STEVE LIGH and CHARLES R. WALL
University of Southwestern Louisiana, Lafayette, LA 70504
(Submitted November 1985)

1. INTRODUCTION

A divisor d of n is a unitary divisor if $\operatorname{gcd}(d, n / d)=1$; in such a case, we write $d \| n$. There is a considerable body of results on functions of unitary divisors (see [2]-[7]). Let $\tau^{*}(n)$ and $\sigma^{*}(n)$ denote, respectively, the number and sum of the unitary divisors of n.

We say that a divisor d of n is a non-unitary divisor if $(d, n / d)>1$. If d is a non-unitary divisor of n, we write $d^{\#} n$. In this paper, we examine some functions of non-unitary divisors.

We will find it convenient to write

$$
n=\bar{n} \cdot n^{\sharp}
$$

where \bar{n} is the largest squarefree unitary divisor of n. We call \bar{n} the squarefree part of n and $n^{\#}$ the powerful part of n. Then, if p is prime, $p \mid \bar{n}$ implies $p \| n$, while $p \mid n \#$ implies $p^{2} \mid n$. Naturally, either \bar{n} or $n \#$ can be 1 if required (if n is powerful or squarefree, respectively).

2. THE SUM OF NON-UNITARY DIVISORS FUNCTION

Let $\sigma^{\#}(n)$ be the sum of the non-unitary divisors of n :

$$
\sigma^{\#}(n)=\sum_{d \mid \|_{n}} d .
$$

Now, every divisor is either unitary or non-unitary. Because \bar{n} and n are relatively prime and the σ and σ^{*} functions are multiplicative, we have

$$
\sigma^{\sharp}(n)=\sigma(n)-\sigma^{*}(n)=\sigma(\bar{n}) \sigma\left(n^{\#}\right)-\sigma^{*}(\bar{n}) \sigma^{*}\left(n^{\#}\right) .
$$

But $\sigma(\bar{n})=\sigma^{*}(\bar{n})$, so

$$
\sigma^{\#}(n)=\sigma(\bar{n})\left\{\sigma\left(n^{\#}\right)-\sigma^{*}\left(n^{\#}\right)\right\} \text {. }
$$

Therefore,

$$
\sigma \#(n)=\left\{\prod_{p \| n}(p+1)\right\} \cdot\left\{\prod_{\substack{p^{e} \| n \\ e>1}} \frac{p^{e+1}-1}{p-1}-\prod_{\substack{p^{e} \| n \\ e>1}}\left(p^{e}+1\right)\right\}
$$

Note that $\sigma \sharp(n)=0$ if and only if n is squarefree, and that σ is not multiplicative.

Recall that an integer n is perfect [unitary perfect] if it equals the sum of its proper divisors [unitary divisors]. This is usually stated as $\sigma(n)=2 n$ $\left[\sigma^{*}(n)=2 n\right]$ in order to be dealing with multiplicative functions. But all nonunitary divisors are proper divisors, so the analogous definition here is that

FUNCTIONS OF NON-UNITARY DIVISORS

Theorem 1: If $2^{p}-1$ is prime, so that $2^{p-1}\left(2^{p}-1\right)$ is an even perfect number, then $2^{p+1}\left(2^{p}-1\right)$ is non-unitary perfect.

Proof: Suppose $n=2^{p+1}\left(2^{p}-1\right)$, where p is prime. Then

$$
\begin{aligned}
\sigma^{\sharp}(n) & =\sigma\left(2^{p}-1\right)\left\{\sigma\left(2^{p+1}\right)-\sigma^{*}\left(2^{p+1}\right)\right\} \\
& =2^{p}\left[\left(2^{p+2}-1\right)-\left(2^{p+2}+1\right)\right] \\
& =2^{p}\left(2^{p+1}-2\right)=2^{p+1}\left(2^{p}-1\right)=n .
\end{aligned}
$$

A computer search written under our direction by Abdul-Nasser E1-Kassar found no other non-unitary perfect numbers less than one million. Accordingly, we venture the following:

Conjecture 1: An integer is non-unitary perfect if and only if it is 4 times an even perfect number.

