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1. INTRODUCTION AND GENERALITIES 

In the theory of functions of matrices [3] , the domain of an analytic func-

tion f is extended to include a square matrix M of arbitrary order k by defin-

ing f(M) as a polynomial in M of degree less than or equal to k - 1 provided / 

is defined on the spectrum of M. Then, if / is represented by a power series 

expansion in a circle containing the eigenvalues of M, this expansion remains 

valid when the scalar argument is replaced by the matrix M. Moreover, we point 

out that identities between functions of a scalar variable extend to matrix 

values of the argument. Thus, for example, the sum (sin M)2 + (cos M)2 equals 

the identity matrix of order k. 

The purpose of this article is to use functions of two-by-two matrices Q 

to obtain a large number of Fibonacci-type identities, most of which we believe 

to be new. 

To achieve this objective we generally proceed in the following way: 

First we determine a closed form expression of the entries a^-n- of any func-
"d 

tion f(Q) = A = [<Zij] based on a polynomial representation of the function it-

self. 

Then we consider a set of functions / such that f(Q) can be found by means 

of a power series expansion A = [&ij] - f(Q) and equate a— and a^ for some i 

and j, thus getting one or more Fibonacci-type identities. 

We shall only be concerned with some of the elementary functions, namely, 

the square root function, the inverse function, and the exponential, circular, 

hyperbolic, and logarithm functions. 

To illustrate the principles being used, we choose to proceed from the par-

ticular to the general, i.e., from use of the matrix Q defined in (1.3) to use 

of the more general matrix P defined in (2.7). 
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Throughout, we shall follow the usual notational convention that Fn and Ln 

are the nth Fibonacci and Lucas numbers, respectively. 

First we recall ([2], [3]) that, if M has m distinct eigenvalues ]lk (k = 1, 

2, ... 9 m)9 the coefficients o^ of the polynomial representation 

fQO 
m-l 

i - 0 
(1.1) 

of any analytic function f defined on the spectrum of M are given by the solu-

tion of the following system of m equations and m unknowns 

m-l 
E e.\x\ = f(Vv) (fc = 1, 2, ..., m). 

i = 0 
(1.2) 

Then we consider the well-known matrix (e.g., see [4]) 

"l l" 

1 0 
(1.3) 

Since the distinct eigenvalues of Q are a = (1 + >/5)/2 and (3 = (1 - Vo)/2, it 

follows from (1.1) and (1.2) that the coefficients oQ and o of the polynomial 

representation 

f(Q) = a0I + GlQ (1.4) 

(where I denotes the two-by-two identity matrix) 

of any function f defined on the spectrum of Q are given by the solution of the 
system 

f(a) 
/•(g). (1.5) 

In fact, from (1.5), we obtain 

(o0 = (of(3) - 8/(00) A/5 

\o1 = (/(a) - /(B))//5. (1.6) 

Therefore, from (1.4) and (1.6), we can write 

\P0 + cxf 

/(«) 4 = 
•5 

a/(a) - B/(8) /(a) - /(B) 

L f(«) " /(B) a/(B) - 3/(a)J 

It can be noted that the main property of the matrix Q, that is, 

Fyi + 1 "tt 

(1.7) 

(1.8) 

can be derived immediately from (1.7) by specializing / to the integral nth 

power. 
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2. THE SQUARE ROOT MATRIX 

In general, a two-by-two matrix possesses at least two square roots [3]. 

In the case of Qs the existence of a negative eigenvalue (3) implies that the 

entries a- of any square root A will be complex. Specializing/ to the square 
root, from (1.7) we obtain the following equations defining one square root of 

a1± = (cVa + -zVl/a3) //E 
ai2 == a2i = (̂* ~~ -ZVI/CO/A/5 

a29 = (/l/a + iv/a)A/55 

where i = v-1. 

An alternative way to obtain a square root of 

equation A2 = Q, that is* 

"l l" 

(2.1) 

is to solve the matrix 

a21 

a i 2 

a22 1 0 
(2.2) 

from which the following system can be written: 

a,-i -I î  LL-i o W - o i " 

axla12 + a12a22 = 1 

LA, — -. OC -i -i » Ou Q Q L/C /-j -| 

a2ia!2 + a22 

1 
(2 .3 ) 

>2 = 0 . 

