# ON SOME PROPERTIES OF HUMBERT'S POLYNOMIALS 

G. V. MILOVANOVIĆ<br>University of Nis̆s, P.O. Box 73, 18000 Nis̆, Yugoslavia<br>G. DJORDJEVIĆ<br>University of Niš, 16000 Leskovac, Yugoslavia

(Submitted February 1986)

## 1. INTRODUCTION

In 1921, Humbert [8] defined a class of polynomials $\left\{\mathbb{I}_{n, m}^{\lambda}\right\}_{n=0}^{\infty}$ by the generating function

$$
\begin{equation*}
\left(1-m x t+t^{m}\right)^{-\lambda}=\sum_{n=0}^{\infty} \Pi_{n, m}^{\lambda}(x) t^{n} . \tag{1}
\end{equation*}
$$

These satisfy the recurrence relation

$$
(n+1) \Pi_{n+1, m}^{\lambda}(x)-m x(n+\lambda) \Pi_{n, m}^{\lambda}(x)-(n+m \lambda-m+1) \Pi_{n-m+1, m}^{\lambda}(x)=0
$$

Particular cases of these polynomials are Gegenbauer polynomials [1]

$$
C_{n}^{\lambda}(x)=\Pi_{n, 2}^{\lambda}(x)
$$

and Pincherle polynomials (see [8])

$$
\rho_{n}(x)=\Pi_{n, 3}^{-1 / 2}(x)
$$

Later, Gould [2] studied a class of generalized Humbert polynomials
$P_{n}(m, x, y, p, C)$
defined by

$$
\begin{equation*}
\left(C-m x t+y t^{m}\right)^{p}=\sum_{n=0}^{\infty} P_{n}(m, x, y, p, C) t^{n} \tag{2}
\end{equation*}
$$

where $m \geqslant 1$ is an integer and the other parameters are unrestricted in general. The recurrence relation for the generalized Humbert polynomials is

$$
\begin{equation*}
C n P_{n}-m(n-1-p) x P_{n-1}+(n-m-m p) y P_{n-m}=0, \quad n \geqslant m \geqslant 1 \tag{3}
\end{equation*}
$$

where we put $P_{n}=P_{n}(m, x, y, p, C)$.
In [6], Horadam and Pethe investigated the polynomials associated with the Gegenbauer polynomials

$$
\begin{equation*}
C^{\lambda}(x)=\sum_{k=0}^{[n / 2]}(-1)^{k} \frac{(\lambda)_{n-k}}{k!(n-2 k)!}(2 x)^{n-2 k}, \tag{4}
\end{equation*}
$$

where $(\lambda)_{0}=1,(\lambda)_{n}=\lambda(\lambda+1) \ldots(\lambda+n-1), n=1,2, \ldots$ Listing the polynomials of (4) horizontally and taking sums along the rising diagonals, Horadam and Pethe obtained the polynomials denoted by $p_{n}^{\lambda}(x)$. For these polynomials, they proved that the generating function $G^{\lambda}(x, t)$ is given by

$$
\begin{equation*}
G^{\lambda}(x, t)=\sum_{n=1}^{\infty} p_{n}^{\lambda}(x) t^{n-1}=\left(1-2 x t+t^{3}\right)^{-\lambda} \tag{5}
\end{equation*}
$$

## ON SOME PROPERTIES OF HUMBERT'S POLYNOMIALS

Some special cases of these polynomials were considered in several papers (see [3], [4], and [7], for example).

Comparing (5) to (1), we see that their polynomials are Humbert polynomials for $m=3$, with $x$ replaced by $2 x / 3$, i.e., $p_{n+1}^{\lambda}(x)=\Pi_{n, 3}^{\lambda}(2 x / 3)$.

$$
\text { 2. THE POLYNOMIALS } p_{n, m}^{\lambda}(x)
$$

In this paper, we consider the polynomials $\left\{p_{n, m}^{\lambda}\right\}_{n=0}^{\infty}$ defined by

$$
p_{n, m}^{\lambda}(x)=\Pi_{n, m}^{\lambda}(2 x / m)
$$

Their generating function is given by

$$
\begin{equation*}
G_{m}^{\lambda}(x, t)=\left(1-2 x t+t^{m}\right)^{-\lambda}=\sum_{n=0}^{\infty} p_{n, m}^{\lambda}(x) t^{n} \tag{6}
\end{equation*}
$$