If $n \#$ is known or assumed, it is relatively easy to search for \bar{n} to see if n is non-unitary perfect. Many cases are eliminated because of having σ \# $(n \#)>$ n. In most other cases, the search fails because \bar{n} would have to contain a repeated factor. For example, if $n^{\#}=2^{2} 5^{2}$, then no \bar{n} will work, for

$$
\sigma \sharp\left(2^{2} 5^{2}\right)=7 \cdot 31-5 \cdot 26=87=3 \cdot 29,
$$

so $3 \cdot 29 \mid \bar{n}$; but $2^{2} 5^{2} 29 \| n$ implies $3^{2} \mid n$, so $3 \mid \bar{n}$ is impossible.
The second author generated by computer all powerful numbers not exceeding 2^{15}. Examination of the various cases verified that there is no non-unitary perfect number n with $n \# \leqslant 2^{15}$ except when n satisfies Theorem 1 [i.e., $n=$ $2^{p+1}\left(2^{p}-1\right)$, where $2^{p}-1$ is prime].
 where $k \geqslant 1$ is an integer. We examined all $n \geqslant 2^{15}$ and a11 $n \leqslant 10^{6}$ and found the k-fold non-unitary perfect numbers ($k>1$) listed in Table 1 . Based on the profusion of examples and the relative ease of finding them, we hazard the following (admittedly shaky) guess:

Conjecture 2: There are infinitely many \mathcal{k}-fold non-unitary perfect numbers.
Table 1. k-fold Non-Unitary Perfect Numbers $(k>1)$

k	n
2	$2^{3} 3^{2} 5 \cdot 7=2520$
2	$2^{3} 3^{3} 5 \cdot 29=31320$
2	$2^{3} 3^{4} 5 \cdot 359=1163160$
2	$2^{7} 3^{5} 71=2208384$
2	$2^{4} 3^{2} 7 \cdot 13 \cdot 233=3053232$
2	$2^{7} 3^{3} 31 \cdot 61=6535296$
2	$2^{5} 3^{2} 7 \cdot 41 \cdot 163=13472928$
2	$2^{5} 5^{2} 3 \cdot 19 \cdot 37 \cdot 73=123165600$
2	$2^{7} 3^{4} 47 \cdot 751=365959296$
2	$2^{4} 3^{4} 11 \cdot 131 \cdot 2357=4401782352$
2	$2^{10} 3 \cdot 5 \cdot 7 \cdot 19 \cdot 37 \cdot 73=5517818880$
3	$2^{7} 3^{2} 5^{2} \cdot 7 \cdot 13 \cdot 71=186076800$
3	$2^{8} 3^{4} 5 \cdot 7 \cdot 11 \cdot 53 \cdot 769=325377803520$
3	$2^{6} 3^{2} 7^{2} 5 \cdot 13 \cdot 19 \cdot 113 \cdot 677=2666567816640$

FUNCTIONS OF NON-UNITARY DIVISORS

 Because $\sigma \sharp(18)=9$ and $\sigma \#\left(p^{2}\right)=p$ if p is prime, we have the following:

Theorem 2: If $n=18$ or $n=p^{2}$, where p is prime, then n is non-unitary subperfect.

An examination of all $n \not \approx 2^{15}$ and all $n \leqslant 10^{6}$ found no other non-unitary subperfect numbers, so we are willing to risk the following:

Conjecture 3: An integer n is non-unitary subperfect if and only if $n=18$ or $n=p^{2}$, where p is prime.

It is possible to define non-unitary harmonic numbers by requiring that the harmonic mean of the non-unitary divisors be integral. If $\tau^{*}(n)=\tau(n)-\tau^{*}(n)$ counts the number of non-unitary divisors, the requirement is that $n \tau^{\#}(n) / \sigma^{*}(n)$ be integral. We found several dozen examples less than 10^{6}, including all $k-$ fold non-unitary perfect numbers, as well as numbers of the forms

$$
\begin{aligned}
& 2 \cdot 3 p^{2}, p^{2}(2 p-1), 2 \cdot 3 p^{2}(2 p-1), 2^{p+1} 3\left(2^{p}-1\right), 2^{p+1} 3 \cdot 5\left(2^{p}-1\right) \\
& \text { and } 2^{p+1}(2 p-1)\left(2^{p}-1\right)
\end{aligned}
$$

where $p, 2 p-1$, and $2^{p}-1$ are distinct primes. Many other examples seemed to fit no general pattern.

Recall that integers n and m are amicable [unitary amicable] if each is the sum of the proper divisors [unitary divisors] of the other. Similarly, we say that n and m are non-unitary amicable if

$$
\sigma^{\#}(n)=m \quad \text { and } \quad \sigma^{\#}(m)=n .
$$

Theorem 3: If $2^{p}-1$ and $2^{q}-1$ are prime, then $2^{p+1}\left(2^{q}-1\right)$ and $2^{q+1}\left(2^{p}-1\right)$ are non-unitary amicable.