From the second and third equations we can write 

a i 2 ( a i l + a 2 2 ) = SlKl + a 2 2 > 9 

from which the equality a12 = a21 is obtained (i.e., as expected, vg is a sym-

stric matrix). Therefore, from the fourth equation we get a = a2 ± â 22 
Substituting these values in the first and second equations and dividing the 

corresponding sides one by the other, we obtain a11 = (1 ± i)a22. Hence, the 

solutions of the system (2.3) are: 

a11 = (1 ± i)a22 

LL -> r\ LL r\ -i """ — Is LA, r\ n (2 .4 ) 

Since 

± / ( ^ l + 2 i ) / 5 . 

-1 + 2i = ySe^Cirtarctan 2) 

the complex entry a99 can be written as 

< - 2 2 
(1/5) 

22 
1/h i(i\ ±arctan 2)/2 +iki\ (k = 0, 1). 

The real part of a,, is 
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Re(a22) = ( - l )*( l /5) 1/4 i\ ± arctan 2 n _ . x 1 / 4 cos (k = 0S 1), (2.5) 

Since every square root of Q must satisfy (2,3)9 the matrix A defined by (2.1) 

does. Equating the real parts of a and 3 , and squaring both sides of this 

equation5 from (2.1) and (2.5) we have 

2 arctan 2 
l/(5a) '1/5 sin^ 

thus obtaining the trigonometrical identity 

1 /(/5 sin 
2 arctan 2> 

(2.6) 

Equating the imaginary parts of a and a , we obtain the equivalent identity 
22 3 

= V5 CO! 2 arctan 2 (2.6') 

The preceding treatment may be generalized in the following way: 

Let 

I 0_ 

whence5 by induction 

(2 .7 ) 

jpn 

where Un (n = 03 l s 29 . . . ) i s defined by the recurrence relat ion 
Un+2 =PUn+l + Un'> ^ " 0 , Z7, - 1 . 

(2.8) 

(2.9) 

When p = 19 we get the Fibonacci numbers Fn. When p = 29 the Pell numbers 

Pn result. 

Writing 

A = V^2 + 4 s (2.10) 

we find that the eigenvalues of P in (2.7) are 

a p = (p + A)/2, 3 P = (p - A)/2. (2.11) 

From (2.11) and (2.10)9 it can be noted that a pvp. = - 1 , i.e., - -1/ou. 

When p = 1, these eigenvalues are (1 ± /5)/2 as given earlier (namely, the 

= 6i)« If p = 2., these eigenvalues reduce to 

1 + / 2 and 6« = 1 - / 2 . 

values of a = a 1 and 

v 2 - • • - — ^ 2 

Paralleling the argument for Fibonacci numbers outlined above, we may de 

rive the identity corresponding to (2.6): 

. ,/. , 2 arctan(2/p)\ a p = 1/^A sinz •• y 1 , r / 1. 

Taking p = 2 9 we have the identity for Pell numbers: 

118. 
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a2 = 1/(2/2 
2 arctan 1 

)• (2.13) 

It must be noted that identity (2.12) may be verified directly. In fact, 

the identity sin2(x/2) = (1 - cos x)/2 implies 

X2 arctan(2/el m 1 - cos(arctan(2/p)) = Q _ p/^TTJ)/2 

= (1 - p/A)/2 = (A - p)/(2A) = -3P/A= l/(apA). 

sin 

3. THE EXPONENTIAL FUNCTION MATRIX 

The previous results follow for f(x) = vx. Other particular identities 

emerge for other choices of /. Specializing / to the exponential function, 

from (1.7) we obtains 

12 
(3.1) 

^22 (ae$ - &ea)//5. 

An alternative way of obtaining A = [S^-] = exp Q is (see [1], [5], [6]) to 
use the power series expansion 

exp Q = £ Jr-

n = 0 "•• 

From (1.8), it is easily seen that: 

(3.2) 

*n = £ 
rc + 1 

fc12 

n = 0 ^ ! 

n - 0 " • 

n = 0 

(3.3) 

Therefore, equating the corresponding entries of A and i4, from (3.1) and (3.3) 
we obtain the following known Fibonacci identities (see [4]): 

n - 0 ri • 

£ ~ = (ae« - ee6)/^ 
n = 0 " ! 

