DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS

PIN-YEN LIN

Taiwan Power Company 16F, 242 Roosevelt Road Section 3, Taipei 10763, R.O.C.

(Submitted February 1986)

1. INTRODUCTION

Recently *The Fibonacci Quarterly* has published a number of articles establishing for the Tribonacci sequence some analogs of properties of the Fibonacci sequence.

It is well known that, for $x^2 - x - 1 = 0$, the two roots are $(1 + \sqrt{5})/2$ and $(1 - \sqrt{5})/2$, and that

$$\left(\frac{1\pm\sqrt{5}}{2}\right)^n = \frac{L_n\pm\sqrt{5}F_n}{2} \tag{1}$$

as well as

$$\left(\frac{L_n \pm \sqrt{5}F_n}{2}\right)^m = \frac{L_{mn} \pm \sqrt{5}F_{mn}}{2},\tag{2}$$

where L_n are the Lucas numbers and F_n are the Fibonacci numbers with m and n integers. Identities (1) and (2) are called "de Moivre-type" identities [9]. The purpose of this article is to establish de Moivre-type identities for the Tribonacci numbers.

2. DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS

From references [1] and [2], we get the three roots of $x^3 - x^2 - x - 1 = 0$. They are

$$r_{1} = \frac{1}{3}(1 + X + Y), \qquad (3)$$

$$r_{2} = \frac{1}{3} \left[1 - \frac{3}{6} (X + Y) + \frac{3\sqrt{3}}{6} i (X - Y) \right], \tag{4}$$

and

$$r_{3} = \frac{1}{3} \left[1 - \frac{3}{6} (X + Y) - \frac{3\sqrt{3}}{6} i (X - Y) \right],$$
(5)

where $X = \sqrt[3]{19 + 3\sqrt{33}}$ and $Y = \sqrt[3]{19 - 3\sqrt{33}}$. Using $X \cdot Y = 4$, and $X^3 + Y^3 = 38$, we have

$$r_{1}^{2} = \frac{1}{3} \left[3 + \frac{2}{3}(X + Y) + \frac{1}{3}(X^{2} + Y^{2}) \right],$$

$$r_{1}^{3} = \frac{1}{3} \left[7 + \frac{5}{3}(X + Y) + \frac{1}{3}(X^{2} + Y^{2}) \right],$$

1988]

131

DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS

$$r_{1}^{4} = \frac{1}{3} \left[11 + \frac{10}{3} (X + Y) + \frac{2}{3} (X^{2} + Y^{2}) \right],$$

$$r_{1}^{5} = \frac{1}{3} \left[21 + \frac{17}{3} (X + Y) + \frac{4}{3} (X^{2} + Y^{2}) \right],$$

$$r_{1}^{6} = \frac{1}{3} \left[39 + \frac{32}{3} (X + Y) + \frac{7}{3} (X^{2} + Y^{2}) \right].$$

and

The coefficients of the above equations are three Tribonacci sequences, which we denote by R_n , S_n , and T_n , respectively. The first ten numbers of these sequences are shown in the following table.

n	0	1	2	3	4	5	6	7	8	9	10
n R _n	3	1	3	7	11	21	39	71	131	241	443
$\begin{bmatrix} n \\ S_n \\ T_n \end{bmatrix}$	3	2	5	10	17	32	59	108	199	366	673
T_n	1	1	2	4	7	13	24	44	81	149	274
Un	0	1	2	3	6	11	20	37	68	125	230

By induction we establish that

$$r_{1}^{n} = \frac{1}{3} \left[R_{n} + \frac{S_{n-1}}{3} (X + Y) + \frac{T_{n-2}}{3} (X^{2} + Y^{2}) \right].$$
(6)

Using the same method, we obtain

$$r_{2}^{n} = \frac{1}{3} \left\{ R_{n} - \frac{1}{6} [S_{n-1}(X + Y) + T_{n-2}(X^{2} + Y^{2})] + \frac{\sqrt{3}}{6} i [S_{n-1}(X - Y) + T_{n-2}(X^{2} - Y^{2})] \right\}$$
(7)

and

$$r_{3}^{n} = \frac{1}{3} \left\{ R_{n} - \frac{1}{6} [S_{n-1}(X + Y) + T_{n-2}(X^{2} + Y^{2})] - \frac{\sqrt{3}}{6} i [S_{n-1}(X - Y) + T_{n-2}(X^{2} - Y^{2})] \right\}.$$
(8)

Hence, we find that r_1^n , r_2^n , and r_3^n can be expressed in terms of R_n , S_{n-1} , and T_{n-2} , so we have formulas equivalent to (1) for the Tribonacci numbers.

3. BINET'S FORMULA FOR R_n , S_n , AND T_n

From Spickerman [2] and Köhler [3], we can obtain Binet's formula for \mathbb{R}_n , S_n , and \mathbb{T}_n . That is,

$$R_n = r_1^n + r_2^n + r_3^n \tag{9}$$

and

$$S_n = d_1 r_1^n + d_2 r_2^n + d_3 r_3^n, \tag{10}$$

where $S_0 = 3$, $S_1 = 2$, and $S_2 = 5$.

