FUNCTIONS OF NON-UNITARY DIVISORS

STEVE LIGH and CHARLES R. WALL University of Southwestern Louisiana, Lafayette, LA 70504

(Submitted November 1985)

1. INTRODUCTION

A divisor d of n is a unitary divisor if gcd (d, n/d) = 1; in such a case, we write d || n. There is a considerable body of results on functions of unitary divisors (see [2]-[7]). Let $\tau^*(n)$ and $\sigma^*(n)$ denote, respectively, the number and sum of the unitary divisors of n.

We say that a divisor d of n is a non-unitary divisor if (d, n/d) > 1. If d is a non-unitary divisor of n, we write $d|^{\#}n$. In this paper, we examine some functions of non-unitary divisors.

We will find it convenient to write

 $n = \overline{n} \cdot n^{\#},$

where \overline{n} is the largest squarefree unitary divisor of n. We call \overline{n} the squarefree part of n and $n^{\#}$ the powerful part of n. Then, if p is prime, $p|\overline{n}$ implies p|n, while $p|n^{\#}$ implies $p^2|n$. Naturally, either \overline{n} or $n^{\#}$ can be 1 if required (if n is powerful or squarefree, respectively).

2. THE SUM OF NON-UNITARY DIVISORS FUNCTION

Let $\sigma^{\#}(n)$ be the sum of the non-unitary divisors of n:

$$\sigma^{\#}(n) = \sum_{d \mid \#_n} d.$$

Now, every divisor is either unitary or non-unitary. Because \overline{n} and $n^{\#}$ are relatively prime and the σ and σ^{*} functions are multiplicative, we have

$$\sigma^{\#}(n) = \sigma(n) - \sigma^{*}(n) = \sigma(\overline{n})\sigma(n^{\#}) - \sigma^{*}(\overline{n})\sigma^{*}(n^{\#}).$$

But $\sigma(\overline{n}) = \sigma^*(\overline{n})$, so

$$\sigma^{\#}(n) = \sigma(\overline{n}) \{ \sigma(n^{\#}) - \sigma^{*}(n^{\#}) \}.$$

Therefore,

$$\sigma^{\#}(n) = \left\{ \prod_{p \parallel n} (p+1) \right\} \cdot \left\{ \prod_{\substack{p^e \parallel n \\ e > 1}} \frac{p^{e+1} - 1}{p - 1} - \prod_{\substack{p^e \parallel n \\ e > 1}} (p^e + 1) \right\}.$$

Note that $\sigma^{\#}(n) = 0$ if and only if n is squarefree, and that $\sigma^{\#}$ is *not* multiplicative.

Recall that an integer *n* is perfect [unitary perfect] if it equals the sum of its proper divisors [unitary divisors]. This is usually stated as $\sigma(n) = 2n$ [$\sigma^*(n) = 2n$] in order to be dealing with multiplicative functions. But all non-unitary divisors are proper divisors, so the analogous definition here is that *n* is *non-unitary perfect* if $\sigma^{\#}(n) = n$.

1987]

Theorem 1: If $2^p - 1$ is prime, so that $2^{p-1}(2^p - 1)$ is an even perfect number, then $2^{p+1}(2^p - 1)$ is non-unitary perfect.

Proof: Suppose $n = 2^{p+1}(2^p - 1)$, where p is prime. Then

$$\sigma^{\#}(n) = \sigma(2^{p} - 1) \{ \sigma(2^{p+1}) - \sigma^{*}(2^{p+1}) \}$$

= 2^p[(2^{p+2} - 1) - (2^{p+2} + 1)]
= 2^p(2^{p+1} - 2) = 2^{p+1}(2^p - 1) = n.

A computer search written under our direction by Abdul-Nasser El-Kassar found no other non-unitary perfect numbers less than one million. Accordingly, we venture the following:

Conjecture 1: An integer is non-unitary perfect if and only if it is 4 times an even perfect number.

If $n^{\#}$ is known or assumed, it is relatively easy to search for \overline{n} to see if n is non-unitary perfect. Many cases are eliminated because of having $\sigma^{\#}(n^{\#}) > n^{\#}$. In most other cases, the search fails because \overline{n} would have to contain a repeated factor. For example, if $n^{\#} = 2^2 5^2$, then no \overline{n} will work, for

$$\sigma^{\#}(2^25^2) = 7 \cdot 31 - 5 \cdot 26 = 87 = 3 \cdot 29,$$

so $3 \cdot 29 | \overline{n}$; but $2^2 5^2 29 || n$ implies $3^2 | n$, so $3 | \overline{n}$ is impossible.