Proof: Trivial verification.
Thus, there are at least as many non-unitary amicable pairs as there are pairs of Mersenne primes. Our computer search for $n<m$ and $n \leqslant 10^{6}$ revealed only four non-unitary amicable pairs that are not characterized by Theorem 3:

$$
\begin{array}{ll}
n=252=2^{2} 3^{2} 7 & m=328=2^{3} 41 \\
n=3240=2^{3} 3^{4} 5 & m=6462=2 \cdot 3^{2} 359 \\
n=11616=2^{5} 3 \cdot 11^{2} & m=17412=2^{2} \cdot 3 \cdot 1451 \\
n=11808=2^{5} 3^{2} 41 & m=20538=2 \cdot 3^{2} \cdot 7 \cdot 163
\end{array}
$$

3. THE NON-UNITARY ANALOG OF EULER'S FUNCTION

Euler's function

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)=\prod_{p^{e} \| n}\left(p^{e}-p^{e-1}\right)
$$

is usually defined as the number of positive integers not exceeding n that are relatively prime to n. The unitary analog is

$$
\varphi^{*}(n)=n \prod_{p^{e} \| n}\left(1-\frac{1}{p^{e}}\right)=\prod_{p^{e} \| n}\left(p^{e}-1\right)
$$

FUNCTIONS OF NON-UNITARY DIVISORS

Our first task here is to give equivalent alternative definitions for φ and φ^{*} which will suggest a non-unitary analog. In particular, we may define $\varphi(n)$ as the number of positive integers not exceeding n that are not divisible by any of the divisors $d>1$ of n. Similarly, $\varphi^{*}(n)$ may be defined as the number of positive integers not exceeding n that are not divisible by any of the unitary divisors $d>1$ of n.

Recalling that 1 is never a non-unitary divisor of n, it is natural in light of the alternative definitions of φ and φ^{*} to define $\varphi^{\#}(n)$ as the number of positive integers not exceeding n that are not divisible by any of the nonunitary divisors of n. By imitating the usual proofs for φ and φ^{*}, it is easy to show that φ \# is multiplicative, and that

$$
\begin{equation*}
\varphi_{\#}^{\#}(n)=\bar{n} \varphi\left(n^{\#}\right) . \tag{1}
\end{equation*}
$$

The following result neatly connects divisors, unitary divisors, and nonunitary divisors in a, perhaps, unexpected way:

Theorem 4: $\sum_{d \mid n} \varphi^{\#}(d)=\sigma^{*}(n)$.
Proof: The Dirichlet convolution preserves multiplicativity, and φ \# is multiplicative, so we need only check the assertion for prime powers. In light of (1), doing so is easy, because the sum telescopes:

$$
\begin{aligned}
\sum_{d l p^{e}} \varphi^{\#}(d) & =\varphi^{\sharp}(1)+\varphi^{\sharp}(p)+\varphi^{\sharp}\left(p^{2}\right)+\cdots+\varphi^{\#}\left(p^{e}\right) \\
& =1+p+\left(p^{2}-p\right)+\cdots+\left(p^{e}-p^{e-1}\right) \\
& =1+p^{e}=\sigma^{*}\left(p^{e}\right) .
\end{aligned}
$$

It is well known that

$$
\sum_{d \mid n} \varphi(d)=n \quad \text { and } \quad \sum_{d \| n} \varphi^{*}(d)=n
$$

and one might anticipate a similar result involving φ. However, the situation is a bit complicated. We write

$$
\begin{equation*}
\sum_{\left.d\right|^{\#} n} \varphi \sharp(d)=\sum_{d \mid n} \varphi^{\sharp}(d)-\sum_{d \| n} \varphi^{\sharp}(d) . \tag{2}
\end{equation*}
$$

Now, both convolutions on the right side of (2) preserve multiplicativity and, as a result, it is possible to obtain the following:
Theorem 5: $\quad \sum_{\left.d\right|^{*} n} \varphi^{*}(d)=\sigma(\bar{n})\left\{\sigma^{*}\left(n^{\#}\right)-\prod_{p^{*} \| n^{*}}\left(p^{e}-p^{e-1}+1\right)\right\}$
Theorem 5 was first obtained by Scott Beslin in his Master's thesis [1], written under the direction of the first author of this paper.

Two questions arise in connection with Theorem 5. First, is it possible to find a subset $S(n)$ of the divisors of n for which

$$
\sum_{d \in S(n)} \varphi^{\sharp}(d)=n ?
$$

It is indeed possible to do so. Let $\omega(n)$ be the number of distinct primes that divide n. We say that d is an ω-divisor of n if $d \mid n$ and $\omega(d)=\omega(n)$, i.e., if every prime that divides n also divides d. Let $\Omega(n)$ denote the set of all ω divisors of n.

