DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS
 PIN-YEN LIN
 Taiwan Power Company
 16F, 242 Roosevelt Road Section 3, Taipei 10763, R.O.C.
 (Submitted February 1986)
 1. INTRODUCTION

Recently The Fibonacci Quarterly has published a number of articles establishing for the Tribonacci sequence some analogs of properties of the Fibonacci sequence.

It is well known that, for $x^{2}-x-1=0$, the two roots are $(1+\sqrt{5}) / 2$ and ($1-\sqrt{5}$)/2, and that

$$
\begin{equation*}
\left(\frac{1 \pm \sqrt{5}}{2}\right)^{n}=\frac{L_{n} \pm \sqrt{5} F_{n}}{2} \tag{1}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left(\frac{L_{n} \pm \sqrt{5} F_{n}}{2}\right)^{m}=\frac{L_{m n} \pm \sqrt{5} F_{m n}}{2}, \tag{2}
\end{equation*}
$$

where L_{n} are the Lucas numbers and F_{n} are the Fibonacci numbers with m and n integers. Identities (1) and (2) are called "de Moivre-type" identities [9]. The purpose of this article is to establish de Moivre-type identities for the Tribonacci numbers.

2. DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS

From references [1] and [2], we get the three roots of $x^{3}-x^{2}-x-1=0$. They are

$$
\begin{align*}
& r_{1}=\frac{1}{3}(1+X+Y) \tag{3}\\
& r_{2}=\frac{1}{3}\left[1-\frac{3}{6}(X+Y)+\frac{3 \sqrt{3}}{6} i(X-Y)\right], \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
r_{3}=\frac{1}{3}\left[1-\frac{3}{6}(X+Y)-\frac{3 \sqrt{3}}{6} i(X-Y)\right], \tag{5}
\end{equation*}
$$

where $X=\sqrt[3]{19+3 \sqrt{33}}$ and $Y=\sqrt[3]{19-3 \sqrt{33}}$. Using $X \cdot Y=4$, and $X^{3}+Y^{3}=38$, we have

$$
\begin{aligned}
& r_{1}^{2}=\frac{1}{3}\left[3+\frac{2}{3}(X+Y)+\frac{1}{3}\left(X^{2}+Y^{2}\right)\right], \\
& r_{1}^{3}=\frac{1}{3}\left[7+\frac{5}{3}(X+Y)+\frac{1}{3}\left(X^{2}+Y^{2}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
& r_{1}^{4}=\frac{1}{3}\left[11+\frac{10}{3}(X+Y)+\frac{2}{3}\left(X^{2}+Y^{2}\right)\right], \\
& r_{1}^{5}=\frac{1}{3}\left[21+\frac{17}{3}(X+Y)+\frac{4}{3}\left(X^{2}+Y^{2}\right)\right],
\end{aligned}
$$

and

$$
r_{1}^{6}=\frac{1}{3}\left[39+\frac{32}{3}(X+Y)+\frac{7}{3}\left(X^{2}+Y^{2}\right)\right]
$$

The coefficients of the above equations are three Tribonacci sequences, which we denote by R_{n}, S_{n}, and T_{n}, respectively. The first ten numbers of these sequences are shown in the following table.

n	0	1	2	3	4	5	6	7	8	9	10
R_{n}	3	1	3	7	11	21	39	71	131	241	443
S_{n}	3	2	5	10	17	32	59	108	199	366	673
T_{n}	1	1	2	4	7	13	24	44	81	149	274
U_{n}	0	1	2	3	6	11	20	37	68	125	230

By induction we establish that

$$
\begin{equation*}
r_{1}^{n}=\frac{1}{3}\left[R_{n}+\frac{S_{n-1}}{3}(X+Y)+\frac{T_{n-2}}{3}\left(X^{2}+Y^{2}\right)\right] . \tag{6}
\end{equation*}
$$

Using the same method, we obtain
and

$$
\begin{align*}
r_{2}^{n}=\frac{1}{3}\left\{R_{n}-\frac{1}{6}\left[S_{n-1}(X+Y)\right.\right. & \left.+T_{n-2}\left(X^{2}+Y^{2}\right)\right] \\
& \left.+\frac{\sqrt{3}}{6} i\left[S_{n-1}(X-Y)+T_{n-2}\left(X^{2}-Y^{2}\right)\right]\right\} \tag{7}
\end{align*}
$$

$$
\begin{align*}
r_{3}^{n}=\frac{1}{3}\left\{R_{n}-\frac{1}{6}\left[S_{n-1}(X+Y)\right.\right. & \left.+T_{n-2}\left(X^{2}+Y^{2}\right)\right] \\
& \left.-\frac{\sqrt{3}}{6} i\left[S_{n-1}(X-Y)+T_{n-2}\left(X^{2}-Y^{2}\right)\right]\right\} \tag{8}
\end{align*}
$$

Hence, we find that r_{1}^{n}, r_{2}^{n}, and r_{3}^{n} can be expressed in terms of R_{n}, S_{n-1}, and T_{n-2}, so we have formulas equivalent to (1) for the Tribonacci numbers.