Note that
and

$$
p_{n, 2}^{\lambda}(x)=C_{n}^{\lambda}(x) \quad \quad \text { (Gegenbauer polynomials) }
$$

$$
p_{n, 3}^{\lambda}(x)=p_{n+1}^{\lambda}(x) \quad \text { (Horadam-Pethe polynomials). }
$$

For $m=1$, we have

$$
G_{1}^{\lambda}(x, t)=(1-(2 x-1) t)^{-\lambda}=\sum_{n=0}^{\infty} p_{n, 1}^{\lambda}(x) t^{n}
$$

and

$$
p_{n, 1}^{\lambda}(x)=(-1)^{n}\binom{-\lambda}{n}(2 x-1)^{n}=\frac{(\lambda)_{n}}{n!}(2 x-1)^{n}
$$

These polynomials can be obtained from descending diagonals in the Pascal-type array for Gegenbauer polynomials (see Horadam [5]).

Expanding the left-hand side of (6), we obtain the explicit formula

$$
\begin{equation*}
p_{n, m}^{\lambda}(x)=\sum_{k=0}^{[n / m]}(-1)^{k} \frac{(\lambda)_{n-(m-1) k}}{k!(n-m k)!}(2 x)^{n-m k} . \tag{7}
\end{equation*}
$$

These polynomials can be obtained from (2) by putting $C=y=1, p=-\lambda$, and $x:=2 x / m$. Then we have

$$
p_{n, m}^{\lambda}(x)=P_{n}(m, 2 x / m, 1,-\lambda, 1)
$$

Also, if we put $C=y=m / 2$ and $p=-\lambda$, we obtain

$$
P_{n, m}^{\lambda}(x)=\left(\frac{2}{m}\right)^{\lambda} P_{n}(m, x, m / 2,-\lambda, m / 2)
$$

Then, from (3), we get the following recurrence relation

$$
\begin{equation*}
n p_{n, m}^{\lambda}(x)=(\lambda+n-1) 2 x p_{n-1, m}(x)-(n+m(\lambda-1)) p_{n-m, m}(x), \tag{8}
\end{equation*}
$$

for $n \geqslant m \geqslant 1$.
The starting polynomials are

$$
p_{n, m}^{\lambda}(x)=\frac{(\lambda)_{n}}{n!}(2 x)^{n}, n=0,1, \ldots, m-1 .
$$

Remark: For corresponding monic polynomials $\hat{p}_{n, m}^{\lambda}$, we have

$$
\begin{aligned}
& \hat{p}_{n, m}^{\lambda}(x)=x \hat{p}_{n-1, m}^{\lambda}(x)-b_{n} \hat{p}_{n-m, m}^{\lambda}(x), n \geqslant m \geqslant 1, \\
& \hat{p}_{n, m}^{\lambda}(x)=x^{n}, 0 \leqslant n \leqslant m-1,
\end{aligned}
$$

where

$$
b_{n}=\frac{(n-1)!}{(m-1)!} \cdot \frac{n+m(\lambda-1)}{2^{m}(\lambda+n-m)_{m}}
$$

The classes of polynomials $\mathbb{P}_{m, \lambda}=\left\{p_{n, m}^{\lambda}\right\}_{n=0}^{\infty}, m=2,3, \ldots$, can be found by repeating the "diagonal functions process," starting from $p_{n, 1}^{\lambda}(x)$. Listing the terms of polynomials horizontally,

$$
p_{n, m}^{\lambda}(x)=\sum_{k=0}^{[n / m]} a_{n, m}^{\lambda}(k)(2 x)^{n-m k}, \quad a_{n, m}^{\lambda}(k)=\frac{(-1)^{k}(\lambda) n-(m-1) k}{k!(n-m k)!}
$$

and taking sums along the rising diagonals, we obtain $p_{n, m+1}^{\lambda}(x)$, because

$$
a_{n-k, m}^{\lambda}(k)=(-1)^{k} \frac{(\lambda)_{n-k-(m-1) k}}{k!(n-k-m k)!}=a_{n, m+1}^{\lambda}(k) .
$$

