ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each Solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

PROBLEMS PROPOSED IN THIS ISSUE

B-616 Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., Littleton, MA
(a) Find the smallest positive integer a such that

$$
L_{n} \equiv F_{n+a}(\bmod 6) \text { for } n=0,1, \ldots
$$

(b) Find the smallest positive integer b such that

$$
L_{n} \equiv F_{5 n+b}(\bmod 5) \text { for } n=0,1, \ldots
$$

B-617 Proposed by Stanley Rabinowitz,
Alliant Computer Systems Corp., Littleton, MA
Let R be a rectangle each of whose vertices has Fibonacci numbers as its coordinates x and y. Prove that the sides of R must be parallel to the coordinate axes.

B-618 Proposed by Herta T. Treitag, Roanoke, VA
Let $S(n)=L_{2 n+1}+L_{2 n+3}+L_{2 n+5}+\cdots+L_{4 n-1}$. Prove that $S(n)$ is an integral multiple of 10 for all even positive integers n.

B-619 Proposed by Herta T. Freitag, Roanoke, VA
Let $T(n)=F_{2 n+1}+F_{2 n+3}+F_{2 n+5}+\cdots+F_{4 n-1}$. For which positive integers n is $T(n)$ an integral multiple of 10 ?

ELEMENTARY PROBLEMS AND SOLUTIONS

B-620 Proposed by Philip L. Mana, Albuquerque, NM
Prove that $F_{24 k+3}^{n}+F_{24 k+5}^{n} \equiv 2 F_{24 k+6}^{n}(\bmod 9)$ for all n and k in $N=\{0,1$, 2, ...\}.

B-621 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let $n=2 h-1$ with h a positive integer. Also, let $K(n)=F_{h} L_{h-1}$. Find sufficient conditions on F_{n} to establish the congruence

$$
F_{n+1}^{K(n)} \equiv 1\left(\bmod F_{n}\right) .
$$

SOLUTIONS

No Such Constants

B-592 Proposed by Herta T. Freitag, Roanoke, VA
Find all integers α and b, if any, such that $F_{\alpha} L_{b}+F_{a-1} L_{b-1}$ is an integral multiple of 5 .

Solution by J.-Z. Lee, Chinese Culture University and J.-S. Lee, National Taipei Business College, Taipei, Taiwan, R.O.C.

Since $F_{a} L_{b}+F_{a-1} L_{b-1}=L_{a+b-1}$ and $L_{n} \equiv[2,1,3,4](\bmod 5)$, i.e., $L_{n} \not \equiv 0$ (mod 5), $F_{a} L_{b}+F_{a-1} L_{b-1}$ is not an integral multiple of 5 (for all integers a and b).

Also solved by P. S. Bruckman, F. H. Cunliffe, P. Filipponi, G. Koutsoukellis, L. Kuipersx B. Prielipp, H.-J. Seiffert, S. Singh, L. Somer, G. Wulczyn, and the proposer.

Multiple of 1220

B-593 Proposed by Herta T. Freitag, Roanoke, VA
Let $A(n)=F_{n+1} L_{n}+F_{n} L_{n+1}$. Prove that $A(15 n-8)$ is an integral multiple of 1220 for all positive integers n.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
By Problem B-294 on p. 375 of the December 1975 issue of this journal,

$$
F_{n} L_{k}+F_{k} L_{n}=2 F_{n+k}
$$

Thus, $A(n)=2 F_{2 n+1}$, so

$$
A(15 n-8)=2 F_{30 n-15}=2 F_{15(2 n-1)} .
$$

Because 15 divides $15(2 n-1), 610=F_{15}$ divides $F_{15(2 n-1)}$. Thus, $2(610)=1220$ divides $A(15 n-8)$.

Also solved by P. S. Bruckman, F. H. Cunliffe, P. Filipponi, G. Koutsoukellis, L. Kuipers, J.-Z. Lee \& J.-S. Lee, H.-J. Seiffert, S. Singh, L. Somer, G. Wulczyn, and the proposer.