00 F , 

n = o n\ 
= (aee - gea)/\/5. 

Combining (3.5) and (3.6), we get 

1988] 
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£ -y = e« + eK (3.7) 
n = 0 n ' 

It is evident that the above results may be generalized by using the expo-

nential of the matrix P. As an example, for p = 2, the following identity in-

volving Pell numbers, 

00 P r- r-

E 3T - e(e^ - e-^)/{2/2), (3.8) 

n = 0 n ' 

is obtained. Similar results to those in (3.5)-(3.7) readily follow. 
4. OTHER FUNCTIONAL MATRICES 

Let us consider the following power series expansions ([3], [6]): 

s i n e = t o ( - l ) * T ^ y r (4.D 

oo /0 2 n 

cose - £ ( - ! ) » - ^ (4.2) 
oo p2n + l 

S i n h g =
n ? 0 ( 2 n + l ) !

 ( 4 - 3 ) 

oo r)2.U 

c o s h e = n ? 0 ( ! o r (4-4) 

Using reasoning similar to the preceding, we may obtain a large number of 

Fibonacci identities, some of which are well known [6]. These identities have 

the following general forms, 

00 

E onFn = (/(a) - f($))//5, (4.5) 
n = 0 

E cnFn + 1 = (of(a) - 6/(3))/i/5, (4.6) 
n = 0 

E c ^ ^ = (a/(g) - ftf(cx))A/5, (4.7) 
n = 0 

where 

/ (y) = E <?nyn. 
n = 0 

A brief selection of particular cases is shown below: 

F 

t ("I)" , 7 „ T I M = ̂ S±n a " S±n ̂ /V^ (4e8) 
n = 0 (2n + 1) ! 

E (-Dn T^YT = <c o s a " cos ^/v^ (4'9) 
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z 
n = C 

oo 

£ 
w = 0 

n^0(2n + 1)! (sinh a - s inh 3 ) / / 5 

In 
(2w)! 

2n+ 1 

(cosh a - cosh 3)A//5 

£ /o \ • = (ot cosh a - 3 cosh 3)/^5 
n = o K^n) i 

°°  9 

S ,0 s . = (a cosh 3 - 3 cosh a)//5, 
n = o vznJ ! 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Combining some of the above-mentioned results, we may obtain analogous identi-

ties involving Lucas numbers. For example, combining (4.12) and (4.13) gives 

In 

*?o (2n)! = cosh a + cosh 3« (4.14) 

Again, we point out that these identities may be generalized by using circular 

and hyperbolic functions of the matrix P. In particular, we may obtain results 

for Pell numbers similar to these listed for Fibonacci and Lucas numbers. 

5. EXTENSIONS 

The results obtained primo impetu in Sections 3 and 4 may be extended using 

functions of the matrix 

k,x 
xQl 

xF. 

xFn, 
k+i xFk 

xF, k -l 
(5.1) 

where x is an arbitrary real quantity and k is a nonnegative integer. Since 

' k, x 
is a polynomial r(Q) in g, it follows that its eigenvalues are 

(X1(k9 x) = r(a) = xak 

LX9(fc, x) = p(3) (5.2) 

and f(Qk ) = f(r(Q)) derives values in terms of f(r(a)) and /(r(3)). Thus, 

any function / defined on the spectrum of Qk x can be obtained from (1.7) by 
replacing /(a) and /(3) with f(X1(k, x)) and f(X2(k, x)) 9 respectively. More-

over, from (5.1) and (1.8), it is easily seen that ' k, x enjoys the property 

£*= ^kr xnQkn 
xnF? 

xnF, kn 

XnF 

xnF-kn-l 
(5.3) 
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5.1 The Exponential Function of Q 
k, x 

Specializing / to the exponential function, from (1.7) and (5.2) we obtain 

the following values of the entries of the polynomial representation A^ x = 

[aio- (k, x)] of exp Qk^: 

|a_(fe, x) = (aexak - $ex&k)//5 
1 1 

a 1 2 ( k , x) = a Qi9 x) = (exak - exBk)//E 

a0Ak, x) = {aex^k - $exak)//5. 

