on a result involving iterated exponentiation

R. M. STERNHEIMER

Brookhaven National Laboratory, Upton, NY 11973
(Submitted July 1986)

In connection with recent work by M. Creutz and myself involving iterated exponentiation [1], [2], [3], e.g., the function

$$
\begin{equation*}
f(x)=x^{x^{. . x}} \tag{1}
\end{equation*}
$$

with an infinite number of $x^{\prime} \mathrm{s}$, I have noticed an interesting property when only a finite number n of $x^{\prime} s$ is considered.

I will now consider the bracketing a for $n=4$. This is defined as

$$
\begin{equation*}
F_{4, a}(x) \equiv x^{\left[x^{\left.\left(x^{x}\right)\right]}\right.}=4 x . \tag{2}
\end{equation*}
$$

In a Brookhaven National Laboratory Report [4], I have given a more extensive discussion of the present results (see, in particular, Table 1 of [4]). Obviously, when $x>2$, the function $F_{4, a}(x)$ has a large numerical value. As an example, we consider

$$
\begin{equation*}
F_{4, a}(5)=5^{\left[5^{\left.\left(5^{5}\right)\right]}\right.}=5^{\left(5^{3125}\right)} \tag{3}
\end{equation*}
$$

Now we find

$$
\begin{equation*}
5^{3125} \simeq 10^{2184.281}=1.910 \times 10^{2184} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
2184.281=5^{5} \log _{10} 5=(3125)(0.69897) \tag{5}
\end{equation*}
$$

From equations (3)-(5), one obtains

$$
\begin{equation*}
F_{4, a}(5)=5^{\left(10^{2184.281}\right)}=5^{1.910 \times 10^{2184}} \tag{6}
\end{equation*}
$$

A seemingly paradoxical result is obtained if we express $F_{4, a}(5)$ as a power of 10 . Thus, we find the exponent

$$
\begin{align*}
\log _{10}\left[5^{\left(10^{2184.281}\right)}\right] & =10^{2184.281} \log _{10} 5=0.69897 \times 1.910 \times 10^{2184} \\
& =1.335 \times 10^{2184}=10^{2184.125} \tag{7}
\end{align*}
$$

This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
which leads to the result

$$
\begin{equation*}
F_{4, a}(5)=10^{\left(10^{2184.125}\right)} \tag{8}
\end{equation*}
$$

showing [by comparison with (6)] that the exponent in the parentheses is hardly changed in going from a power of 5 to a power of 10 .

To clarify this result, we consider the equation

$$
\begin{equation*}
x^{\left(10^{y}\right)}=10^{\left(10 y^{\prime}\right)} \tag{9}
\end{equation*}
$$

which defines y^{\prime}, where in the present case $x=5$ and $y=2184.281$. To derive the relationship between y^{\prime} and y, we take the logarithms of both sides of (9). This gives

$$
\begin{equation*}
10^{y} \log _{10} x=10^{y^{\prime}} \tag{10}
\end{equation*}
$$

By taking the logarithms of both sides of this equation, we obtain

$$
\begin{equation*}
y^{\prime}=y+\log _{10} \log _{10} x \tag{11}
\end{equation*}
$$

For the case discussed above, it can be readily verified that $\log _{10} \log _{10} 5=$ -0.1555, leading to the results in (6) and (8), since $0.281-0.125=0.156$, which is clearly consistent with the value of $\log _{10} \log _{10} 5=-0.1555$ obtained above. It is of interest that the correction to y, namely $\log _{10} \log _{10} x$, is independent of the value of y.

To make the above results more believable, note that the ratio of the two powers of 10 involved in (6) and (7) above is given by

$$
\begin{equation*}
R=10^{2184.281} / 10^{2184.125}=10^{0.156}=1.432 \tag{12}
\end{equation*}
$$

Thus, the very large exponent $10^{2184.125}$ is multiplied by 1.432 in going from $x=10$ to $x=5$. This is a very considerable increase. As a result, we write

$$
\begin{equation*}
5^{1.432 \times 10^{2184.125}}=10^{102184.125} \tag{13}
\end{equation*}
$$

which is essentially correct because $5^{1.432}=10.02$. (The small apparent discrepancy of 0.02 is due to rounding errors.)

As a final comment, I note that, if I had used $x=1.1$ (instead of 5.0), with the correction $\log _{10} \log _{10} 1.1=-1.383$, and $y^{\prime}=2184.125+1.383=2185.508$, I would have obtained

$$
\begin{equation*}
10^{10^{2184.125}}=1.1^{10^{2185.508}} \tag{14}
\end{equation*}
$$

since $10^{1.383}=24.15$ and $1.1^{24.15} \simeq 10$.

ACKNOWLEDGMENT

I would like to thank Dr. Michael Creutz for helpful discussions and for a critical reading of the manuscript.

REFERENCES

1. R.M. Sternheimer. "On a Set of Non-Associative Functions of a Single Positive Real Variable." Brookhaven Informal Rpt. PD-128; BNL-23081 (June 1977).
2. M. Creutz \& R. M. Sternheimer. "On the Convergence of Iterated Exponentia-tion-I." The Fibonaci Quarterly 18, no. 4 (1980):341-347.
3. M. Creutz \& R.M. Sternheimer. "On the Convergence of Iterated Exponentia-tion-II." The Fibonacci Quarterly 19, no. 4 (1981):326-335.
4. R.M. Sternheimer. "On a Set of Non-Associative Functions of a Single Positive Variable." Brookhaven National Laboratory Rpt. BNL-38485 (July 1986).