The second author generated by computer all powerful numbers not exceeding 2^{15} . Examination of the various cases verified that there is no non-unitary perfect number n with $n^{\#} \leq 2^{15}$ except when n satisfies Theorem 1 [i.e., $n = 2^{p+1}(2^p - 1)$, where $2^p - 1$ is prime].

More generally, we say that *n* is *k*-fold non-unitary perfect if $\sigma^{\#}(n) = kn$, where $k \ge 1$ is an integer. We examined all $n^{\#} \le 2^{15}$ and all $n \le 10^6$ and found the *k*-fold non-unitary perfect numbers ($k \ge 1$) listed in Table 1. Based on the profusion of examples and the relative ease of finding them, we hazard the following (admittedly shaky) guess:

Conjecture 2: There are infinitely many k-fold non-unitary perfect numbers.

Table 1. k-fold Non-Unitary Perfect Numbers (k > 1)

k	n
2	$2^{3}3^{2}5 \cdot 7 = 2520$
2	$2^{3}3^{3}5 \cdot 29 = 31\ 320$
2	$2^{3}3^{4}5 \cdot 359 = 1\ 163\ 160$
2	$2^7 3^5 71 = 2 \ 208 \ 384$
2	$2^4 3^2 7 \cdot 13 \cdot 233 = 3\ 053\ 232$
2	$2^7 3^3 31 \cdot 61 = 6 535 296$
2	$2^{5}3^{2}7 \cdot 41 \cdot 163 = 13 \ 472 \ 928$
2	$2^{5}5^{2}3 \cdot 19 \cdot 37 \cdot 73 = 123 \ 165 \ 600$
2	$2^{7}3^{4}47 \cdot 751 = 365 \ 959 \ 296$
2	$2^{4}3^{4}11 \cdot 131 \cdot 2357 = 4 \ 401 \ 782 \ 352$
2	$2^{10}3 \cdot 5 \cdot 7 \cdot 19 \cdot 37 \cdot 73 = 5 517 818 880$
3	$2^7 3^2 5^2 \cdot 7 \cdot 13 \cdot 71 = 186\ 076\ 800$
3	$2^{8}3^{4}5 \cdot 7 \cdot 11 \cdot 53 \cdot 769 = 325 \ 377 \ 803 \ 520$
3	$2^{6}3^{2}7^{2}5 \cdot 13 \cdot 19 \cdot 113 \cdot 677 = 2\ 666\ 567\ 816\ 640$

We say that n is non-unitary subperfect if $\sigma^{\#}(n)$ is a proper divisor of n. Because $\sigma^{\#}(18) = 9$ and $\sigma^{\#}(p^2) = p$ if p is prime, we have the following:

Theorem 2: If n = 18 or $n = p^2$, where p is prime, then n is non-unitary subperfect.

An examination of all $n^{\#} \leq 2^{15}$ and all $n \leq 10^{6}$ found no other non-unitary subperfect numbers, so we are willing to risk the following:

Conjecture 3: An integer *n* is non-unitary subperfect if and only if n = 18 or $n = p^2$, where *p* is prime.

It is possible to define non-unitary harmonic numbers by requiring that the harmonic mean of the non-unitary divisors be integral. If $\tau^{\#}(n) = \tau(n) - \tau^{*}(n)$ counts the number of non-unitary divisors, the requirement is that $n\tau^{\#}(n)/\sigma^{\#}(n)$ be integral. We found several dozen examples less than 10^{6} , including all k-fold non-unitary perfect numbers, as well as numbers of the forms

$$2 \cdot 3p^2$$
, $p^2(2p - 1)$, $2 \cdot 3p^2(2p - 1)$, $2^{p+1}3(2^p - 1)$, $2^{p+1}3 \cdot 5(2^p - 1)$,
and $2^{p+1}(2p - 1)(2^p - 1)$,

where p, 2p - 1, and $2^p - 1$ are distinct primes. Many other examples seemed to fit no general pattern.

Recall that integers n and m are amicable [unitary amicable] if each is the sum of the proper divisors [unitary divisors] of the other. Similarly, we say that n and m are non-unitary amicable if

$$\sigma^{\#}(n) = m \quad \text{and} \quad \sigma^{\#}(m) = n.$$

Theorem 3: If $2^p - 1$ and $2^q - 1$ are prime, then $2^{p+1}(2^q - 1)$ and $2^{q+1}(2^p - 1)$ are non-unitary amicable.

Proof: Trivial verification.

