ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS
The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

PROBLEMS PROPOSED IN THIS ISSUE
B-662 Proposed by Philip L. Mana, Albuquerque, NM

For fixed n, find all m such that $L_{n} F_{m}-F_{m+n}=(-1)^{n}$.
B-623 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
S(n)=\sum_{k=1}^{2 n-1} L_{n+k} L_{k}
$$

Prove that $S(n)$ is an integral multiple of L_{n} for all positive integers n.

B-624 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
T_{n}=\sum_{i=1}^{n} L_{2(n+i)-1}
$$

For every positive integer n, prove that either $F_{n} \mid T_{n}$ or $L_{n} \mid T_{n}$.
B-625 Proposed by H.-J. Seiffert, Berlin, Germany

Let P_{0}, P_{1}, \ldots be the Pe11 numbers defined by

$$
P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2} \text { for } n \geqq 2
$$

Let $G_{n}=F_{n} P_{n}$ and $H_{n}=L_{n} P_{n}$. Show that $\left(G_{n}\right)$ and $\left(H_{n}\right)$ satisfy

$$
K_{n+4}-2 K_{n+3}-7 K_{n+2}-2 K_{n+1}+K_{n}=0
$$

B-626
Proposed by H.-J. Seiffert, Berlin, Germany
Let G_{n} and H_{n} be as in $B-625$. Express the generating functions

$$
G(z)=\sum_{n=0}^{\infty} G_{n} z^{n} \quad \text { and } \quad H(z)=\sum_{n=0}^{\infty} H_{n} z^{n}
$$

as rational functions of z.
B-627 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let

$$
C_{n, k}=\left(F_{n}^{3}+F_{n+1}^{3}+\cdots+F_{n+k-1}^{3}\right) / k
$$

Find the smallest k in $\{2,3,4, \ldots\}$ such that $C_{n, k}$ is an integer for every n in $\{0,1,2, \ldots\}$.

SOLUTIONS

2 Problems on Pythagorean Triples
B-598 Proposed by Herta T. Freitag, Roanoke, VA
For which positive integers n is ($2 L_{n}, L_{2 n}-3, L_{2 n}-1$) a Pythagorean triple? For which of these n 's is the triple primitive?

B-599 Proposed by Herta T. Freitag, Roanoke, VA
Do B-598 with the triple now $\left(2 L_{n}, L_{2 n}+1, L_{2 n}+3\right)$.
Solutions by Thomas M. Green, Contra Costa College, San Pablo, CA
It is known that $L_{2 n}=L_{n}^{2}+2(-1)^{n+1}$.
For n odd, we have $L_{2 n}=L_{n}^{2}+2$ and the triple

$$
\left(2 L_{n}, L_{2 n}-3, L_{2 n}-1\right)=\left(2 L_{n}, L_{n}^{2}-1, L_{n}^{2}+1\right)
$$

which is a Pythagorean triple. Furthermore, a Pythagorean triple of the type ($2 m, m^{2}-1, m^{2}+1$) is primitive if m is even. Thus, if $L_{n}=m$, an even number, then $\left(2 L_{n}, L_{n}^{2}-1, L_{n}^{2}+1\right)$ is primitive. But, if n is odd, L_{n} is even only when n is an odd multiple of three.

Similarly, for n even ($B-599$), the triple

$$
\left(2 L_{n}, L_{2 n}+1, L_{2 n}+3\right)=\left(2 L_{n}, L_{n}^{2}-1, L_{n}^{2}+1\right)
$$

is Pythagorean and will be primitive if L_{n} is even. In this case, however, if n is even, L_{n} is even only when n is an even multiple of three.

Also solved by Paul S. Bruckman, Frank Conliffe, Richard Dry, Piero Filipponi \& Adina Di Porto, C. Georghiou, L. Kuipers, Bob Prielip, H.-J. Seiffert, Sahib Singh, Lawrence Somer, Paul Tzermias, and the proposer.

