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1. INTRODUCTION 

Recently The Fibonacci Quarterly has published a number of articles estab-

lishing for the Tribonacci sequence some analogs of properties of the Fibonacci 

sequence. 

It is well known that, for x2 - x - 1 = 0, the two roots are (1 + yfb)/2 and 

(1 - V/5)/2s and that 

2 / 2 

as well as 

n L„ ± /5F„ 
(1) 

' 1 ± y/5\n ^n ~ ¥ ~>Vn 

,Ln ± A F w y Lmn ± J5Fmn 

\ 2 J 2 , (2) 

where Ln are the Lucas numbers and Fn are the Fibonacci numbers with m and n 
integers. Identities (1) and (2) are called "de Moivre-type" identities [9]. 

The purpose of this article is to establish de Moivre-type identities for the 

Tribonacci numbers. 

2. DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS 

From references [1] and [2], we get the three roots of x3 - x2 - x - 1 = 0. 

(3) 

(4) 

(5) 

where X = \ / l 9 + 3 ^ and Y = ^ 1 9 - 3 ^ 3 3 . Us ing X • Y = 4 , and I 3 + I 3 = 3 8 , 

we h a v e 

j~3 + ~{X + Y) + | ( J 2 + J 2 ) l 

[7 + | ( j + J) + ~(xz + J2)1 , 
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They a re 
r1 = | ( 1 + X + Y), 

r2 = j [ l - f(Z + Y) + ^ i (X • 
and r y — 

-, - ll1 - h" + n - ̂ i « -
-r,]. 

2 = 1 
P i 3 

3 1 
P i 3 



DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS 

111 + ^-a + j ) + l a 2 + J 2 ) ] , 

and 

4 = _1[\ 
P i 3L * 3 v" ' " ' ' 3V 

r5
x = ^[21 + ^{X + J) + |(X2 + J2)] , 

r* = ~[39 + ^(X + I) + | ( J 2 + J2)] . 

The coefficients of the above equations are three Tribonacci sequences, which 

we denote by Rn, Sn3 and Tn, respectively. The first ten numbers of these se-

quences are shown in the following table. 

n 
Rn 

Sn 

Tn 

Un 

0 

3 

3 

1 

0 

1 

1 

2 

1 

1 

2 

3 

5 

2 

2 

3 

7 

10 

4 

3 

4 

11 

17 

7 

6 

5 

21 

32 

13 

11 

6 

39 

59 

24 

20 

7 

71 

108 

44 

37 

8 

131 

199 

81 

68 

9 

241 

366 

149 

125 

10 

443 

673 

274 

230 

By induction we establish that 
S. 

1 3[ n + - ^ a + Y) + - ^ a 2 + Y2) (6) 

Using the same method, we obtain 

and 
P3 = J^n ™ £[*„-!<* + Y) + Tn_2(J2 + Y2)] 

~ f f ^ n - 1 ^ " J> + ^ - 2 ^ ™ J 2 > ^ 

(7) 

(8) 

Hences we find that r™9 r2? and r™ can be expressed in terms of Rn, Sn_1, and 

T _ , so we have formulas equivalent to (1) for the Tribonacci numbers. 

3. BI NET'S FORMULA FOR Rn, Sn, AND Tn 

From Spickerman [2] and Kohler [3], we can obtain Binet?s formula for Rn9 

Sn, and Tn . That is, 

(9) 
and 

7? = y ? n 4- y > n 4- r> n 
X 1 n z l T j t 2 3 

£n = d^* + d2r » + d3r3w, (10) 

where S« = 39 5-, = 29 and 5, 
From (10), it follows that 

3P2P3 + 2r1 + 3 P1(3P1 - 1) 

(r1 - P2)(P1 - r3) (P1 - r2)(rx - r 3) s 
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3r3ri 4- 2P2 + 3 r2(3r2 - 1) 
2 " 0 2 " p

3)( p
2 ™ *\) ~ (r2 - P3)(^2 ™ 3?i)5 

3r r + 2r + 3 r (3r - 1) 
, 1 2 3 3 V 3 7 

a0 = 
and 

3 (r3 - ̂ 1)(^3 ™ r2) (r3 - ̂ ^(^3 - P 2 ) 9 

rn+2 rn+2 n+2 
1 2 3 

"n (PX " P2)(P1 - r3) ' (P2 - r3)(r2 - r1) + (r3 - P]_)(P3 - r2) * ( U ) 

Tn and i?n were originally discussed by Mark Feinberg [1] and Gunter Kohler 

[3]. Equation (11) was derived by Spickerman [2]. 

4. SOME PROPERTIES OF Rn9 Sn? AND Tn 

As Ian Bruce shows in [6], using the Tribonacci sequence definitions some 

interesting results can be derived. We have also found the following: 

Rn = Rn-1 +Rn-2 + Hn-3 ( 1 2 ) 

Sn = £ „ - ! +Sn_2 + 5 n . 3 ( 1 3 ) 

( 1 4 ) 

( 1 5 ) 

( 1 6 ) 

( 1 7 ) 

( 1 8 ) 

( 1 9 ) 

( 2 0 ) 

( 2 1 ) 

( 2 2 ) 

K + 4-i - i 
T0T1 + T±TZ + T2TS + TST, + ••• + Tn_xTn = 7 (23) 

T = T 

un = un. 
Un = ?n-
Rn = Tn-

+ T7 + T 
-1 ^ ^ n - 2 ^ n - 3' 
. ! + y n . 2 + z/„_3 

4- T7 

- 1 ^ ^n - 2 
- 1 + ^Tn - 2 + ^ n - 3 

Q = ^ T 7 _ iT 
u n J i n x n-\ 

n 

^ = 1 

n 

^ = 1 

n 

^= 1 

n 

i = 0 ^ 

T - 1 

2[/n + 2 + Un - 3 

3/7n + 1 + 2tf„ - /7n_x -

2 

^n + 2 + ^n + l " 1 

2 

- 2 

and 
^4n + l^ tn+-3 + ^ n + 2 ^ n + 4 ^ \ « + 3 ^ \ n + l 

372 a- r/2 _ 2C772 + T2) 
un + l ^ un-l ^y-i-n-i ^ ±n) 

(25) 

T2 - T2 = U • U ^ 2 6 ) 
1n 1n-l un+l un-l° 
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