From (10), it follows that

$$d_{1} = \frac{3r_{2}r_{3} + 2r_{1} + 3}{(r_{1} - r_{2})(r_{1} - r_{3})} = \frac{r_{1}(3r_{1} - 1)}{(r_{1} - r_{2})(r_{1} - r_{3})},$$

[May

132

DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS

$$d_{2} = \frac{3r_{3}r_{1} + 2r_{2} + 3}{(r_{2} - r_{3})(r_{2} - r_{1})} = \frac{r_{2}(3r_{2} - 1)}{(r_{2} - r_{3})(r_{2} - r_{1})},$$

$$d_{3} = \frac{3r_{1}r_{2} + 2r_{3} + 3}{(r_{3} - r_{1})(r_{3} - r_{2})} = \frac{r_{3}(3r_{3} - 1)}{(r_{3} - r_{1})(r_{3} - r_{2})},$$

$$T_{n} = \frac{r_{1}^{n+2}}{(r_{1} - r_{2})(r_{1} - r_{3})} + \frac{r_{2}^{n+2}}{(r_{2} - r_{3})(r_{2} - r_{1})} + \frac{r_{3}^{n+2}}{(r_{3} - r_{1})(r_{3} - r_{2})}.$$
(11)

 T_n and R_n were originally discussed by Mark Feinberg [1] and Günter Köhler [3]. Equation (11) was derived by Spickerman [2].

4. Some properties of $\boldsymbol{R}_n,~\boldsymbol{S}_n,$ and \boldsymbol{T}_n

As Ian Bruce shows in [6], using the Tribonacci sequence definition, some interesting results can be derived. We have also found the following:

$R_n = R_{n-1} + R_{n-2} + R_{n-3}$	(12)
$S_n = S_{n-1} + S_{n-2} + S_{n-3}$	(13)
$T_n = T_{n-1} + T_{n-2} + T_{n-3}$	(14)
$U_n = U_{n-1} + U_{n-2} + U_{n-3}$	(15)
$U_n = T_{n-1} + T_{n-2}$	(16)

$$R_{n} = T_{n-1} + 2T_{n-2} + 3T_{n-3}$$
(17)

$$S_{n} = 3T_{n} - T_{n-1}$$
(18)

$$\sum_{i=1}^{n} U_i = T_{n+1} - 1 \tag{19}$$

$$\sum_{i=1}^{n} R_{i} = 2U_{n+2} + U_{n} - 3$$
(20)

$$\sum_{i=1}^{n} S_{i} = \frac{3U_{n+1} + 2U_{n} - U_{n-1} - 2}{2}$$
(21)

$$\sum_{i=0}^{n} T_{i} = \frac{U_{n+2} + U_{n+1} - 1}{2}$$
(22)

$$T_0T_1 + T_1T_2 + T_2T_3 + T_3T_4 + \dots + T_{n-1}T_n = \frac{U_n^2 + U_{n-1}^2 - 1}{4}$$
(23)

and

and

$$U_{4n+1}U_{4n+3} + U_{4n+2}U_{4n+4} = \mathcal{T}_{4n+3}^2 - \mathcal{T}_{4n+1}^2$$
(24)

$$U_{n+1}^{2} + U_{n-1}^{2} = 2(T_{n-1}^{2} + T_{n}^{2})$$
⁽²⁵⁾

$$T_n^2 - T_{n-1}^2 = U_{n+1} \cdot U_{n-1}.$$
(26)

1988]

133

ACKNOWLEDGMENT

The author is extremely grateful to the referee and to Mr. Hwang Kae Shyuan for their helpful comments and suggestions.

REFERENCES

- 1. M. Feinberg. "Fibonacci-Tribonacci." The Fibonacci Quarterly 1, no. 1 (1963):70-74.
- 2. W.R. Spickerman. "Binet's Formula for the Tribonacci Sequence." The Fibonacci Quarterly 20, no. 2 (1982):118-120.
- G. Köhler. "Generating Functions of Fibonacci-Like Sequences and Decimal Expansions of Some Fractions." The Fibonacci Quarterly 23, no. 1 (1985): 29-35.
- 4. W.R. Spickerman & R.N. Joyner. "Binet's Formula for the Recursive Sequence of Order K." The Fibonacci Quarterly 21, no. 4 (1984):327-331.
- 5. C.P. McCarty. "A Formula for Tribonacci Numbers." The Fibonacci Quarterly 19, no. 5 (1981):391-393.
- 6. I. Bruce. "A Modified Tribonacci Sequence." The Fibonacci Quarterly 22, no. 3 (1984):244-246.
- 7. W. Gerdes. "Generalized Tribonacci Numbers and Their Convergent Sequences." The Fibonacci Quarterly 16, no. 3 (1978):269-275.
- 8. P. Lin. "The General Solution to the Decimal Fraction of Fibonacci Series." The Fibonacci Quarterly 22, no. 3 (1984):229-234.
- 9. M. Bicknell & V.E. Hoggatt, Jr., eds. A Primer for the Fibonacci Numbers. Santa Clara, Calif.: The Fibonacci Association, 1972, p. 45, B-10.