Thus, there are at least as many non-unitary amicable pairs as there are pairs of Mersenne primes. Our computer search for n < m and $n \leq 10^6$ revealed only four non-unitary amicable pairs that are not characterized by Theorem 3:

п	=	$252 = 2^2 3^2 7$	<i>m</i> =	=	$328 = 2^3 41$
п	=	$3240 = 2^3 3^4 5$	<i>m</i> =	=	$6462 = 2 \cdot 3^2 359$
п	=	$11616 = 2^53 \cdot 11^2$	<i>m</i> =	=	$17412 = 2^2 \cdot 3 \cdot 1451$
п	=	$11808 = 2^5 3^2 41$	<i>m</i> =	=	$20538 = 2 \cdot 3^2 \cdot 7 \cdot 163$

3. THE NON-UNITARY ANALOG OF EULER'S FUNCTION

Euler's function

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = \prod_{p^e \parallel n} \left(p^e - p^{e-1}\right)$$

is usually defined as the number of positive integers not exceeding n that are relatively prime to n. The unitary analog is

$$\varphi^{\star}(n) = n \prod_{p^{e} \parallel n} \left(1 - \frac{1}{p^{e}} \right) = \prod_{p^{e} \parallel n} (p^{e} - 1).$$

1987]

Our first task here is to give equivalent alternative definitions for φ and φ^* which will suggest a non-unitary analog. In particular, we may define $\varphi(n)$ as the number of positive integers not exceeding n that are not divisible by any of the divisors d > 1 of n. Similarly, $\varphi^*(n)$ may be defined as the number of positive integers not exceeding n that are not divisible by any of the unitary divisors d > 1 of n.

Recalling that 1 is never a non-unitary divisor of n, it is natural in light of the alternative definitions of φ and φ^* to define $\varphi^{\#}(n)$ as the number of positive integers not exceeding n that are not divisible by any of the nonunitary divisors of n. By imitating the usual proofs for φ and φ^* , it is easy to show that $\varphi^{\#}$ is multiplicative, and that

$$\varphi^{\sharp}(n) = \overline{n}\varphi(n^{\sharp}). \tag{1}$$

The following result neatly connects divisors, unitary divisors, and nonunitary divisors in a, perhaps, unexpected way:

Theorem 4:
$$\sum_{d \mid n} \varphi^{\#}(d) = \sigma^{*}(n)$$
.

Proof: The Dirichlet convolution preserves multiplicativity, and $\varphi^{\#}$ is multiplicative, so we need only check the assertion for prime powers. In light of (1), doing so is easy, because the sum telescopes:

$$\sum_{d \mid p^e} \varphi^{\#}(d) = \varphi^{\#}(1) + \varphi^{\#}(p) + \varphi^{\#}(p^2) + \dots + \varphi^{\#}(p^e)$$
$$= 1 + p + (p^2 - p) + \dots + (p^e - p^{e-1})$$
$$= 1 + p^e = \sigma^{*}(p^e).$$

It is well known that

$$\sum_{d|n} \varphi(d) = n \quad \text{and} \quad \sum_{d|n} \varphi^*(d) = n,$$

and one might anticipate a similar result involving $\varphi^{\#}$. However, the situation is a bit complicated. We write

$$\sum_{d \mid {}^{\#}n} \varphi^{\#}(d) = \sum_{d \mid n} \varphi^{\#}(d) - \sum_{d \mid n} \varphi^{\#}(d).$$
(2)

Now, both convolutions on the right side of (2) preserve multiplicativity and, as a result, it is possible to obtain the following:

Theorem 5:
$$\sum_{d \mid \#_n} \varphi^{\#}(d) = \sigma(\overline{n}) \left\{ \sigma^*(n^{\#}) - \prod_{p^e \parallel n^{\#}} (p^e - p^{e-1} + 1) \right\}$$

Theorem 5 was first obtained by Scott Beslin in his Master's thesis [1], written under the direction of the first author of this paper.

Two questions arise in connection with Theorem 5. First, is it possible to find a subset S(n) of the divisors of n for which

$$\sum_{d \in S(n)} \varphi^{\#}(d) = n?$$

It is indeed possible to do so. Let $\omega(n)$ be the number of distinct primes that divide *n*. We say that *d* is an ω -*divisor* of *n* if d|n and $\omega(d) = \omega(n)$, i.e., if every prime that divides *n* also divides *d*. Let $\Omega(n)$ denote the set of all ω -divisors of *n*.

[Nov.

Theorem 6: $\sum_{d \in \Omega(n)} \varphi^{\#}(d) = n$.

Proof: Trivial if $\omega(n) = 0$. But if $\omega(n) = 1$, the sum is that in the proof of Theorem 4 except that the term " $\varphi^{\#}(1) = 1$ " is missing. Easy induction on $\omega(n)$, using the multiplicativity of $\varphi^{\#}$, completes the proof.

