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I n t h i s p a p e r , F i b o n a c c i s e q u e n c e s of s e t s and t h e i r d u a l s a r e d e f i n e d and 

used f i r s t t o o b t a i n s h o r t p r o o f s of two we l l -known theo rems on t h e r e p r e s e n t a -

t i o n of i n t e g e r s a s sums of F i b o n a c c i n u m b e r s , and second t o p r o d u c e two s e t s 

of b i n a r y numbers t h a t r e s e m b l e C a n t o r f s t e r n a r y s e t . I t i s a l s o shown how 

F i b o n a c c i s e q u e n c e s of s e t s and t h e i r d u a l s can be r e p r e s e n t e d by s e q u e n c e s of 

t r e e s . 

Given any s e q u e n c e C = (cl9 c2, . . . ) of r e a l n u m b e r s , l e t t h e c o r r e s p o n d i n g 

F i b o n a c c i s e q u e n c e of s e t s and i t s d u a l be d e f i n e d by 

S0 = { 0 } , S± = {cx}, Sn = {x : (x - en) e (Sn_x u 5 n _ 2 ) } , (1) 
and 

Sf = { 0 } , Sf = {c } , Sr = {x : (x - c ) e (S u S u . . . u S ) } . ( l f ) 
0 1 l r c L V n 0 1 n - 2 

These d e f i n i t i o n s r e s e m b l e t h e r e c u r r e n c e r e l a t i o n s t h a t may be used t o d e f i n e 

t h e s equence F = (u19 u2* . « . ) of d i s t i n c t p o s i t i v e F i b o n a c c i number s , name ly , 

u0 = u± = 1 , un = un_1 + un_2; (2) 

u0 = u1 = 1, un = 1 + u 0 + u1 + • • • + un_2. ( 2 f ) 

The following lemmas are easily proved by induction. 

Lemma 1: x e Sn if and only if x is of the form 

n 
x = E ejQj* n > l9 (3) 

J =1 

where 
e- e {0, 1}, en = 1, e. + ej+1 + 0 if 1 < j < n. (4) 

There are exactly un distinct n-tuples (e±9 ..., en) satisfying (4). 

Lemma 1fi x e Sr if and only if x is of the form (3), where 

ed e {0, 1}, en = 1, ^ej+1 = 0 if 1- < j < n. (4') 

There are exactly wn_x distinct n-tuples (e1, ..., en) satisfying (4') if 

n > 1. 

Two special choices of (7 are of interest. The first choice, C = F, yields 

short proofs of two well-known theorems. 
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Theorem 1 (Brown [1]): Every positive integer has one and only one representa-

tion (the so-called Dual of the Zeckendorf representation) in the form 

n 
x = E ejuj> n > 1, (5) 

3 = 1 

where (el9 »ae, en) satisfies (4). 

Theorem 1f (Lekkerkerker [2]): Every positive integer has one and only one rep-

resentation (the so-called Zeckendorf representation) in the form (5) , where 

(e1$ S909 en) satisfies (4f). 

Proofs: Let C = F and let Sn and S^ be defined by (1) and (lf)°  It is seen, by 

induction on ns that 

and 
^n = iUn» Un + l3 Un + 29 ..., ^ + i - 1}, 

for n = l 9 2 5 3 3 . .. . Theorems 1 and lf now follow from Lemmas 1 and lf. 

The second choice of C is 6* = B 3 where 

B = ("2* 4"» ®° "* "7«» ...J. (6) 

We now show that this choice leads to two binary sets that resemble Cantor?s 

ternary set. 

Theorem 2: Let S be the set of all real numbers x whose binary expansion is 

x = 0 • s1^2 . .., ' where e* + £7- + 1 ^ 0' for all j ̂  1 if the expansion does not 

terminate, for 1 < j < n if the expansion terminates with the digit en = 1. 

Then £ is an uncountable closed set of measure 0. 

Theorem 2f : Let Sf be the set of all real numbers x whose binary expansion is 
x = 0 9 e^e . . . , where e.e. y ^ = 0 for all j > 1. Then Sf is an uncountable i 2 j j + i v 

closed set of measure 0. 

