ON FIBONACCI AND LUCAS REPRESENTATIONS AND A THEOREM OF LEKKERKERKER

JUKKA PIHKO
University of Helsinki, Hallituskatu 15 SF-00100 Helsinki, Finland
(Submitted October 1986)

1. INTRODUCTION

Let $F_{1}=F_{2}=1, F_{n+2}=F_{n+1}+F_{n}, n=1,2, \ldots$, be the Fibonacci numbers and let $L_{0}=2, L_{1}=1, L_{n+2}=L_{n+1}+L_{n}, n=0,1, \ldots$, be the Lucas numbers. According to the Theorem of Zeckendorf (see, for example, [5, p. 74], [6], [1], [8]), every positive integer m has a unique "minimal" representation as a sum of distinct Fibonacci numbers F_{2}, F_{3}, \ldots such that no two consecutive Fibonacci numbers are used. If we denote by $f(m)$ the number of Fibonacci numbers in the representation of m, then Lekkerkerker [6] defined the average value

$$
\psi_{n}=\left(\sum_{i=F_{n+1}}^{F_{n+2}-1} f(i)\right) / F_{n}
$$

and proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi_{n}}{n}=\frac{5-\sqrt{5}}{10} \tag{1}
\end{equation*}
$$

In [7] we gave a very simple proof of (1) and also proved a certain generalization of this result. In order to state this generalization, we introduce some notations and terminology from [7]. Let $1=\alpha_{1}<\alpha_{2}<\cdots$ be a strictly increasing sequence of positive integers with the first element equal to 1 . We call this an A-sequence. Suppose that m is a positive integer. We write

$$
\begin{equation*}
m=a_{(1)}+a_{(2)}+\cdots+a_{(s)}, \tag{2}
\end{equation*}
$$

where $\alpha_{(1)}$ is the greatest element of the A-sequence $\leqslant m, \alpha_{(2)}$ is the greatest element of the A-sequence $\leqslant m-\alpha_{(1)}$, and, generally, $\alpha_{(i)}$ is the greatest element of the A-sequence $\leqslant \dot{m}-\alpha_{(1)}-a_{(2)}-\cdots-\alpha_{(i-1)}$. We denote by $h(m)$ the number s in (2), that is, the number of terms in the representation of m.

Suppose that $k \geqslant 2$ is a positive integer and define an A-sequence by $\alpha_{1}=$ $1, a_{2}=k$, and $a_{n+2}=a_{n+1}+a_{n}, n=1,2, \ldots$. We call this a recursive $A=$ sequence. If $a_{2}=k=3$, then $a_{n}=L_{n}, n=1,2, \ldots$. If $a_{2}=k=2$, then
$a_{n}=F_{n+1}, n=1,2, \ldots$, and (2) is the Zeckendorf representation [7, Lemma 5.12, p. 45], so that $h(m)=f(m)$.

Consider now a recursive A-sequence. If $a_{2}=k$, we defined

$$
\psi_{k}(n)=\left(\sum_{i=a_{n}}^{a_{n+1}-1} h(i)\right) / a_{n-1}
$$

so that $\psi_{2}(n)=\psi_{n}$, and proved [7, Theorem 5.15, p. 46] that for all $a_{2}=k \geqslant 2$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi_{k}(n)}{n}=\frac{5-\sqrt{5}}{10} \tag{3}
\end{equation*}
$$

a generalization of (1).
In [4] Daykin has given a different generalization of (1). If h and k are positive integers such that $h \leqslant k \leqslant h+1$, then he defined [4, p. 144] the $(h, k)^{\text {th }}$ Fibonacci sequence $\left(v_{i}\right)$ in the following way:

$$
\begin{array}{ll}
v_{i}=i & \text { for } 1 \leqslant i \leqslant k \\
v_{i}=v_{i-1}+v_{i-h} & \text { for } k<i<h+k \tag{4}\\
v_{i}=v_{i-1}+v_{i-k}+(k-h) & \text { for } i \geqslant h+k
\end{array}
$$

Clearly, the Fibonacci numbers F_{2}, F_{3}, \ldots are given by the $(2,2)^{\text {th }}$ Fibonacci sequence.

