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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn+l + Fn> F0 = °> Fl = 1 
and 

L _,9 = L n + 2 n+l + Lni L0 ~ 2> L l ~ 1' 

PROBLEMS PROPOSED IN THIS ISSUE 

B-662 Proposed by Philip L. Mana, Albuquerque, NM 

For fixed n, find all m such that LnFm - Fm+n = (-l)n . 

B-623 Proposed by Herta T. Freitagr Roanoke, VA 

Let 
In- 1 

SW = £ Ln + k L k . 

Prove that S(n) is an integral multiple of Ln for all positive integers n. 

B-624 Proposed by Herta T. Freitag, Roanoke, VA 

Let 

n 
Tn = Z^ L2{n + i)-l ' 

^ = 1 

For every positive integer n, prove that either Fn \Tn or Ln |Tn . 

B-625 Proposed by H.-J. Seiffert, Berlin, Germany 

Let P0, Pl, ... be the Pell numbers defined by 

P0 = 0, P, = 1, Pn = 2Pn_l + Pn_2 for n ^ 2. 

Let Gn = FnPn and #n = LnPn. Show that (G„) and (#„) satisfy 

*n + if " 2Kn + 3 ~ 7Kn + 2 ~ 2Kn + l + K " 0 . 
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B-626 Proposed by H.-J. Seiffert, Berlin, Germany 

Let Gn and Hn be as in B-625. Express the generating functions 

GOO = E £„** and ^u) = E ^2" 
w = 0 ft = 0 

as rational functions of z. 

B-627 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let 

Find the smallest k in {2, 3, 45 . ..} such that Cn k is an integer for every n 
in {0, 1, 25 . . . } . 

SOLUTIONS 

2 Problems on Pythagorean Triples 

B-598 Proposed by Herta T. Freitag, Roanoke, VA 

For which positive integers n is (2L , L2 - 3, L2 - 1) a Pythagorean tri-
ple? For which of these n?s is the triple primitive? 

B-599 Proposed by Herta T. Freitag, Roanoke, VA 

Do B-598 with the triple now (2L , L0 + 1, L0 + 3). 

Solutions by Thomas M. Green, Contra Costa College, San Pablo, CA 

It is known that L2n = L2 + 2(-l)w + 1. 

For n odd5 we have L<in = L2 + 2 and the triple 

(2Ln, L2n - 3, £2„ - 1) = (2L„, L? - 1 , ^ 2 + 1} 

which is a Pythagorean triple. Furthermore, a Pythagorean triple of the type 
(2/??, m 2 - 1 9 m2 + 1) is primitive if m is even. Thus, if Ln = m , an even num-
ber, then (2Ln, L^ - 1, L* + 1) is primitive. But, if n is odd, L^ is even 
only when n is an odd multiple of three. 

Similarly, for n even (B-599), the triple 

(2Ln, L2n + 1, L2n + 3) - (2Ln, h\ -1,1%+ 1) 

is Pythagorean and will be primitive if Ln is even. In this case, however, if 
n is even, Ln is even only when n is an even multiple of three. 

Also solved by Paul S. Bruckman, Frank Conliffe, Richard Dry, Piero Filipponi & 
Adina Di Porto, C. Georghiou, L. Kuipers, Bob Prielip, H.-J. Seiffert, Sahib 
Singh, Lawrence Somer, Paul Tzermias, and the proposer. 
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Fibonacci Multiples of 121160 

B-600 Proposed by Philip L. Mana, Albuquerque, NM 

Let n be any positive integer and m = n13 - n. Prove that Fm is an inte-
gral multiple of 30290. 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 

We prove a more general result, namely: Fm is an integral multiple of 
121,160, where m = n13 - n; n being a positive integer. 

We can express 

ni3 „ n _ (n7 _ n) (n6 + Y) = (n5 - n) (n8 + n4 + 1) 

= (n3 - n)(n10 + n8 + n6 + nh + n2 + 1) . 

By Fermatfs theorem: np - n = 0 (mod p) , where p is prime and n is a positive 
integer. 

Thuss we conclude that: 

n13 - n E 0 (mod 13); n13 - n = 0 (mod 7); n13 - n = 0 (mod 5). 

Since n3 - n is a factor of n13 - n and n3 - n is a product of three con-
secutive integers, n - 1, n, n + 15 we have: 

n3 - n = 0 (mod 6) =>. n13 - n = 0 (mod 6) 

=>F 5.F 6-F 7. F13 divides Fm 

(by the fact that v divides s implies Fr divides F8) 
==> 5 • 8 • 13 • 233 is a factor of Fm. 