FUNCTIONS OF NON-UNITARY DIVISORS

Theorem 6: $\sum_{d \in \Omega(n)} \varphi^{\sharp}(d)=n$.
Proof: Trivial if $\omega(n)=0$. But if $\omega(n)=1$, the sum is that in the proof of Theorem 4 except that the term " φ \# $(1)=1$ " is missing. Easy induction on $\omega(n)$, using the multiplicativity of $\varphi \#$, completes the proof.

The other question that arises from Theorem 5 is whether it is possible to have

$$
\begin{equation*}
\sum_{d \mid n} \varphi^{\# \#}(d)=n, \quad n>1 . \tag{3}
\end{equation*}
$$

We know of ten solutions to (3), and they are given in Table 2. By Theorem 5, if n satisfies (3), then

$$
\begin{equation*}
\sigma(\bar{n}) / \bar{n}=n^{\#} /\left\{\sigma^{*}\left(n^{\sharp}\right)-\prod_{p^{e} \| n^{\#}}\left(p^{e}-p^{e-1}+1\right)\right\} . \tag{4}
\end{equation*}
$$

This observation makes it easy to search for \bar{n} if $n \#$ is known. The first eight numbers in Table 2 are the only solutions to (3) with $1<n \leqslant 2^{15}$.

Table 2. Solutions to (3), Ordered by $n^{\#}$

It seems unlikely that one could completely characterize the solutions to (3). However, we do know the following:

Theorem 7: If $n>1$ satisties (3), then $n^{\#}$ is divisible by at least two distinct primes.

Proof: We must have $n *>1$ because $\sigma(\bar{n}) \geqslant \bar{n}$ with equality only if $\bar{n}=1$. Suppose $n^{\#}=p^{e}$, where p is prime and $e \geqslant 2$. Then, from (4), we have $\sigma(\bar{n}) / \bar{n}=p$. If $p=2$, then \bar{n} is an odd squarefree perfect number, which is impossible. Now, \bar{n} is squarefree, and any odd prime that divides \bar{n} contributes at least one factor 2 to $\sigma(\bar{n})$, and since $p \neq 2$, we have $2 \| \bar{n}$. Then $\bar{n}=2 q$, where q is prime, and the requirement $\sigma(\bar{n}) / \bar{n}=p$ forces $q=3 /(2 p-3)$, which is impossible if $p>2$.

We strongly suspect the following is true:
Conjecture 4: If n satisfies (3), then $n^{\#}$ is even.
If the right side of (4) does not reduce, then Conjecture 4 is true: If we suppose that $n \#$ is odd, then $4 \| \sigma^{*}(n \#)$, as $n \#$ has at least two distinct prime divisors by Theorem 7. Then, it is easy to see that the denominator of the
right side of (4) is of the form $4 k-1$, and if the right side of (4) does not reduce, then \bar{n} is of the form $4 k-1$, whence $4 \mid \sigma(\bar{n})$, making (4) impossible. Thus, any counterexample to Conjecture 4 requires that the fraction on the right side of (4) reduce.

ACKNOWLEDGMENTS

The authors express their gratitude to fellow participants in a problems seminar at the University of Southwestern Louisiana. The contributions of Abdul-Nasser El-Kassar and Scott Beslin have already been noted. P. G. Garcia and Pat Jones also contributed to our investigation of functions of non-unitary divisors.

REFERENCES

1. Scott Beslin. "Number Theoretic Functions and Finite Rings." M.S. Thesis, University of Southwestern Louisiana, 1986.
2. Peter Hagis, Jr. "Unitary Amicable Numbers." Math. Comp. 25 (1971):915918.
3. R. T. Hansen \& L. G. Swanson. "Unitary Divisors." Math. Mag. 52 (1979): 217-222.
4. M. V. Subbarao, T. J. Cook, R. S. Newberry, \& J. M. Weber. "On Unitary Perfect Numbers." Delta 3 (1972/1973):22-26.
5. M. V. Subbarao \& L. J. Warren. "Unitary Perfect Numbers." Canad. Math. BuてL. 9 (1966):147-153.
6. C. R. Wall. "Topics Related to the Sum of the Unitary Divisors of an Integer." Ph.D. Dissertation, University of Tennessee, 1970.
7. C. R. Wall. "The Fifth Unitary Perfect Number." Canad. Math. Bull. 18 (1975):115-122.

$\bullet \diamond \diamond \diamond$

