```
        THE K}\mp@subsup{}{}{th
        JIA-SHENG LEE
Graduate Institute of Management Sciences, Tamkang University
        and
        Taipei College of Business, Taipei, Taiwan, R.O.C.
            (Submitted March 1986)
```

This note is an extension of the work of Carlitz [1] and of Laohakosol and Roenrom [2]. The proofs given here are very similar to those of Laohakosol and Roenrom as presented in [2].

Consider the $k^{\text {th }}$-order difference equation

$$
\begin{equation*}
\sum_{j=0}^{k} \sum_{m=0}^{j}(-1)^{m+k-j}\binom{j}{m} p^{m} n^{(m)} c_{k-j} f_{n+j-m}(x)=x^{k-1} f_{n+k-1}(x) \tag{1}
\end{equation*}
$$

for all $n=0,1,2, \ldots$, with initial conditions

$$
\begin{equation*}
f_{0}(x)=f_{1}(x)=\cdots=f_{k-2}(x)=0, f_{k-1}(x)=1, \tag{2}
\end{equation*}
$$

and $a_{0}=1 ; a_{i}(i=1,2, \ldots, k)$ are arbitrary parameters, where

$$
n^{(m)}=n(n-1) \ldots(n-m+1)
$$

subject to the following three restrictions:
I. $p \neq 0$.
II. All k roots $\alpha_{i}(i=1,2, \ldots, k)$ of the equation $G(0, \alpha, k)=0$ are distinct and none is a nonpositive integer, where

$$
G(r, \alpha, k)=\sum_{j=0}^{k}(-1)^{k-j} \alpha_{k-j} p^{j}(\alpha+r+j-1)^{(j)}
$$

III. All $k-1$ roots $r_{i}(i=1,2, \ldots, k-1)$ of the equation $L(r, \alpha, k)=0$ are nonpositive integers, where α denotes any one of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}$ or α_{k} from II and

$$
L(r, \alpha, k)=\{G(r, \alpha, k)-G(0, \alpha, k)\} / r .
$$

Let

$$
\begin{equation*}
F(t):=F(x, t)=\sum_{n=0}^{\infty} f_{n}(x) t^{n} /(n!) \tag{3}
\end{equation*}
$$

be the exponential generating function for $f_{n}(x)$. From (1)-(3), we have

$$
\sum_{j=0}^{k}(-1)^{k-j}(1-p t)^{j} \alpha_{k-j} F^{(j)}(t)=x^{k-1} F^{(k-1)}(t) .
$$

Next, we define an operator

$$
\Delta:=\sum_{j=0}^{k}(-1)^{k-j}(1-p t)^{j} \alpha_{k-j} D^{j} \quad(\text { where } D=d / d t) .
$$

Then our differential equation becomes

$$
\Delta F(t)=x^{k-1} F^{(k-1)}(t) .
$$

We expect k independent solutions of this differential equation to be of the form

$$
\phi(t, \alpha):=\phi(t, \alpha, x)=\sum_{m=0}^{\infty} T_{m} x^{m}(1-p t)^{-\alpha-m},
$$

where α is any one of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$. Thus, we must compute $T_{m}=T_{m}(\alpha)$.
Using a method similar to that given in [2], we derive

$$
T_{j(k-1)+i}=\frac{(\alpha+j k-j+i-1)^{j(k-1)}}{p^{j}\left\{\prod_{m=1}^{j}(m k-m+i)\left[\prod_{s=1}^{k-1}(m k-m+i-r)\right]\right\}} T_{i}
$$

for all $i=0,1, \ldots, k-2$.
Let $C_{n}(\alpha):=C_{n}(x, \alpha)$ be the coefficient of $t^{n} /(n!)$ in $\phi(t, \alpha)$, then

$$
C_{n}(\alpha)=\sum_{j=0}^{\infty} T_{j(k-1)}(\alpha+j k-j+n-1)^{(n)} p^{n} x^{j(k-1)}
$$

Hence, we have the general solution of (1) as

$$
f_{n}(x)=\sum_{i=0}^{k} w_{i} C_{n}\left(x, \alpha_{i}\right)
$$

where

$$
w_{i}=w_{i}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \quad(i=1,2, \ldots, k)
$$

are to be chosen so that the initial conditions (2) are fulfilled, namely

$$
C \cdot W=E
$$

where

$$
C=\left[\begin{array}{cccc}
C_{0}\left(\alpha_{1}\right) & C_{0}\left(\alpha_{2}\right) & \ldots & C_{0}\left(\alpha_{k}\right) \\
C_{1}\left(\alpha_{1}\right) & C_{1}\left(\alpha_{2}\right) & \cdots & C_{1}\left(\alpha_{k}\right) \\
\vdots & \vdots & & \vdots \\
C_{k-1}\left(\alpha_{1}\right) & C_{k-1}\left(\alpha_{2}\right) & \ldots & C_{k-1}\left(\alpha_{k}\right)
\end{array}\right]_{k * k}, W=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{k}
\end{array}\right]_{k * 1}, E=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]_{k * 1},
$$

and $\operatorname{det} C \neq 0$. Using Cramer's rule, we obtain the solution of W. With these values, we have completely solved (1). Obviously, the difference equations of [1] and [2] are the special cases of (1).

ACKNOWLEDGMENTS

I am deeply grateful to Professors Horng-Jinh Chang, Jin-Zai Lee, and the referees for their helpful comments and thorough discussions.

REFERENCES

1. L. Carlitz. "Some Orthogonal Polynomials Related to Fibonacci Numbers." The Fibonacci Quarterly 4, no. 1 (1966):43-48.
2. V. Laohakosol \& N. Roenrom. "A Third-Order Analog of a Result of L. Carlitz." The Fibonacci Quarterly 23, no. 5 (1985):194-198.