Fibonacci Multiples of 121160
B-600 Proposed by Philip L. Mana, Albuquerque, NM
Let n be any positive integer and $m=n^{13}-n$. Prove that F_{m} is an integral multiple of 30290 .

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA
We prove a more general result, namely: F_{m} is an integral multiple of 121,160, where $m=n^{13}-n$; n being a positive integer.

We can express

$$
\begin{aligned}
n^{13}-n & =\left(n^{7}-n\right)\left(n^{6}+1\right)=\left(n^{5}-n\right)\left(n^{8}+n^{4}+1\right) \\
& =\left(n^{3}-n\right)\left(n^{10}+n^{8}+n^{6}+n^{4}+n^{2}+1\right)
\end{aligned}
$$

By Fermat's theorem: $n^{p}-n \equiv 0(\bmod p)$, where p is prime and n is a positive integer.

Thus, we conclude that:

$$
n^{13}-n \equiv 0(\bmod 13) ; n^{13}-n \equiv 0(\bmod 7) ; n^{13}-n \equiv 0(\bmod 5)
$$

Since $n^{3}-n$ is a factor of $n^{13}-n$ and $n^{3}-n$ is a product of three consecutive integers, $n-1, n, n+1$, we have:

$$
\begin{aligned}
n^{3}-n \equiv 0(\bmod 6) & \Rightarrow n^{13}-n \equiv 0(\bmod 6) \\
& \Rightarrow F_{5} \cdot F_{6} \cdot F_{7} \cdot F_{13} \text { divides } F_{m}
\end{aligned}
$$

(by the fact that r divides s implies F_{r} divides F_{s})

$$
\Rightarrow 5 \cdot 8 \cdot 13 \cdot 233 \text { is a factor of } F_{m}
$$

Thus, we are done.
Also solved by Paul S. Bruckman, David M. Burton, Frank H. Conliffe, Piero Filipponi, C. Georghiou, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, and the proposer.

Integral Arithmetic Means

B-601 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let $A_{n, k}=\left(F_{n}+F_{n+1}+\ldots+F_{n+k-1}\right) / k$. Find the smallest k in $\{2,3,4$, $\ldots\}$ such that $A_{n, k}$ is an integer for every n in $\{0,1,2, \ldots\}$.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
We shall show that 24 is the value of k that is being sought. Our solution will use the following known information:
(1) $F_{1}+F_{2}+F_{3}+\cdots+F_{n}=F_{n+2}-1, n \geqq 1$, and
(2) $F_{n+t}-F_{n-t}=L_{n} F_{t}$, t even.
[(1) is (I_{1}) on p. 52 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr., Houghton Mifflin, Boston, 1969, and (2) is (I_{24}) on p. 59, ibid.]

ELEMENTARY PROBLEMS AND SOLUTIONS

Since

$$
\begin{aligned}
& F_{n}+F_{n+1}+\cdots+F_{n+k-1} \\
& =\left(F_{1}+F_{2}+\cdots+F_{n+k-1}\right)-\left(F_{1}+F_{2}+\cdots+F_{n-1}\right) \\
& =\left(F_{n+k+1}-1\right)-\left(F_{n+1}-1\right)[\text { by }(1)] \\
& =F_{n+k+1}-F_{n+1}, \\
A_{n, k} & =\left(F_{n+k+1}-F_{n+1}\right) / k .
\end{aligned}
$$

Let n be an arbitrary nonnegative integer. If $k=24$,

$$
\begin{aligned}
F_{n+k+1}-F_{n+1} & =F_{(n+13)+12}-F_{(n+13)-12}=L_{n+13} F_{12} \quad[\text { by (2) }] \\
& =L_{n+13} \cdot 144 \equiv 0(\bmod 24) .
\end{aligned}
$$

Thus, $A_{n, 24}$ is an integer for each nonnegative integer n.
$A_{0,2}=\left(F_{3}-F_{1}\right) / 2=(2-1) / 2=1 / 2$. Proceeding in this same manner, it can be shown that $A_{0, k}$ is NOT an integer for $k=2,3,5,7,8,10,12,13,14$, $15,16,17,18,20,21,22$, and 23 and that A_{1}, k is NOT an integer for $k=4$, $6,9,11$, and 19. Therefore, 24 is the smallest k in $\{2,3,4, \ldots\}$ such that $A_{n, k}$ is an integer for every nonnegative integer n.