Thus, we are done. 

Also solved Jby Paul S. Bruckman, David M. Burton, Frank H. Conliffe, Piero 
Filipponi, C. Georghiou, L. Kuipers, Bob Prielipp, #.-J. Seiffert, Lawrence 
Somer, and the proposer. 

Integral Arithmetic Means 

B-601 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let Ansk = (Fn + Fn+i + -.- + Fn+k-i)/k* Find the smallest k in {2, 3, 4, 
•*„} such that i4n ̂  is an integer for every n in {0, 1, 2, ...}. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We shall show that 24 is the value of k that is being sought. 
Our solution will use the following known information: 

(1) Fl + F2 + F3 + ... + Fn = Fn+2 - 1, n > 1, and 

(2) Fn + t - Fn_t = LnFts t even. 

[(1) is (I\) on p. 52 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr., 
Houghton Mifflin, Boston, 1969, and (2) is (T24) on p. 59, ibid.] 
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Since 

Fn + Fn + 1 + . . . + Fn + k^ 

= (F} + F2 + . . . + Fn + k„1) - (Fi + F2 + ... + F„_!) 

= (Fn + k+1 - 1) - (Fn+1 - 1) [by (1)] 

An,k = (Fn + k + l ~ Fn+1^*-

Let n be an arbitrary nonnegative integer. If k = 24, 

Fn + k+l ~ Fn+l = F(n+13) + 12 " F(n+13)-12 = Ln+13F12 [b^ ^ 2 ^ 

= £„ + 13 ' H 4 -= 0 (mod 24). 

Thus5 An 2i± is a n integer for each nonnegative integer n. 

^0,2 = (̂ 3 ~ ̂ i)/2 = (2 - l)/2 = 1/2. Proceeding in this same manner, it 
can be'shown that AQ^k is NOT an integer for k = 2, 3, 5, 7, 8, 10, 12, 13, 14, 
15, 16, 17, 18, 20,'21, 22, and 23 and that A± k is NOT an integer for k = 4, 
6, 9, 11, and 19. Therefore, 24 is the smallest k in {2, 3, 4, ...} such that 
An 7, is an integer for every nonnegative integer n. 

Also solved by David M. Burton, C. Georghiou, L. Kuipers, H.-J. Seiffert, Sahib 
Singh, Lawrence Somer, David Zeitlin, and the proposer. 

Fibonacci Infinite Series 

B-602 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Let Hn represent either Fn or Ln. 

1 1 1 (a) Find a simplified expression for 
^?7 "rc + 1 ^rc + 2 

(b) Use the result of (a) to prove that 

Z_rf 777 — J "T Z ^ T ; 7; p . 
n = l*n w = 1 -c 2n - 1-P 2n+l-^2n + 2 

Solution by C. Georghiou, University of Patras, Greece 

(a) After some simple algebra it is easy to see that 

1 1 1 Hl + l ~ HnHn + 2 

Hn Hn + l Hn + 2 Hn
Hn + lHn + 2 

(b) For Hn = Fn, we have F*+1 - FnFn + 2 = ("Dn5 and since Fn = 0(an) it follows 
that 

£ (-1)n - t ( ) 
n = l FnFn+lFn + 2 n = 1 \F2nF 2n + lF 2n + 2 F2n - lF2nF2n+ 1/ 

" = 1 ^ 2 n - 1 ^ 2 n + 1 ^ 2 n + 2 

On the other hand, we have 

1_ _ __1 1__\ » JL_ _2_ 1 

,=1X^ ~^777 " ^ 7 7 7 / = " ^ 1 ? 7 + ̂ 7 + ^e 
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By equating the two sums we get the given expression. 

Also solved by Piero Filipponi, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib 
Singh, Paul Tzermias, and the proposer. 

Lucas Analogue 

B-603 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Do the Lucas analogue of B-602(b). 

Solution by C. Georguiou, University of Patras, Greece 

For Hn = Ln, we have L^+l - LnLn+2 = 5(-l)n + 1,and since Ln = 0(an) it fol-
lows that 

E - ^ - ^ = 10 E 
n = i LnLn + 1Ln + 2 n = 1 L2n_lL2n+lL2n+2 

On the other hand, we have 

^ / 1 1 1 \ ^ 1 2 1 

n=l\Ln Ln + l Ln + 2 I n = lLn Ll L2 

By equating the two sums, we get 

i 7 00 i 

n=lLn 3 n = l L2n-lL2n + lL2n + 2 

Also solved by Piero Filipponi, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Paul 
Tzermias, and the proposer. 

• <>•<>• 
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