C a l c u l a t i n g exp Q- by means of ( 3 . 2 ) , we h a v e 

n = 0 "" 

E q u a t i n g a^ (k9 x) and a^ Qi9 x) , from ( 5 . 5 ) , ( 5 . 3 ) , and ( 5 . 4 ) we o b t a i n : 

(5 .4) 

xnF^ 
kn+ 1 

n = 0 n 
( a e * a k - g e ^ " ) / ^ 

xnF, £ _£lL = (£*a* _ e ^ ) / ^ 
n = 0 

#nFn /en - 1 

rc = 0 n ! 
( a s * 3 * - $exak)//5. 

Combining ( 5 . 6 ) and ( 5 . 8 ) , we g e t 

«> xnL1 kn 

n = 0 n\ 
= eXQLk + ex 

(5 .5 ) 

( 5 . 6 ) 

( 5 , 7 ) 

( 5 . 8 ) 

( 5 . 9 ) 

The above r e s u l t s ( 5 . 6 ) - ( 5 . 9 ) may be g e n e r a l i z e d u s i n g t h e e x p o n e n t i a l of 

t h e m a t r i x xPk [ r e f e r t o ( 2 . 8 ) ] . 

5.2 C i r c u l a r and Hyperbo l ic Funct ions of Q 
k,x 

By means of a procedure similar to the preceding one, the use of sin fi^^,, 

cos Q1 , sinh Q, 9 and cosh Qv yields a set of identities having the fol-
K 3 X K, X K 3 X 

lowing general forms, 

£ anxnFkn = ( /Oca*) - f(x$k)) /&, 
n = 0 

f ) Gnx"Fkn+l = (af(xak) - &f(xfik))/^5, 
n = 0 

£ onxnFkn_x = (af(x$k) - $f(xak))/j5, 
n = 0 

where 
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/ ( y ) = E cnyn. 

n = 0 

A brief selection of particular cases is shown belc 

E 
n = 0 

E 
n = 0 

(-DM*2 
" &(2« + l) 

(2n + 1)! = (sinOrak) - sin(^cg^))/A/5 

2fcn 

(2n) ! 
,2W+1T7 

' fe(2n + l) 

n = 0 (2n + 1)! 

= (cos(rf) - cos(x$k)) /yf5 

(sinhOmk) - s±nh(x$k)) /Sb 

x2nF 2kn 

n = 0 (2n)l = (cosh(a;ak) - cosh(a;gk)) //5 

xzn£ 2fcn 
n=0 ( 2^) ! 

-— = cosh(^afc) + cosh(xg^), 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

The above-mentioned identities may be generalized using circular and hyper-

bolic functions of the matrix xPk [refer to (2.8)]. 

5.3 The Logarithm of Q for k Even and Particular Values of x 

The principal value of the function In Q can be calculated by (1.7), thus 

getting a complex matrix A. Unfortunately, since Q has a negative eigenvalue, 

the power series expansion of the matrix logarithm (see [3]) 

xn - 1 

In • t - ^ — « - *r 
n = l n 

(5.18) 

does not converge and a matrix A cannot be obtained in this way. On the other 

hand, the use of Q. , with k even, allows us to utilize this function. We 
k, x 

will show how, setting x equal to the reciprocal of the kth Lucas number, some 

interesting results can be worked out. 
First we define the two-by-two matrix 

Rk,x = ®k,x - J = X$k - X ( 5 ' 1 9 ) 

whence, using induction, it can be proved that, if n is a nonnegative integer, 

then 

R 1 
k,l/L, (~Vn + 1Fkn (-DnFkn+1 

(5.20) 

Incidentally, it can also be proved that 

~(-l)nF 
R 1 
2,1/2 (-l)n+1F 

(-l)n+1F 
(5.21) 
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Then replacing f in (1.7) with the function f(y) = ln{xyk), we have /(a) = 

ln(tfak), /(3) = lnOcpk), and we calculate the matrix 

which is real if and only if k is even and x > 0. In fact, we obtain 

k a1±(k9 x) = — In a + In x 

2k a (k9 x) = a (k9 x) = — In a 

S 
k aon(ks x) = In a + In x 

V5 

(5.22) 

where it can be noted that a12(fc, x) = a21(k9 x) is independent of x . 