## 3. SOME DIFFERENTIAL RELATIONS

In this section we shall give some differential equalities for the polynomials $p_{n, m}^{\lambda}$. Here, $D$ is the differentiation operator and $p_{k, m}^{\lambda}(x) \equiv 0$ when $k \leqslant 0$.
Theorem 1: The following equalities hold:

$$
\begin{align*}
& D^{k} p_{n+k, m}^{\lambda}(x)=2^{k}(\lambda)_{k} p_{n, m}^{\lambda+k}(x)  \tag{9}\\
& 2 n p_{n, m}^{\lambda}(x)=2 x D p_{n, m}^{\lambda}(x)-m D p_{n-m+1, m}^{\lambda}(x)  \tag{10}\\
& m D p_{n+1, m}^{\lambda}(x)=2(n+m \lambda) p_{n, m}^{\lambda}(x)+2 x(m-1) D p_{n, m}^{\lambda}(x)  \tag{11}\\
& 2 \lambda p_{n, m}^{\lambda}(x)=D p_{n+1, m}^{\lambda}(x)-2 x D p_{n, m}^{\lambda}(x)+D p_{n-m+1, m}^{\lambda}(x) \tag{12}
\end{align*}
$$

Proof: Using the differentiation formula (cf. [2, Eq. (3.5)])

$$
D_{x}^{k} P_{n+k}(m, x, y, p, C)=(-m)^{k} k!\left(\frac{p}{k}\right) P_{n}(m, x, y, p-k, C)
$$

we obtain (9).
To prove (10), we differentiate the generating function (6) w.r.t. $x$ and $t$. Then, elimination $\left(1-2 x t+t^{m}\right)^{-\lambda-1}$ from the expressions, we find

$$
\sum_{n=1}^{\infty} 2 n p_{n, m}^{\lambda}(x) t^{n}=\left(2 x-m t^{m-1}\right) \sum_{n=0}^{\infty} D p_{n, m}^{\lambda}(x) t^{n} .
$$

Equating coefficients of $t^{n}$ in this identity, we get (10).
By differentiating the recurrence relation (8), with $n+1$ substituted for $n$, and using (10), we obtain (11).

Finally, by differentiating the generating function (6) w.r.t. $x$, replacing $G_{m}^{\lambda}(x, t)$ by its series expansion in powers of $t$, and equating coefficients of $t^{n+1}$, we obtain the relation (12).

## ON SOME PROPERTIES OF HUMBERT'S POLYNOMIALS

## 4. THE DIFFERENTIAL EQUATION

Let the sequence $\left(f_{r}\right)_{r=0}^{n}$ be given by $f_{r}=f(r)$, where

$$
f(t)=(n-t)\left(\frac{n-t+m(\lambda+t)}{m}\right)_{m-1} .
$$

Also, we introduce two standard difference operators, the forward difference operator $\Delta$ and the displacement (or shift) operator $E$, by

$$
\Delta f_{r}=f_{r+1}-f_{r} \quad \text { and } \quad E f_{r}=f_{r+1},
$$

and their powers by

$$
\Delta^{0} f_{r}=f_{r}, \quad \Delta^{k} f_{r}=\Delta\left(\Delta^{k-1} f_{r}\right), \quad E^{k} f_{r}=f_{r+k}
$$

Theorem 2: The polynomial $x \mapsto p_{n, m}^{\lambda}(x)$ is a particular solution of the following $m$-order differential equation

$$
\begin{equation*}
y^{(m)}+\sum_{s=0}^{m} \alpha_{s} x^{s} y^{(s)}=0 \tag{13}
\end{equation*}
$$

where the coefficients $\alpha_{s}$ are given by

$$
\begin{equation*}
a_{s}=\frac{2^{m}}{s!m} \Delta^{s} f_{0} \quad(s=0,1, \ldots, m) \tag{14}
\end{equation*}
$$

Proof: Let $n=p m+q$, where $p=[n / m]$ and $0 \leqslant q \leqslant m-1$. By differentiating (7), we find

$$
x^{s} D^{s} p_{n, m}^{\lambda}(x)=\sum_{k=0}^{\left[\frac{n-s}{m}\right]}(-1)^{k} \frac{(\lambda)_{n-(m-1) k}}{k!(n-m k-s)!}(2 x)^{n-m k}
$$

and

$$
D^{m} p_{n, m}^{\lambda}(x)=\sum_{k=0}^{p-1}(-1)^{k} \frac{(\lambda)_{n-(m-1) k} 2^{m}}{k!(n-m(k+1))!}(2 x)^{n-m(k+1)},
$$

where $\left[\frac{n-s}{m}\right]=p$ when $s \leqslant q$, or $=p-1$ when $s>q$.
If we substitute these expressions in the differential equation (13) and compare the corresponding coefficients, we obtain the following relations:

$$
\begin{array}{r}
\sum_{s=0}^{m}\binom{n-m k}{s} s!a_{s}=2^{m} k(\lambda+n-(m-1) k)_{m-1}  \tag{15}\\
(k=0,1, \ldots, p-1)
\end{array}
$$

and

$$
\sum_{s=0}^{q}\binom{n-m p}{s} s!\alpha_{s}=2^{m} p(\lambda+n-(m-1) p)_{m-1} .
$$