3. BINET'S FORMULA FOR R_{n}, S_{n}, AND T_{n}

From Spickerman [2] and Köhler [3], we can obtain Binet's formula for R_{n}, S_{n}, and T_{n}. That is,

$$
\begin{equation*}
R_{n}=r_{1}^{n}+r_{2}^{n}+r_{3}^{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n}=d_{1} r_{1}^{n}+d_{2} r_{2}^{n}+d_{3} r_{3}^{n} \tag{10}
\end{equation*}
$$

where $S_{0}=3, S_{1}=2$, and $S_{2}=5$.
From (10), it follows that

$$
d_{1}=\frac{3 r_{2} r_{3}+2 r_{1}+3}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}=\frac{r_{1}\left(3 r_{1}-1\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}
$$

DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS

$$
\begin{aligned}
& d_{2}=\frac{3 r_{3} r_{1}+2 r_{2}+3}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}=\frac{r_{2}\left(3 r_{2}-1\right)}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}, \\
& d_{3}=\frac{3 r_{1} r_{2}+2 r_{3}+3}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)}=\frac{r_{3}\left(3 r_{3}-1\right)}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)},
\end{aligned}
$$

and

$$
\begin{equation*}
T_{n}=\frac{r_{1}^{n+2}}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}+\frac{r_{2}^{n+2}}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}+\frac{r_{3}^{n+2}}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)} . \tag{11}
\end{equation*}
$$

T_{n} and R_{n} were originally discussed by Mark Feinberg [1] and Günter Köhler [3]. Equation (11) was derived by Spickerman [2].

$$
\text { 4. SOME PROPERTIES OF } R_{n}, S_{n} \text {, AND } T_{n}
$$

As Ian Bruce shows in [6], using the Tribonacci sequence definition, some interesting results can be derived. We have also found the following:

$$
\begin{equation*}
R_{n}=R_{n-1}+R_{n-2}+R_{n-3} \tag{12}
\end{equation*}
$$

$S_{n}=S_{n-1}+S_{n-2}+S_{n-3}$
$T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$
$U_{n}=U_{n-1}+U_{n-2}+U_{n-3}$
$U_{n}=T_{n-1}+T_{n-2}$
$R_{n}=T_{n-1}+2 T_{n-2}+3 T_{n-3}$
$S_{n}=3 T_{n}-T_{n-1}$
$\sum_{i=1}^{n} U_{i}=T_{n+1}-1$
$\sum_{i=1}^{n} R_{i}=2 U_{n+2}+U_{n}-3$
$\sum_{i=1}^{n} S_{i}=\frac{3 U_{n+1}+2 U_{n}-U_{n-1}-2}{2}$
$\sum_{i=0}^{n} T_{i}=\frac{U_{n+2}+U_{n+1}-1}{2}$
$T_{0} T_{1}+T_{1} T_{2}+T_{2} T_{3}+T_{3} T_{4}+\cdots+T_{n-1} T_{n}=\frac{U_{n}^{2}+U_{n-1}^{2}-1}{4}$
and

$$
\begin{align*}
& U_{4 n+1} U_{4 n+3}+U_{4 n+2} U_{4 n+4}=T_{4 n+3}^{2}-T_{4 n+1}^{2} \tag{24}\\
& U_{n+1}^{2}+U_{n-1}^{2}=2\left(T_{n-1}^{2}+T_{n}^{2}\right) \tag{25}\\
& T_{n}^{2}-T_{n-1}^{2}=U_{n+1} \cdot U_{n-1} . \tag{26}
\end{align*}
$$

ACKNOWLEDGMENT

The author is extremely grateful to the referee and to Mr. Hwang Kae Shyuan for their helpful comments and suggestions.

REFERENCES

1. M. Feinberg. "Fibonacci-Tribonacci." The Fibonacci Quarterly 1, no. 1 (1963):70-74.
2. W.R. Spickerman. "Binet's Formula for the Tribonacci Sequence." The Fibonacei Quarterly 20, no. 2 (1982):118-120.
3. G. Köhler. "Generating Functions of Fibonacci-Like Sequences and Decimal Expansions of Some Fractions." The Fibonacci Quarterly 23, no. 1 (1985): 29-35.
4. W. R. Spickerman \& R.N. Joyner. "Binet's Formula for the Recursive Sequence of Order K." The Fibonacci Quarterly 21, no. 4 (1984):327-331.
5. C. P. McCarty. "A Formula for Tribonacci Numbers." The Fibonacci Quarterly 19, no. 5 (1981):391-393.
6. I. Bruce. "A Modified Tribonacci Sequence." The Fibonacci Quarterly 22, no. 3 (1984):244-246.
7. W. Gerdes. "Generalized Tribonacci Numbers and Their Convergent Sequences." The Fibonacci Quarterly 16, no. 3 (1978):269-275.
8. P. Lin. "The General Solution to the Decimal Fraction of Fibonacci Series." The Fibonacci Quarterly 22, no. 3 (1984):229-234.
9. M. Bicknell \& V.E. Hoggatt, Jr., eds. A Primer for the Fibonacci Numbers. Santa Clara, Calif.: The Fibonacci Association, 1972, p. 45, B-10.