Daykin generalizes the Theorem of Zeckendorf by proving [4, Theorem C, p. 144] that, if $\left(v_{i}\right)$ is the $(h, k)^{\text {th }}$ Fibonacci sequence, then for each positive integer m there is one, and only one, system of positive integers i_{1}, i_{2}, \ldots, i_{d} such that

$$
\begin{equation*}
m=v_{i_{1}}+v_{i_{2}}+\cdots+v_{i_{d}}, \tag{5}
\end{equation*}
$$

where $i_{2} \geqslant i_{1}+h$ if $d>1$, and $i_{v+1} \geqslant i_{v}+k$ for $2 \leqslant v<d$. [We note that the ($h, k)^{\text {th }}$ Fibonacci sequence is an A-sequence, and it is easy to see that the representation (5) is the same as (2).]

Let ψ_{n} denote the average number of summands required in (5) for all those positive integers m such that $v_{n} \leqslant m<v_{n+1}$. Then [4, Theorem E, p. 144] for $k \geqslant 2$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi_{n}}{n}=\frac{\theta-1}{1+k(\theta-1)} \tag{6}
\end{equation*}
$$

where $\theta=\theta(k)$ is the positive real solution of the equation $z-1=z^{1-k}$.
In this paper we consider three other kinds of unique representations using Fibonacci and Lucas numbers and prove the following corresponding results. Let $f^{\prime}(m)$ denote the number of elements in the "maximal" representation (see [5, p. 74], [2]) of m using Fibonacci numbers F_{2}, F_{3}, \ldots (where no "gaps" formed 1988]
by two consecutive Fibonacci numbers are allowed). Let $g(m)$ denote the number of elements in the "minimal" representation (see [5, p. 76], [3], [8]) of m and let $g^{\prime}(m)$ denote the number of elements in the "maximal" representation (see [5, p. 77], [3]) of m using Lucas numbers. These are similar to the corresponding Fibonacci representations but with certain additional restrictions to ensure uniqueness. We define

$$
\begin{aligned}
\psi_{n}^{\prime} & =\left(\sum_{i=F_{n+1}^{\prime}}^{F_{n+2}-1} f^{\prime}(i)\right) / F_{n}, \quad \lambda_{n}=\left(\sum_{i=L_{n+1}}^{L_{n+2}-1} g(i)\right) / L_{n} \\
\text { and } \quad \lambda_{n}^{\prime} & =\left(\sum_{i=L_{n+1}}^{L_{n+2}^{-1}} g^{\prime}(i)\right) / L_{n} .
\end{aligned}
$$

Then we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=\frac{5-\sqrt{5}}{10} \tag{7}\\
& \lim _{n \rightarrow \infty} \frac{\lambda_{n}^{\prime}}{n}=\frac{5+\sqrt{5}}{10} \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi_{n}^{\prime}}{n}=\frac{5+\sqrt{5}}{10} \tag{9}
\end{equation*}
$$

2. "MINIMAL" LUCAS REPRESENTATIONS

$$
\begin{align*}
& \text { Let } a_{1}=1=L_{1}, a_{2}=L_{0}, \text { and } a_{n}=L_{n-1}, n=3,4, \ldots \text { so that } \\
& \qquad a_{n+2}=a_{n+1}+a_{n}, n=3,4, \ldots . \tag{10}
\end{align*}
$$

Lemma 1: The representation of a positive integer m corresponding to this A sequence is the "minimal" Lucas representation.