First, we consider the second equality, i.e.,

$$
\sum_{s=0}^{q}\binom{q}{s} \frac{2^{m}}{m} \Delta^{s} f_{0}=2^{m} \frac{n-q}{m}\left(\lambda+q+\frac{n-q}{m}\right)_{m-1}
$$

This equality is correct, because it is equivalent to

$$
(1+\Delta)^{q} f_{0}=E^{q} f_{0}=f_{q}=f(q)
$$

Equality (15) can be written in the form

$$
\begin{equation*}
\sum_{s=0}^{m}\binom{n-m k}{s} \Delta^{s} f_{0}=f_{n-m k} \quad(k=0,1, \ldots, p-1) \tag{16}
\end{equation*}
$$

1987]

Since $t \mapsto f(t)$ is a polynomial of degree $m$, the last equalities are correct; (16) is a forward-difference formula for $f$ at the point $t=n-m k$.

Thus, the proof is completed.
From (14), we have

$$
\begin{aligned}
& a_{0}=\frac{2^{m} n}{m}\left(\frac{n+m \lambda}{m}\right)_{m-1}=\frac{2^{m} n}{m^{m}} \prod_{i=1}^{m-1}(n+m(\lambda+i-1)), \\
& \alpha_{1}=\frac{2^{m}}{m}\left\{(n-1)\left(\frac{n-1+m(\lambda+1)}{m}\right)_{m-1}-n\left(\frac{n+m \lambda}{m}\right)_{m-1}\right\}, \text { etc. }
\end{aligned}
$$

Since

$$
f(t)=-\left(\frac{m-1}{m}\right)^{m-1} t^{m}+\text { terms of lower degree, }
$$

we find

$$
a_{m}=-\frac{2^{m}}{m}\left(\frac{m-1}{m}\right)^{m-1}
$$

For $m=1,2,3$, we have the following differential equations:

$$
\begin{aligned}
& (1-2 x) y^{\prime}+2 n y=0, \\
& \left(1-x^{2}\right) y^{\prime \prime}-(2 \lambda+1) x y^{\prime}+n(n+2 \lambda) y=0, \\
& \left(1-\frac{32}{27} x^{3}\right) y^{\prime \prime \prime}- \\
& -\frac{16}{9}(2 \lambda+3) x^{2} y^{\prime \prime} \\
& \\
& -\frac{8}{27}(3 n(n+2 \lambda+1)-(3 \lambda+2)(3 \lambda+5)) x y^{\prime} \\
& \\
& +\frac{8}{27} n(n+3 \lambda)(n+3(\lambda+1)) y=0 .
\end{aligned}
$$

Note that the second equation is the Gegenbauer equation.

## REFERENCES

1. L. Gegenbauer. "Zur Theorie der Functionen $C_{n}^{\nu}(x) . "$ Osterreichische Akademie der Wissenschaften Mathematisch Naturwissen Schaftliche Klasse Denkscriften 48 (1884):293-316.
2. H. W. Gould. "Inverse Series Relations and Other Expansions Involving Humbert Polynomials." Duke Math. J. 32, no. 4 (1965):697-712.
3. A. F. Horadam. "Polynomials Associated with Chebyshev Polynomials of the First Kind." The Fibonacei Quarterly 15, no. 3 (1977):255-257.
4. A. F. Horadam. "Chebyshev and Fermat Polynomials for Diagonal Functions." The Fibonacci Quarterly 17, no. 4 (1979):328-333.
5. A. F. Horadam. "Gegenbauer Polynomials Revisited." The Fibonacci Quarterly 23, no. 4 (1985):294-299, 307.
6. A. F. Horadam \& S. Pethe. "Polynomials Associated with Gegenbauer Polynomials." The Fibonacei Quarterly 19, no. 5 (1981):393-398.
7. D. V. Jaiswal. "On Polynomials Related to Tchebichef Polynomials of the Second Kind." The Fibonacei Quarterly 12, no. 3 (1974):263-265.
8. P. Humbert. "Some Extensions of Pincherle's Polynomials." Proc. Edinburgh Math. Soc. (1) 39 (1921):21-24.