Proofs: Let C = B, defined by (6). Let Sn and S^ be defined by (1) and (lf)9 

Let 

w = 1 w = 1 

By Lemma 1 (Lemma lF)3 Sn (S f
n) contains exactly the binary fractions in S (S!) 

that terminate with the digit en = 1, and it is clear that S (Sf) is the clo-

sure of S OS")- Also5 it is easily seen that 

S C [I, l] and S^C [o, | ] . 

Now z € [1/49 1] - S if and only if z is a binary fraction of the form 
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0* exe2 ... en0 Qen+3 

where 0 • e1e2 . . . en e SnS n > 1, and em = 1 for at least one m > n + 3. It 

follows that the complement of 5 in [1/4, 1] is the open set 

[h c = f» i U U («, a; + 2'"-2). (7) 
w = 1 X E £ „ 

The intervals on the right of (7) are disjoint because their end-points belong 

to S? and their total length is 

3 
i n + 2 Uyi k 

n = 1 2 
by Lemma 1 and the well-known result 

^ n 1 .* I I / V^ - 1 
2^ M / " = 1 5- if \X\ < r . 

n^ 0
 n 1 - x - x2 ' ' 2 

It follows readily that 5 = [1/4, 1] - C has measure 0. 

While S is clearly countable, S is not. For, if 

°'ek.iek.2 ••• (fe = 1> 2, „.) 
is any countable list of elements of S in binary notation, consider 

x = 0 • ^ x e 2 ..., 

where (£3/c_25
 e

3k_1^ e
sk) = (1» °* 1) o r U » *» 1) according as 

(efc.3*-2' *fc,3*-i' e*.±fc> = (1> X> 1} 

or not; clearly, x belongs to S but does not occur in the list. 

Before proceeding to the proof of Theorem 2f,note that S can be written as 

the disjoint union 

S = £* u £**, 

where S** is the set consisting of all elements of S whose binary expansion 

terminates with 01, and where S* = S ~ S**. Clearly, S** is countable, and it 

is easily seen that S** consists of all the isolated points of S9 while S* con-

sists of all the limit points of S. Like S9 S* is, therefore, an uncountable, 

closed set of measure 0. Thus, Theorem 2r follows from Theorem 2, since x € Sf 

if and only if 1 - x € S*. However, it is interesting to note that, if x e S^9 

n• > 1, then 

[x - ^ 2"n, x} c CF
 s where C" = [0, || - ̂ S7. 

Conversely, suppose that z € Cf. Then g must be a binary fraction of the 

form 
z = e0 * e \ e 2 ' ' ' emem+l ' ' * ' 

where eQ
 e e1&2 ... e m e £^ and eOT+1 = 1. Let n be the largest subscript such 
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that 1 < n < m3 e 3n = 09 and en+1 = 1. This n exists because 

.. em < z < ~, 

Put x = eQ • £1&2 . en_1l. Then x e 5nf, n > 1, and 

z e (x - | 2"n, a;). 

It follows that the complement of ̂ " in [0, 2/3] is the open set 

C 09 Sf = U U (x - I 2"", x). OF) 

The intervals on the right of (7f) are disjoint because their endpoints belong 

to Sf3 and their total length is 

00 1 

«= 1 3 

which proves that 5f = [0, 2/3] - (7 f has measure 0. 

Equations (7) and (7'.) emphasize the similarity between the constructions 

of S and Sf and the construction of Cantor?s ternary set. There are further 

similarities: S and S1 are nowhere dense, 5f is a perfect set5 and the derived 

set S* of S is also perfect, 

The Fibonacci sequence of sets (S0, £,, 5 , . ..) may be represented graphi-

cally by a sequence of weighted, rooted trees (T , T , T2, ...) as follows: 

T0 ^ T2 T3 Tn (n > 2) 

For each of the un leaf-nodes of Tn , we may compute the total weight of the 

path to it from the root of Tn . The set of these un total weights is called 

"the shade of Tn" (cf. Turner [3]). The shade of Tn is obviously equal to the 

set Sn« A similar representation can be obtained for the dual of the Fibonacci 

sequence of sets by using the tree construction: 

rp rp f rp rp t 
1 o 9 2 1 11 9 ±n 

(n > 2) 

In particular, very pretty graphical illustrations of Theorems land lf can 

be obtained (cf. Turner [3]). 
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