Congruence Mod 60

B-594 Proposed by Herta T. Freitag, Roanoke, VA
Let $A(n)=F_{n+1} L_{n}+F_{n} L_{n+1} \quad$ and $\quad B(n)=\sum_{j=1}^{n} \sum_{k=1}^{j} A(k)$.
Prove that $B(n) \equiv 0(\bmod 20)$ when $n \equiv 19$ or $29(\bmod 60)$.
Solution by Paul S. Bruckman, Fair Oaks, CA
Using the expression derived in the solution to. B-593, we have:
or

$$
\begin{aligned}
B(n) & =\sum_{j=1}^{n} \sum_{k=1}^{j} 2 F_{2 k+1}=2 \sum_{j=1}^{n} \sum_{k=1}^{j}\left(F_{2 k+2}-F_{2 k}\right)=2 \sum_{j=1}^{n}\left(F_{2 j+2}-F_{2}\right) \\
& =2 \sum_{j=2}^{n+1} F_{2 j}-2 n=2 \sum_{j=2}^{n+1}\left(F_{2 j+1}-F_{2 j-1}\right)-2 n=2\left(F_{2 n+3}-F_{3}\right)-2 n
\end{aligned}
$$

$$
\begin{equation*}
B(n)=2 F_{2 n+3}-(2 n+4) \tag{1}
\end{equation*}
$$

Now $\left(F_{n}(\bmod 4)\right)_{n=1}^{\infty}$ and $\left(F_{n}(\bmod 5)\right)_{n=1}^{\infty}$ are periodic sequences of periods 6 and 20, respectively. Thus, $\left(F_{n}(\bmod 20)\right)_{n=1}^{\infty}$ has period equal to L.C.M. $(6,20)$ $=60$, from which it follows that $\left(F_{2 n+3}(\bmod 20)\right)_{n=1}^{\infty}$ has period 30 , as well as the sequence $\left(2 F_{2 n+3}(\bmod 20)\right)_{n=1}^{\infty}$. Also, $((2 n+4)(\bmod 20))^{\infty}$ has period 10 , clearly. Therefore, $(B(n)(\bmod 20))_{n=1}^{\infty} \equiv\left(\left(2 F_{2 n+3}-(2 n+4)\right)(\bmod 20)\right)_{n=1}^{\infty}$ has period 30. Inspecting the 30 possible values of this sequence, we find that

$$
B(n) \equiv 0(\bmod 20) \text { iff } n \equiv 0,19, \text { or } 29(\bmod 30) .
$$

This is a stronger result than sought in the problem.
Also solved by P. Filipponi, L. Kuipers, J.-Z. Lee \& J.-S. Lee, B. Prielipp, S. Singh, G. Wulczyn, and the proposer.

Convolution Congruence

B-595 Proposed by Philip L. Mana, Albuquerque, NM
Prove that $\sum_{k=0}^{n} k^{3}(n-k)^{2} \equiv\binom{n+4}{6}+\binom{n+1}{6}(\bmod 5)$.
Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
It is known that

$$
\sum_{k=0}^{n} k^{3}(n-k)^{2}=\binom{n+1}{6}+5\binom{n+2}{6}+5\binom{n+3}{6}+\binom{n+4}{6}
$$

(See p. 57 of "A Symmetric Substitute for Sterling Numbers" by A. P. Hillman, P. L. Mana, and C. T. McAbee in the February 1971 issue of this journal.) The desired result follows immediately.

Also solved by P. S. Bruckman, P. Filipponi, H. T. Freitag, L. Kuipers, J.-Z. Lee \& J.-S. Lee, S. Singh, G. Wulczyn, and the proposer.

X, Y, Z Affair

B-596 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let

$$
S(n, k, m)=\sum_{i=1}^{m} F_{n i+k}
$$

For positive integers α, m, and k, find an expression of the form $X Y / Z$ for $S(4 \alpha, k, m)$, where X, Y, and Z are Fibonacci or Lucas numbers.

