ANALOGS OF SMITH'S DETERMINANT*
 CHARLES R. WALL
 Trident Technical College, Charleston, SC 29411

(Submitted December 1985)

Over a century ago, according to Dickson [1], H.J. S. Smith [3] showed that

$$
\left|\begin{array}{ccccc}
(1,1) & \ldots & (1, j) & \ldots & (1, n) \\
\vdots & & \vdots & & \vdots \\
(i, 1) & \ldots & (i, j) & \ldots & (i, n) \\
\vdots & & \vdots & & \vdots \\
(n, 1) & \ldots & (n, j) & \ldots & (n, n)
\end{array}\right|=\varphi(1) \quad \varphi(2) \quad \ldots \quad \varphi(n),
$$

where (i, j) is the greatest common divisor of i and j, and φ is Euler's function. P. Mansion [2] proved a generalization of Smith's result: If

$$
f(m)=\sum_{d \mid m} g(d)
$$

and we write $f(i, j)$ for $f(\operatorname{gcd}(i, j))$, then

$$
\left|\begin{array}{ccccc}
f(1,1) & \ldots & f(1, j) & \ldots & f(1, n) \\
\vdots & & \vdots & & \vdots \\
f(i, 1) & & f(i, j) & & f(i, n) \\
\vdots & & \vdots & & \vdots \\
f(n, i) & \ldots & f(n, j) & \ldots & f(n, n)
\end{array}\right|=g(1) g(2) \cdots c g(n) .
$$

Note that Mansion's result becomes Smith's when $f(m)=m$, because

$$
m=\sum_{d \mid m} \varphi(d)
$$

In this paper, we present an extension of Mansion's result to a wide class of arithmetic convolutions.

Suppose $S(m)$ defines some set of divisors of m for each m. If $d \mid m$, we say that d is an S-divisor of m if $d \in S(m)$. We will denote by $(i, j)_{S}$ the largest common S-divisor of i and j.

Now might or might not be an element of $S(m)$, as can be seen if we let $S(m)$ be the largest squarefree divisor of m. Also, the property

$$
d \in S(i) \cap S(j) \text { if and only if } d \in S\left((i, j)_{S}\right)
$$

might or might not be true. It is true if $S(m)$ consists of all the divisors of

[^0]m, but not if $S(m)$ consists of all divisors d of m for which ($d, m / d)>1$, for then 6 is the largest common S-divisor of 12 and 24 , and 2 is an S-divisor of 12 and 24 , but not of 6 .

We come now to the promised generalization:
Theorem: Let $S(m)$ and $(i, j)_{S}$ be defined as above. If
(1) $m \in S(m)$ for each m,
(2) $d \in S(i) \cap S(j)$ if and only if $d \in S\left((i, j)_{S}\right)$, and
(3) $f(m)=\sum_{d \in S(m)} g(d)$,
then

Proof: Assume the hypotheses, and define

$$
S(a, b)= \begin{cases}1 & \text { if } b \in S(\alpha) \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $S(\alpha, b)=0$ if $b>a$, and by (l) we have $S(\alpha, \alpha)=1$ for each α. Now, $S(i, d) S(j, d)$ is 0 unless d is an S-divisor of both i and j, in which case the product is 1 , and by (2) and (3) it is easy to see that

$$
\begin{aligned}
f\left((i, j)_{S}\right)= & S(i, 1) S(j, 1) g(1)+S(i, 2) S(j, 2) g(2) \\
& +\cdots+S(i, n) S(j, n) g(n)
\end{aligned}
$$

for each i and j. Then

$$
\left[f\left((i, j)_{S}\right)\right]=A \cdot B
$$

where

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{cccccc}
S(1,1) & S(1, & 2) & \ldots & S(1, i) & \ldots \\
S(2,1) & S(2, & 2) & \ldots & S(2, i) & \ldots \\
S(2, n) \\
\vdots & \vdots & & \vdots & & \vdots \\
S(i, 1) & S(i, & 2) & \ldots & S(i, i) & \ldots \\
\vdots & \vdots & & \vdots & & S(i, n) \\
S(n, 1) & S(n, & 2) & \ldots & S(n, i) & \ldots
\end{array}\right) S(n, n)
\end{array}\right] .
$$

and

$$
\begin{aligned}
B & =\left[\begin{array}{cccccc}
S(1, ~ 1) g(1) & S(2, ~ 1) g(1) & \ldots & S(j, 1) g(1) & \ldots & S(n, 1) g(1) \\
S(1,2) g(2) & S(2, & 2) g(2) & \ldots & S(j, & 2) g(2) \\
\vdots & \vdots & \ldots & S(n, & 2) g(2) \\
S(1, j) g(j) & S(2, j) g(j) & \ldots & S(j, j) g(j) & \ldots & S(n, j) g(j) \\
\vdots & \vdots & \vdots & \vdots \\
S(1, n) g(n) & S(2, n) g(n) & \ldots & S(j, n) g(n) & \ldots & S(n, n) g(n)
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
g(1) & S(2,1) g(1) & \ldots & S(j, 1) g(1) & \ldots & S(n, 1) g(1) \\
0 & g(2) & \ldots & S(j, 2) g(2) & \ldots & S(n, 2) g(2) \\
\vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & \ldots & g(j) & \ldots & S(n, j) g(j) \\
\vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & \ldots & 0 & \cdots & g(n)
\end{array}\right]
\end{aligned}
$$

The theorem then follows from the observations
$\operatorname{det} A=1$ and $\operatorname{det} B=g(1) g(2) \ldots g(n)$.
In particular, if $S(m)$ consists of all divisors of m, the theorem yields Mansion's result. Another special case of some interest arises if we let $S(m)$ consist of the unitary divisors of m : We say that d is a unitary divisor of m if $\operatorname{gcd}(d, m / d)=1$. Let $(i, j)^{*}$ be the largest common unitary divisor of i and j. Also, let $\tau^{*}(m)$ and $\sigma^{*}(m)$ be the number and sum, respectively, of the unitary divisors of m. Then $g(d)=1$ and $g(d)=d$, respectively, yield
$\left|\tau^{*}\left((i, j)^{*}\right)\right|=1$ and $\left|\sigma^{*}\left((i, j)^{*}\right)\right|=n!$

REFERENCES

1. L. E. Dickson. History of the Theory of Numbers. New York: Chelsea, 1952, Vol. I, pp. 122-124.
2. P. Mansion. Bull. Acad. R. Sc. de Belgique (2), 46 (1878): 892-899; cited in [1].
3. H.J.S. Smith. Proc. London Math. Soc. 7 (1875-1876):208-212; Coll. Papers 2, 161; cited in [1].

[^0]: *Written while the author was Visiting Professor at the University of Southwestern Louisiana, Lafayette, Louisiana.

