( n , k) 
o2(n9 k) 
T2(n, k) 

(~l)n-kL(n9 k) 

Note that L(n9 k) is known as LahTs number, which has the expression 

u»,k) = (- irff(^:;)-
In what follows, we will give a few brief remarks that follow easily from 

the ordinary theory about exponential generating functions. 

Remark 1: For a pair of reciprocal elements /, ̂ eF, write: 

CO 00 

fit) = Z^ktk/kl9 git) = £ $ktk/kl 
I I 

Making use of the definition of Bell polynomials (cf. Riordan [7]), 

(3.1) 

?nigf±> • • • > gfn) = E 
nig, 

(j) Ji 

fi 
v n \ 

f \J'n 

where (J) indicates the summation condition j ± + ••• + Jn = ^J lj1 + 2j2 + ••• 
+ njn - n9 k - \9 2, ..., n, one may obtain 

A^n, fc) = Ynifa19 ..., /a n), 42(n, fc) = Yn(f&19 .... f&n), 
where Ĵ. = 6^ (i = 1, . .., n) and 6^ is the Kronecker symbol. Consequently, 
certain combinatorial probabilistic interpretation may be given of A^(n9 k) 
ii = 1, 2). Moreover, for any given {a^}, the sequence {3fc} c a n be- determined 
by the system of linear equations 

7„(Balf .... 0an) = Snl in = 1, 2, . . . ) . (3.2) 

Remark 2: It is easy to write down double generating functions for Ai{n9 k), 

>(t9 u) E M"» fc> 
n , fe > 0 

tnuk 
exp[uf(t)] ; 
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rc*k>0 

Moreover9 for each i i ( n s fc) ( i = 1, 2 ) , we have the convolution formula 

\ + / 2 ) ^ ( n ' fei+fe2> = tQQYiti> fc!)^(n-J, fe2)9 (3.3) 

and5 consequently, t he re i s a v e r t i c a l recurrence r e l a t i o n for A^(n9 k), v i z . 9 

&4;("» fe) = W E ' n K C 7 ' » fe - l M i ( « - J . 1 ) . (3.4) 

where ^ x ( j s 1) = o^ and A 2 ( j 9 1) = 3j • A similar recurrence relation takes the 
form 

A An + 1, fe) = £ (^KW, & - l)^(rz - j + 1, 1). (3.5) 
f7- = o W / 

However, we have not yet found any useful horizontal recurrence relations for 
A ^ ( n 9 k) (i = 19 2 ) . Also unsolved are the following: 

Problems: How to determine some general asymptotic expansions for A ^ ( n 9 k) as 
k -*- °°  with k = o(n) or k = 0(n)l Is it true that the asymptotic normality of 
A 1 ( n 9 k) implies that of A 2 ( n 9 k)1 Is it possible to extend the concept of a 
GSN pair to a case involving multiparameters? 

4. A CONTINUOUS ANALOGUE 

We are now going to extend, In a similar manner, the reciprocity of the 
relations (2.3) to the case of reciprocal integral transforms so that a kind of 
GSN pair containing continuous parameters can be introduced. 

Let §(x) and \p(x) be real-valued reciprocal functions decreasing on [0, 1] 
with (f)(0) - iKO) = 1 a n d <1>(1) = ̂ H 1 ) '= 0, such that 

$d)(x)) = \\)(<t>(x)) = x (0 < x < 1). 
Moreover., <p(x) and \\J(X) are assumed to be infinitely differentiable in (0, 1) . 
Introduce the substitution x = e~t, so that we may write 

e~u = ((>(£-*)» e~* = i^(e""), £,u e [0, «,). (4.1) 

For given measurable functions /(s)6L(0, °°) , consider the integral equation 

F(u) : = rf(e)e'U8ds = f °° (̂s) OKe"")8 ) & , (4.2) 
Jo Jo 

where ̂ (s) Is to be determined,, Evidently, (4.2) is equivalent to the follow-
ing : 

G(t) : = I /(s)(<()(e"*))8ds = f g(s)g"tsds. (4.3) 
Jo Jo 

Denote G(t) = F(u) - F(-log (K^"*))- Suppose that G(£) satisfies the Wid-
der condition D (cf. [8], ch. 73 §6^ §17): 

(I) G(£) is Infinitely differentiable in (0, °°) with £(<») = 0. 

(II) For every integer m > 1, LWj x [£] = L m ? x [G( e) ] is Lebesgue integrable 
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on (0, °°) , where Lm X[G] is the Post-Widder operator defined by 

(4.4) 

(iii) The sequence {Lm X[G]} converges in mean of index unity, namely 

lim 
m, n -+c / ; \LmixWl [G] \dx = 0. 

Then by the representation theorem of Widder (cf. [8], Theorem 17, p. 318) one 
may assert the existence of g(s)^L(09°°) such that (4.3) holds. Consequently, 
the well-known inversion theorem of Post-Widder (loc. ait.) is applicable to 
both (4.3) and (4.2), yielding 

g(x) = lim I f(s)L r. )(e-(-)))s]&, 

fix) lim f°g(s)LmiX[(ii>(e-(-^y]dS! 

(4.5) 

(4.6) 

whenever x > 0 belongs to the Lebesgue sets of g and f9 respectively. 

In fact, the reciprocity (4.5) <=^ (4.6) so obtained is just a generaliza-
tion of the inverse relations for self-reciprocal integral transforms (in the 
case (j) E \\j) discussed previously (cf. [4], Theorem 8). 

Notice that A^(n9 k) (i w 1, 2) may be expressed by using formal deriva-
tives : 

A !<*, fc) = £(A)V(*)>* , A2(n9 fc) = Uitf(^t)y 
t = o 

Thus, recalling (4.4) and comparing (4.5) and (4.6) with (2.3), it seems to be 
reasonable to consider the following two sequences of numbers: 

A\(X9 y; m) = LmiX [ ^(e'^) )H , 

A*2(x, y; m) = L77.tar[OKe-(")))2/] dn = 1, 2, . . . ) , 

as a kind of GSN pair involving continuous parameters x9 y e (0, °°) . 

In conclusion, all we have shown is that the continuous analogue of the 
concept for a GSN pair is naturally connected to a general class of reciprocal 
integral transforms. Surely, special reciprocal functions §(x) and ^J(X) (0 ^ 
x ^ 1) may be found—as many as one likes. For instance, if one takes 

(p1(x) = 1 - x, cf)2(x) = cos — , <j)3(#) = log(e - (e - l)x) 9 

their corresponding inverse functions are given by 

2 
^i(tf) 1 x9 ty?(x) arc cos x9 ty~(x) = (e - ex) I (e - 1), 

respectively. Monotone and boundary conditions 

(^(0) = 4>i(0) = 1 and 0.(1) = 1^(1) = 0 

are obviously satisfied. 

(i 1. 2, 3) 
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