A PARTIAL ASYMPTOTIC FORMULA FOR THE NIVEN NUMBERS

CURTIS N. COOPER and ROBERT E. KENNEDY
Central Missouri State University, Warrensburg, MO 64093
(Submitted April 1986)

A Niven number is a positive integer that is divisible by its digital sum. That is, if n is an integer and $s(n)$ denotes the digital sum of n, then n is a Niven number if and only if $s(n)$ is a factor of n. This idea was introduced in [1] and investigated further in [2], [3], and [4].

One of the questions about the set N of Niven numbers was the status of

$$
\lim _{x \rightarrow \infty} \frac{N(x)}{x},
$$

where $N(x)$ denotes the number of Niven numbers less than x. This limit, if it exists, is called the "natural density" of N.

It was proven in [3] that the natural density of the set of Niven numbers is zero, and in [4] a search for an asymptotic formula for $N(x)$ was undertaken. That is, does there exist a function $f(x)$ such that

$$
\lim _{x \rightarrow \infty} \frac{N(x)}{f(x)}=1 ?
$$

If such an $f(x)$ exists, then this would be indicated by the notation
$N(x) \sim f(x)$.
Let k be a positive integer. Then k may be written in the form $k=2^{a} 5^{b} t$,
where $(t, 10)=1$. In [4] the following notation was used.
$N_{k}=$ The set of Niven numbers with digital sum k.
$\bar{e}(k)=$ The maximum of a and b.
$e(k)=$ The order of $10 \bmod t$.
With this notation, it was then proven [4; Corollary 4.1] that

$$
\begin{equation*}
N_{k}(x) \sim c(\log x)^{k}, \tag{2}
\end{equation*}
$$

where c depends on k.
Thus, a partial answer concerning an asymptotic formula for $N(x)$ was found in [4]. Exact values of the constant c can be calculated for a given k. But, as noted in [4], this would involve an investigation of the partitions of k and solutions to certain Diophantine congruences. In what follows, we give the exact value of the constant c for a given integer k.

Let k be a positive integer such that $(k, 10)=1$. We define the sets S and \bar{S} as
and

$$
S=\left\{\left\langle x_{i}\right\rangle: \sum_{i=1}^{e(k)} x_{i}=k\right\}
$$

$$
\bar{S}=\left\{\left\langle x_{i}\right\rangle: \sum_{i=1}^{e(k)} x_{i}=k \quad \text { and } \quad \sum_{i=1}^{e(k)} 10^{i-1} x_{i} \equiv 0(\bmod k)\right\}
$$

where $\left\langle x_{i}\right\rangle$ is an $e(k)$-tuple of nonnegative integers. Since $(k, 10)=1$, it follows that, for a positive integer n,

$$
N_{k}\left(10^{e(k) n}\right)=\sum_{\left\langle x_{i}\right\rangle \in \bar{S}} \prod_{i=1}^{e(k)}\binom{n}{x_{i}}_{10}
$$

where $\binom{n}{t}_{10}$ denotes the $t^{\text {th }}$ coefficient in the expansion of

$$
G(x)=\left(1+x+x^{2}+\cdots+x^{9}\right)^{n}
$$

That is,

$$
\begin{equation*}
\frac{G^{(t)}(0)}{t!}=\binom{n}{t}_{10} \tag{4}
\end{equation*}
$$

where $G^{(t)}(0)$ is the $t^{\text {th }}$ derivative of $G(x)$ at $x=0$.
The expression given in (3) can be realized by noting that, for each

$$
\left\langle x_{i}\right\rangle \in \bar{S},
$$

the product

$$
\prod_{i=1}^{e(k)}\binom{n}{x_{i}}_{10}
$$

is the number of Niven numbers y less than $10^{e(k) n}$ with decimal representation

$$
y=\sum_{j=1}^{n e(k)} y_{j} 10^{j-1}
$$

such that

$$
x_{i}=\sum_{j \equiv i(\bmod e(k))} y_{j}
$$

Noting that $G^{(t)}(0) \sim n^{t}$, and using (4), we have that

$$
\binom{n}{t}_{10} \sim \frac{n^{t}}{t!} .
$$

Hence, for a positive k such that $(k, 10)=1$, it follows from (3) that

$$
N_{k}\left(10^{n e(k)}\right) \sim n^{k} \sum_{\left\langle x_{i}\right\rangle \in \bar{S}} \frac{1}{x_{1}!x_{2}!\ldots x_{e(k)}!}
$$

Therefore,

$$
N_{k}\left(10^{n e(k)}\right) \sim \frac{n^{k}}{k!} \sum_{\left\langle x_{i}\right\rangle \in \bar{S}} \frac{k!}{x_{1}!x_{2}!\ldots x_{e(k)}!}
$$

which may be rewritten in terms of multinomial coefficients as:

$$
\begin{equation*}
N_{k}\left(10^{n e(k)}\right) \sim \frac{n^{k}}{k!} \sum_{\left\langle x_{i}\right\rangle \in S}\binom{k}{x_{1}, x_{2}, \ldots, x_{e(k)}} \tag{5}
\end{equation*}
$$