Finally, since for k even the inequality 

|Xi<fe> l/Lk) - l| < 1 (i = 1, 2) 

holds [see (5.2)], we can calculate the function In 

power series expansion (5.18): 
*fc,l/Lk 

by means of the 

In 
k9 l/L = £ 

k n = 1 

(-D 
„ Ek,l/Lk = ^ , l / ^ = teii&> l ' L ^ - (5.23) 

Replacing x by 1/Lfc in (5.22) and equat ing a^(k, l/Lk) and a^Qi, l/Lk), from 

( 5 . 2 3 ) , ( 5 . 2 0 ) , and ( 5 . 2 2 ) , we ob ta in : 
13 

t , ~~yr = In Lv - 4 : In a (k = 0, 2, 4 , . . . ) 
n=l "£? / 5 

E - 7 * = — In a (fc = 0, 2, 4 , . . . ) 

J? 

f, - ^ = In Lk + ~ In a (fc = 0, 2, 4 , . . . ) . 
n = l nLk /5 

Combining (5.24) and ( 5 . 2 6 ) , we have 

£ ~ = In L\ (k = 0, 2, 4, . . . ) . 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

Using the matrix Q2 1/2 [see (5.21)], by means of the same procedure we ob-

tain 

and 

(5.28) 

£ -^ = In 4, 
n-i " 2 n 

(5.29) 

where the right-hand side of (5.28) was derived by setting k = 2 in (5.25). 
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We conclude this subsection by pointing out that, from the equality 

[directly derived from (5.19)] and from (5.20), the following identities can be 
obtained: 

_£ (J)c-D"-< % i = ( - i ) " % i 
i = 0 

j:lny_l)n-iLJf= (-1)"%. 

(5.30) 

(5.31) 

(5.32) 

5.4 The Inverse of I - Q 
k, a; 

Let us consider the two-by-two matrix 
sKx = ~Rk,x =i -Qv_„= I -*Qk 

For 

# ̂  

Jk, x 

ak
9 $k (k even) 

•a*, -$k (k odd), 

(5.33) 

(5.34) 

Sk admits its inverse 

S. = 1 
1 - xF 7 fc -i xF^ 

xFk l ~ xFk+i 
= A k , x = fcijfr* *)1. 

^ 2 

(5.35) 

where 

1} = (-l)*#z - xLk + 1. 

The inverse of S^ can be obtained from (1.7) by replacing f(a) and /(B) with 

1/(1 - ̂ afc) and 1/(1 - x$k), respectively. 

It is apparent that the inequality 

|X*(fc, «)| < 1 (i = 1, 2) 

holds for -oT^ < x < a~k [see (5.2)]. Under this restriction, we can calculate 
S71 by means of the power series expansion [3]: 

K, X 

s-k*x = n ? 0 « ; u -h,x- &i6&> *y- (5.36) 

Equating a^ (k, x) and a^{k, x) , from (5.36), (5.3), and (5.35), we obtain: 

t x"Fkn+i = (1 - xFt-J/D (-a-k < x < a~k) 
n = 0 

E xnF. = XFJD ( - cT k < x < a-k) 

(5.37) 

( 5 . 3 8 ) 
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n = 0 

Combining (5.37) and (5.39), we have 

f; xnLkn = (2 - xLk)/D (-a"k < x < a~k). (5.40) 

n = 0 

Setting k = 1 and # = 1/2 in (5.38)5 we obtain, as a particular case, 
00 F 

E ^= 2. (5.41) 

n = 0 z 

Setting fc = 1 and a: = 1/2, 1/3 in (5.40), we have L 

L 
n = 0 

and 

E ^ - 6 , (5-42) 
n = 0 2 

n = 0 ^ 

respectively 

£ — = 3, (5.43) 

6. CONCLUDING REMARKS 

While the authors know that a few of the results presented in this article 

have been established by others (e.g., [1], [5], [6]), they believe that most 

of them are original. Certainly, more possibilities exist than those developed 

here. 

It is possible that some of the work presented above could be extended to 

simple cases of three-by-three matrices. 

Acknowledgment is gratefully made to the referee whose very helpful advice 

has contributed to an improvement in the presentation of this paper. 
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