Proof: Similar to that of Lemma 5.12 in [7, p. 45].
It follows that $g(m)=\hbar(m)$ for every positive integer m. Let

$$
S(n)=\sum_{i=1}^{n} h(i) \quad \text { and } \quad S^{\prime}(n)=S\left(a_{n+1}-1\right) \quad[7, \mathrm{p} .7]
$$

Then it follows from (10) that we have (compare with Theorem 5.4 in [7, p. 41])

$$
\begin{equation*}
S^{\prime}(n+2)=S^{\prime}(n+1)+S^{\prime}(n)+L_{n}, n=2,3, \ldots \tag{11}
\end{equation*}
$$

Lemma 2: $S^{\prime}(n)=n \cdot F_{n-1}, n=2,3, \ldots$.
Proof: Easily by induction, using (11) and [5, (I_{8}), p. 56].

ON FIBONACCI AND LUCAS REPRESENTATIONS AND A THEOREM OF LEKKERKERKER

It follows that

$$
\begin{align*}
\sum_{i=L_{n+1}}^{L_{n+2}-1} g(i) & =\sum_{i=a_{n+2}}^{a_{n+3}-1} h(i)=S^{\prime}(n+2)-S^{\prime}(n+1) \tag{12}\\
& =(n+2) F_{n+1}-(n+1) F_{n}=n \cdot F_{n-1}+L_{n}, n=2,3, \ldots .
\end{align*}
$$

(This holds also for $n=1$, if we define $F_{0}=0$ as usual.) From (12), it follows that (7) holds, because

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F_{n-1}}{L_{n}}=\frac{5-\sqrt{5}}{10} \text { (see, for example, }[7,(5.36), \text { p. 47]). } \tag{13}
\end{equation*}
$$

3. 'MAXIMAL"' LUCAS REPRESENTATIONS

Lemma 3: Suppose that m is a positive integer such that $L_{n+1} \leqslant m \leqslant L_{n+2}-1$, where $n \geqslant 1$. Then the greatest-indexed Lucas number in the "maximal" Lucas representation of m is L_{n}.

Proof: This follows from Theorem 2 in [3, p. 250].
Let

$$
a(n)=\sum_{i=L_{n+1}}^{L_{n+2}-1} g^{\prime}(i), n \geqslant 0,
$$

so that $\lambda_{n}^{\prime}=a(n) / L_{n}$ 。
Lemma 4: $\alpha(n)=\alpha(n-1)+\alpha(n-2)+L_{n}, n=2,3, \ldots$.
Proof: Since $\alpha(0)=\alpha(1)=2, \alpha(2)=7$, and $L_{2}=3$, the equation clearly holds for $n=2$. Let $L_{n+1} \leqslant m \leqslant L_{n+2}-1$, where $n \geqslant 3$. According to Lemma 3, the greatest-indexed Lucas number in the representation of m is L_{n}. Let $m^{\prime}=m$ L_{n} 。 Then

$$
\begin{equation*}
L_{n-1} \leqslant m^{\prime} \leqslant L_{n+1}-1 \tag{14}
\end{equation*}
$$

According to Lemma 3, if $L_{n} \leqslant m^{\prime} \leqslant L_{n+1}-1$, then the greatest-indexed Lucas number in the representation of m^{\prime} is L_{n-1}, and if $L_{n-1} \leqslant m^{\prime} \leqslant L_{n}-1$, then it is L_{n-2}. It follows that in both cases we get the representation of m by adding L_{n} to the representation of m^{\prime}. It follows that

$$
\begin{equation*}
g^{\prime}(m)=g^{\prime}\left(m^{\prime}\right)+1 \tag{15}
\end{equation*}
$$

which, together with (14), clearly completes the proof.
Lemma 5: $\quad a(n)=n \cdot F_{n+1}+L_{n}, n=0,1, \ldots$.
Proof: Easily by induction using Lemma 4.
It follows that (8) holds because

ON FIBONACCI AND LUCAS REPRESENTATIONS AND A THEOREM OF LEKKERKERKER

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{L_{n}}=\frac{5+\sqrt{5}}{10} \text { (see, for example, }[7,(5.34), \text { p. 47]). } \tag{16}
\end{equation*}
$$