Also solved by David M. Burton, C. Georghiou, L. Kuipers, H.-J. Seiffert, Sahib Singh, Lawrence Somer, David Zeitlin, and the proposer.
Fibonacci Infinite Series

B-602 Proposed by Paul S. Bruckman, Fair Oaks, CA
Let H_{n} represent either F_{n} or L_{n}.
(a) Find a simplified expression for $\frac{1}{H_{n}}-\frac{1}{H_{n+1}}-\frac{1}{H_{n+2}}$.
(b) Use the result of (a) to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}}=3+2 \sum_{n=1}^{\infty} \frac{1}{F_{2 n-1} F_{2 n+1} F_{2 n+2}}
$$

Solution by C. Georghiou, University of Patras, Greece
(a) After some simple algebra it is easy to see that

$$
\frac{1}{H_{n}}-\frac{1}{H_{n+1}}-\frac{1}{H_{n+2}}=\frac{H_{n+1}^{2}-H_{n} H_{n+2}}{H_{n} H_{n+1} H_{n+2}}
$$

(b) For $H_{n}=F_{n}$, we have $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$, and since $F_{n}=0\left(\alpha^{n}\right)$ it follows that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{F_{n} F_{n+1} F_{n+2}} & =\sum_{n=1}^{\infty}\left(\frac{1}{F_{2 n} F_{2 n+1} F_{2 n+2}}-\frac{1}{F_{2 n-1} F_{2 n} F_{2 n+1}}\right) \\
& =-2 \sum_{n=1}^{\infty} \frac{1}{F_{2 n-1} F_{2 n+1} F_{2 n+2}}
\end{aligned}
$$

On the other hand, we have

$$
\sum_{i=1}^{\infty}\left(\frac{1}{F_{n}}-\frac{1}{F_{n+1}}-\frac{1}{F_{n+2}}\right)=-\sum_{i=1}^{\infty} \frac{1}{F_{n}}+\frac{2}{F_{1}}+\frac{1}{F_{2}}
$$

By equating the two sums we get the given expression.
Also solved by Piero Filipponi, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Paul Tzermias, and the proposer.

> Lucas Ana logue

B-603 Proposed by Paul S. Bruckman, Fair Oaks, CA
Do the Lucas analogue of $B-602(b)$.

Solution by C. Georguiou, University of Patras, Greece
For $H_{n}=L_{n}$, we have $L_{n+1}^{2}-L_{n} L_{n+2}=5(-1)^{n+1}$, and since $L_{n}=0\left(\alpha^{n}\right)$ it follows that

$$
\sum_{n=1}^{\infty} \frac{5(-1)^{n+1}}{L_{n} L_{n+1} L_{n+2}}=10 \sum_{n=1}^{\infty} \frac{1}{L_{2 n-1} L_{2 n+1} L_{2 n+2}}
$$

On the other hand, we have

$$
\sum_{n=1}^{\infty}\left(\frac{1}{L_{n}}-\frac{1}{L_{n+1}}-\frac{1}{L_{n+2}}\right)=-\sum_{n=1}^{\infty} \frac{1}{L_{n}}+\frac{2}{L_{1}}+\frac{1}{L_{2}}
$$

By equating the two sums, we get

$$
\sum_{n=1}^{\infty} \frac{1}{L_{n}}=\frac{7}{3}-10 \sum_{n=1}^{\infty} \frac{1}{L_{2 n-1} L_{2 n+1} L_{2 n+2}}
$$

Also solved by Piero Filipponi, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Paul Tzermias, and the proposer.