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA
Let $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. Using the Binet form for Fibonacci numbers, $S(n, k, m)=\frac{1}{\alpha-\beta}\left[\sum_{i=1}^{m} \alpha^{n i+k}-\sum_{i=1}^{m} \beta^{n i+k}\right]$ $=\frac{F_{(m+1) n+k}-F_{n+k}-(\alpha \beta)^{n}\left\{F_{m n+k}-F_{k}\right\}}{L_{n}-1-(\alpha \beta)^{n}}$.
Thus,

$$
\begin{aligned}
S(4 a, k, m) & =\frac{F_{4 a(m+1)+k}-F_{4 a+k}-\left\{F_{4 a m+k}-F_{k}\right\}}{I_{4 a}-2} \\
& =\frac{F_{2 a m} L_{2 a m+4 a+k}-F_{2 a m} L_{2 a m+k}}{5 F_{2 a}^{2}} \quad \begin{array}{l}
\text { by } I_{16} \text { and } I_{24} \text { of Hoggatt's } \\
\text { Fibonacci and Lucas Numbers }
\end{array} \\
& =\frac{F_{2 a m}\left(5 F_{2 a} \cdot F_{2 a m+2 a+k}\right)}{5 F_{2 a}^{2}}=\frac{F_{2 a m} \cdot F_{2 a m+2 a+k}}{F_{2 a}}=\frac{X Y}{Z},
\end{aligned}
$$

where X, Y, and Z are all Fibonacci numbers.
Also solved by P. S. Bruckman, H. T. Freitag, J.-Z. Lee \& J.-S. Lee, H.-J. Seiffert, G. Wulczyn, and the proposer.

More X, Y, Z Relations
B-597 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Do as in Problem B-596 for $S(4 a+2, k, 2 b)$ and for $S(4 a+2, k, 2 b-1)$, where a and b are positive integers.

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA
Using the result in B-596, we obtain:
Case 1

$$
\begin{aligned}
S(4 a+2, k, 2 b) & =\frac{F_{2(2 a+1)(2 b+1)+k}-F_{2(2 a+1)+k}-\left\{F_{4 b(2 a+1)+k}-F_{k}\right\}}{L_{4 a+2}-2} \\
& =\frac{\left(F_{2(2 a+1)(2 b+1)+k}-F_{4 b(2 a+1)+k}\right)-\left\{F_{2(2 a+1)+k}-F_{k}\right\}}{L_{2 a+1}^{2}}
\end{aligned}
$$

ELEMENTARY PROBLEMS AND SOLUTIONS

$$
\begin{aligned}
& =\frac{F_{(2 a+1)(4 b+1)+k} L_{2 a+1}-F_{(2 a+1+k)} I_{2 a+1}}{L_{2 a+1}^{2}} \\
& =\frac{F_{(2 a+1)(4 b+1)+k}-F_{2 a+1+k}}{L_{2 a+1}} \\
& =\frac{F_{2(2 a+1) b} L_{(2 a+1)(2 b+1)+k}}{I_{2 a+1}},
\end{aligned}
$$

by using I_{18}, I_{23}, and I_{24} in Hoggatt's Fibonacei and Lucas Numbers.

Case 2

$$
\begin{aligned}
S(4 a+2, k, 2 b-1) & =\frac{F_{4(2 a+1) b+k}-F_{2(2 a+1)+k}-\left\{F_{2(2 a+1)(2 b-1)+k}-F_{k}\right\}}{L_{4 a+2}-2} \\
& =\frac{F_{4(2 a+1) b+k}-F_{2(2 a+1)(2 b-1)+k}-\left\{F_{2(2 a+1)+k}-F_{k}\right\}}{L_{2 a+1}^{2}} \\
& =\frac{F_{(2 a+1)(4 b-1)+k} L_{2 a+1}-F_{2 a+1+k} L_{2 a+1}}{L_{2 a+1}^{2}} \\
& =\frac{F_{(2 a+1)(4 b-1)+k}-F_{2 a+1+k}}{L_{2 a+1}} \\
& =\frac{F_{2(2 a+1) b+k} L_{(2 a+1)(2 b-1)}}{L_{2 a+1}} .
\end{aligned}
$$

Also solved by P.S. Bruckman, H.T.Freitag, L. Kuipers, J.-Z. Lee \& J.-S. Lee, H.-J. Seiffert, G. Wulczyn, and the proposer.