Let w be the $k^{\text {th }}$ root of unity $\exp (2 \pi i / k)$, and consider the sum

$$
\sum_{g=0}^{k-1} f\left(w^{g}\right)
$$

where f is the function given by

$$
\begin{equation*}
f(u)=\left(u+u^{10}+u^{10^{2}}+\cdots+u^{10^{e(k)-1}}\right)^{k} \tag{6}
\end{equation*}
$$

Then

$$
\begin{align*}
\sum_{g=0}^{k-1} f\left(w^{g}\right) & =\sum_{g=0}^{k-1}\left(\sum_{i=0}^{e(k)-1}\left(w^{g}\right)^{10^{i}}\right)^{k} \\
& =\sum_{g=0}^{k-1} \sum_{\left\langle x_{i}\right\rangle \in S}\binom{k}{x_{1}, \ldots, x_{e(k)}}\left(w^{g}\right)^{x_{1}+10 x_{2}+\cdots+10^{e(k)-1} x_{e(k)}} \tag{7}
\end{align*}
$$

In order to make the notation more compact, we will let

$$
W\left(g,\left\langle x_{i}\right\rangle\right)=\left(w^{g}\right)^{x_{1}+10 x_{2}+\cdots+10^{e(k)-1} x_{e(k)}}
$$

Thus, after interchanging the order of summation, (7) becomes:

$$
\begin{aligned}
& \quad \sum_{\left\langle x_{i}\right\rangle \in S} \sum_{g=0}^{k-1}\binom{k}{x_{1}, \ldots, x_{e(k)}} W\left(g,\left\langle x_{i}\right\rangle\right) \\
& =\sum_{\left\langle x_{i}\right\rangle \in \bar{S}} \sum_{g=0}^{k-1}\binom{k}{x_{1}, \ldots, x_{e(k)}} W\left(g,\left\langle x_{i}\right\rangle\right) \\
& \quad+\sum_{\left\langle x_{i}\right\rangle \in S-\bar{S}} \sum_{g=0}^{k-1}\binom{k}{x_{1}, \ldots, x_{e(k)}} W\left(g,\left\langle x_{i}\right\rangle\right) \\
& =\sum_{\left\langle x_{i}\right\rangle \in \bar{S}}\binom{k}{\left.x_{1}, \ldots, x_{e(k)}\right)} \sum_{g=0}^{k-1} W\left(g,\left\langle x_{i}\right\rangle\right) \\
& \quad+\sum_{\left\langle x_{i}\right\rangle \in S-\bar{S}}\binom{k}{\left.x_{1}, \ldots, x_{e(k)}\right)} \sum_{g=0}^{k-1} W\left(g,\left\langle x_{i}\right\rangle\right) .
\end{aligned}
$$

But noting that $W\left(g,\left\langle x_{i}\right\rangle\right)$ is equal to 1 when $\left\langle x_{i}\right\rangle \in \bar{S}$ and $\sum_{g=0}^{k-1} W\left(g,\left\langle x_{i}\right\rangle\right)=0$ when $\left\langle x_{i}\right\rangle \in S-\bar{S}$, we conclude that

$$
\sum_{g=0}^{k-1} f\left(w^{g}\right)=k \sum_{\left\langle x_{i}\right\rangle \in \bar{S}}\binom{k}{x_{1}, \ldots, x_{e(k)}}
$$

Hence, from (5), the following theorem is immediate.
Theorem 1: For any positive integer k, relatively prime to 10 , let f, w, and $e(k)$ be given as above. Then

$$
N_{k}\left(10^{n e(k)}\right) \sim \frac{n^{k}}{k!k} \sum_{g=0}^{k-1} f\left(w^{g}\right),
$$

where n is any positive integer.

A PARTIAL ASYMPTOTIC FORMULA FOR THE NIVEN NUMBERS

Some specific examples using Theorem 1 are:

$$
\begin{aligned}
& N_{3}\left(10^{n}\right) \sim \frac{n^{3}}{6} \\
& N_{7}\left(10^{6 n}\right) \sim \frac{n^{7}}{7!7}\left(6^{7}-6\right) \\
& N_{49}\left(10^{42 n}\right) \sim \frac{n^{49}}{49!49}\left(42^{49}-6\left(7^{49}\right)\right)
\end{aligned}
$$

and

$$
N_{31}\left(10^{15 n}\right) \sim \frac{n^{31}}{31!31}\left[15^{31}+15\left(\left(\frac{-1+(31)^{1 / 2} i}{2}\right)^{31}+\left(\frac{-1-(31)^{1 / 2} i}{2}\right)^{31}\right)\right]
$$

where $e(k)=1,6,42$, and 15 when $k=3,7,49$, and 31 , respectively. Note that i denotes the square root of -1 in the last formula.

It is perhaps clear that the determination of such asymptotic formulas involves sums of complex expressions dependent on the orbit of 10 modulo k, and might be difficult to generalize.