4. "MAXIMAL" FIBONACCI REPRESENTATIONS

Let

$$
b(n)=\sum_{i=F_{n+1}}^{F_{n+2}-1} f^{\prime}(i), n \geqslant 1,
$$

so that $\psi_{n}^{\prime}=b(n) / F_{n}$. Let

$$
c(n)=\sum_{i=F_{n+1}-1}^{F_{n+2}-2} f^{\prime}(i), n \geqslant 2
$$

Then we have
Lemma 6: $\quad b(n)=c(n)+\frac{1+(-1)^{n+1}}{2}, n=2,3, \ldots$.
Proof: $b(n)-c(n)=f^{\prime}\left(F_{n+2}-1\right)-f^{\prime}\left(F_{n+1}-1\right)$. We use the formulas (see, for example, [5, ($\left.I_{5}\right),\left(I_{6}\right), p$ 56])

$$
\begin{equation*}
F_{2 k}-1=F_{2 k-1}+F_{2 k-3}+\cdots+F_{5}+F_{3}, k=2,3, \cdots, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2 k+1}-1=F_{2 k}+F_{2 k-2}+\cdots+F_{4}+F_{2}, k=1,2, \ldots . \tag{18}
\end{equation*}
$$

If n is even, $n=2 k$, we get $f^{\prime}\left(F_{n+2}-1\right)-f^{\prime}\left(F_{n+1}-1\right)=k-k=0$ and if n is odd, $n=2 k+1$, we get $f^{\prime}\left(F_{n+2}-1\right)-f^{\prime}\left(F_{n+1}-1\right)=(k+1)-k=1$.
Lemma 7: Let $F_{n+1}-1 \leqslant m \leqslant F_{n+2}-2$, where $n \geqslant 2$. Then the greatest Fibonacci number in the "maximal" representation of m is F_{n}.

Proof: [2, Theorem 1, p. 2].
In a similar fashion as in the case of "maximal" Lucas representations, it follows now that

$$
\begin{equation*}
c(n)=c(n-1)+c(n-2)+F_{n}, n=4,5, \ldots . \tag{19}
\end{equation*}
$$

Lemma 8: $c(n)=(1 / 5)\left(n \cdot L_{n+1}-3 F_{n}\right), n=2,3, \ldots$.
Proof: Easily by induction using (19) and [5, (I_{9}), p. 56].
Formula (9) now follows from Lemma 8 and Lemma 6 using the fact that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{L_{n+1}}{F_{n}}=\frac{5+\sqrt{5}}{2} \text { (see, for example, [7, (5.36), p. 47]). } \tag{20}
\end{equation*}
$$

REFERENCES

1. J. L. Brown, Jr. "Zeckendorf's Theorem and Some Applications." The Fibonacei Quarterly 2 (1964):162-168.

ON FIBONACCI AND LUCAS REPRESENTATIONS AND A THEOREM OF LEKKERKERKER
2. J. L. Brown, Jr. "A New Characterization of the Fibonacci Numbers." The Fibonacci Quarterly 3 (1965):1-8.
3. J. L. Brown, Jr. "Unique Representation of Integers as Sums of Distinct Lucas Numbers." The Fibonacci Quarterly 7 (1969):243-252.
4. D. E. Daykin. "Representation of Natural Numbers as Sums of Generalised Fibonacci Numbers." J. London Math. Soc. 35 (1960):143-160.
5. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
6. C. G. Lekkerkerker. "Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci." Simon Stevin 29 (1951-1952):190-195.
7. J. Pihko. "An Algorithm for Additive Representation of Positive Integers." Ann. Acad. Sci. Fenn., Ser. A I Math. Dissertations No. 46 (1983):1-54.
8. E. Zeckendorf. "Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas." Bull. Soc. Royale Sci. Liège 41 (1972):179-182.
$\diamond \diamond \diamond \diamond$