The other question that arises from Theorem 5 is whether it is possible to have $% \left[{{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right]$

$$\sum_{d\mid n} \varphi^{\#}(d) = n, \quad n > 1.$$
(3)

We know of ten solutions to (3), and they are given in Table 2. By Theorem 5, if n satisfies (3), then

$$\sigma(\overline{n})/\overline{n} = n^{\#}/\left\{\sigma^{*}(n^{\#}) - \prod_{p^{e} \parallel n^{\#}} (p^{e} - p^{e^{-1}} + 1)\right\}.$$
(4)

This observation makes it easy to search for \overline{n} if $n^{\#}$ is known. The first eight numbers in Table 2 are the only solutions to (3) with $1 \le n \le 2^{15}$.

п	n#	n
5 220 3 960 8 447 040 6 773 440 18 685 336 320 341 863 562 880 1 873 080 1 018 887 932 160 20 993 596 382 889 043 200 357 174 165 248	2 ² 3 ² 2 ³ 3 ² 2 ⁶ 3 ² 2 ⁷ 3 ² 2 ⁸ 3 ² 2 ³ 3 ² 11 ² 2 ⁸ 3 ⁴ 2 ⁸ 3 ² 5 ² 2 ¹³ 3 ²	5 • 29 5 • 11 5 • 7 • 419 5 • 7 • 167 5 • 7 • 139 • 1667 5 • 7 • 29 • 41 • 2377 5 • 43 5 • 7 • 19 • 37 • 1997 7 • 19 • 2393 • 23929 • 47857 7 • 11 • 13 • 47 • 103

Table 2. Solutions to (3), Ordered by $n^{\#}$

It seems unlikely that one could completely characterize the solutions to (3). However, we do know the following:

Theorem 7: If $n \ge 1$ satisfies (3), then $n^{\#}$ is divisible by at least two distinct primes.

Proof: We must have $n^{\#} > 1$ because $\sigma(\overline{n}) \ge \overline{n}$ with equality only if $\overline{n} = 1$. Suppose $n^{\#} = p^e$, where p is prime and $e \ge 2$. Then, from (4), we have $\sigma(\overline{n})/\overline{n} = p$. If p = 2, then \overline{n} is an odd squarefree perfect number, which is impossible. Now, \overline{n} is squarefree, and any odd prime that divides \overline{n} contributes at least one factor 2 to $\sigma(\overline{n})$, and since $p \neq 2$, we have $2\|\overline{n}$. Then $\overline{n} = 2q$, where q is prime, and the requirement $\sigma(\overline{n})/\overline{n} = p$ forces q = 3/(2p - 3), which is impossible if p > 2.

We strongly suspect the following is true:

Conjecture 4: If *n* satisfies (3), then $n^{\#}$ is even.

If the right side of (4) does not reduce, then Conjecture 4 is true: If we suppose that $n^{\#}$ is odd, then $4|\sigma^*(n^{\#})$, as $n^{\#}$ has at least two distinct prime divisors by Theorem 7. Then, it is easy to see that the denominator of the

1987]

right side of (4) is of the form 4k - 1, and if the right side of (4) does not reduce, then \overline{n} is of the form 4k - 1, whence $4|\sigma(\overline{n})$, making (4) impossible. Thus, any counterexample to Conjecture 4 requires that the fraction on the right side of (4) reduce.

ACKNOWLEDGMENTS

The authors express their gratitude to fellow participants in a problems seminar at the University of Southwestern Louisiana. The contributions of Abdul-Nasser El-Kassar and Scott Beslin have already been noted. P. G. Garcia and Pat Jones also contributed to our investigation of functions of non-unitary divisors.

REFERENCES

- 1. Scott Beslin. "Number Theoretic Functions and Finite Rings." M.S. Thesis, University of Southwestern Louisiana, 1986.
- 2. Peter Hagis, Jr. "Unitary Amicable Numbers." Math. Comp. 25 (1971):915-918.
- 3. R. T. Hansen & L. G. Swanson. "Unitary Divisors." *Math. Mag.* 52 (1979): 217-222.
- 4. M. V. Subbarao, T. J. Cook, R. S. Newberry, & J. M. Weber. "On Unitary Perfect Numbers." Delta 3 (1972/1973):22-26.
- 5. M. V. Subbarao & L. J. Warren. "Unitary Perfect Numbers." Canad. Math. Bull. 9 (1966):147-153.
- 6. C. R. Wall. "Topics Related to the Sum of the Unitary Divisors of an Integer." Ph.D. Dissertation, University of Tennessee, 1970.
- 7. C. R. Wall. "The Fifth Unitary Perfect Number." Canad. Math. Bull. 18 (1975):115-122.