Finally, we can use the above development as a model to generalize to the case where k is any positive integer, not necessarily relatively prime to 10 . Recalling (1), we see that, if $(k, 10) \neq 1$, then it follows that $\bar{e}(k) \neq 0$. So \bar{S} would be replaced by
and

$$
\bar{S}=\left\{\left\langle x_{i} ; y_{i}\right\rangle: \sum_{i=1}^{e(k)} x_{i}+\sum_{i=1}^{\bar{e}(k)} y_{i}=k\right.
$$

$$
\left.\sum_{i=1}^{e(k)} x_{i} 10^{i+\bar{e}(k)-1}+\sum_{i=1}^{\bar{e}(k)} y_{i} 10^{i-1} \equiv 0(\bmod k)\right\}
$$

where y_{i} is a decimal digit for each i and where $\left\langle x_{i} ; y_{i}\right\rangle$ is the $(e(k)+\bar{e}(k))-$ tuple

$$
\left(x_{1}, x_{2}, \ldots, x_{e(k)}, y_{1}, \ldots, y_{\bar{e}(k)}\right)
$$

Thus, similarly to (3), it follows that

$$
\begin{equation*}
N_{k}\left(10^{n e(k)+\bar{e}(k)}\right)=\sum_{\left\langle x_{i} ; y_{i}\right\rangle \in \bar{S}} \prod_{i=1}^{e(k)}\binom{n}{x_{i}}_{10} \prod_{i=1}^{\bar{e}(k)}\binom{1}{y_{i}}_{10} . \tag{8}
\end{equation*}
$$

But $\binom{1}{y_{i}}_{10}=1$ for each $1 \leqslant i \leqslant \bar{e}(k)$, so (8) may be rewritten as

$$
N_{k}\left(10^{n e(k)+\bar{e}(k)}\right)=\sum_{\left\langle x_{i} ; y_{i}\right\rangle \in \bar{S}} \prod_{i=1}^{e(k)}\binom{n}{x_{i}}_{10} .
$$

Therefore,

$$
N_{k}\left(10^{n e(k)+\bar{e}(k)}\right) \sim \sum_{\left\langle x_{i} ; 0\right\rangle \in \bar{S}} \prod_{i=1}^{e(k)}\binom{n}{x_{i}}_{10}
$$

and replacing f as given in (6) by

$$
f(u)=\left(u^{\bar{e}(k)}+\cdots+u^{\bar{e}(k)+e(k)-1}\right)^{k}
$$

we are able to state the following theorem.
Theorem 2: For any positive integer k, let $f, w, e(k)$, and $\bar{e}(k)$ be given as above. Then

$$
N_{k}\left(10^{n e(k)+\bar{e}(k)}\right) \sim \frac{n^{k}}{k!k} \sum_{g=0}^{k-1} f\left(w^{g}\right),
$$

where n is any positive integer.
If $e(k)=1$, the following corollary is also immediate since $f\left(w^{g}\right)=1$ for each $0 \leqslant g \leqslant k-1$.

Corollary: If k is a positive integer such that $e(k)=1$, then, for any positive integer n,

$$
N_{k}\left(10^{n+\bar{e}(k)}\right) \sim \frac{n^{k}}{k!} .
$$

Using Theorem 2, we can determine an asymptotic formula for $N_{k}(x)$ for any positive real number x. This follows since there exists an integer n such that

$$
\begin{equation*}
10^{n e(k)+\bar{e}(k)} \leqslant x<10^{(n+1) e(k)+\bar{e}(k)} . \tag{9}
\end{equation*}
$$

But, by Theorem 2, we have that

$$
N_{k}\left(10^{n e(k)+\bar{e}(k)}\right) \sim N_{k}\left(10^{(n+1) e(k)+\bar{e}(k)}\right)
$$

since $n_{k} \sim(n+1)^{k}$. Hence,

$$
N_{k}(x) \sim \frac{n^{k}}{k!k} \sum_{g=0}^{k-1} f\left(w^{g}\right),
$$

and because (9) implies that

$$
n \sim \frac{[\log x]-\bar{e}(k)}{e(k)} \sim \frac{\log x}{e(k)}
$$

we have, in conclusion, Theorem 3.
Theorem 3: For any positive real number x and any positive integer k, let f, w, and $e(k)$ be given as above. Then

$$
N_{k}(x) \sim \frac{(\log x)^{k}}{k!k(e(k))^{k}} \sum_{g=0}^{k-1} f\left(w^{g}\right) .
$$

Thus, an explicit formula for the constant c referred to in (2) has been given. The determination of an asymptotic formula for $N(x)$, however, is left as an open problem.

A PARTIAL ASYMPTOTIC FORMULA FOR THE NIVEN NUMBERS

REFERENCES

1. R. Kennedy, T. Goodman, \& C. Best. "Mathematical Discovery and Niven Numbers." MATYC Journal 14 (1980):21-25.
2. R. Kennedy. "Digital Sums, Niven Numbers and Natural Density." Crux Mathematicomum 8 (1982):131-135.
3. R. Kennedy \& C. Cooper. "On the Natural Density of the Niven Numbers." College Mathematics Journal 15 (1984):309-312.
4. C. Cooper \& R. Kennedy. "On an Asymptotic Formula for the Niven Numbers." International Joumal of Mathematics and Mathematical Sciences 8 (1985): 537-543.
