A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS

RENATO M. CAPOCELLI* Oregon State University, Corvalis, OR 97331 (Submitted November 1986)

The Fibonacci numbers are defined, as usual, by the recurrence

 $F_0 = 0, F_1 = 1, F_k = F_{k-1} + F_{k-2}, k > 1.$

The Fibonacci tree of order k, denoted T_k , can be constructed inductively as follows: If k = 0 or k = 1, the tree is simply the root 0. If k > 1, the root is F_k ; the left subtree is T_{k-1} ; and the right subtree is T_{k-2} with all node numbers increased by F_k . T_6 is shown in Figure 1. For an elegant role of the node numbers in the Fibonacci search algorithm, the reader is referred to [5].

Fibonacci trees have been studied in detail by Horibe [2], [3]. The aim of this note is to present some additional considerations on Fibonacci tree codes and to explore the relationships existing between the codes and the Zeckendorf representation of integers.

Figure 1. The Fibonacci Tree of Order 6, T_6

[Nov.

^{*}On leave from Dipartimento di Informatica ed Applicazioni, Universita' di Salerno, Salerno, Italy 84100.

Work supported by F.O.R.M.E.Z. and by Italian Ministry of Education, M.P.I.

Recall that each integer N, $0 \le N \le F_{k+1}$, has the following unique Zeckendorf representation in terms of Fibonacci numbers [6]:

$$\mathbb{N} = \alpha_2 \mathbb{F}_2 + \alpha_3 \mathbb{F}_3 + \alpha_4 \mathbb{F}_4 + \cdots + \alpha_k \mathbb{F}_k, \text{ where } \alpha_i \in \{0, 1\} \text{ and } \alpha_i \alpha_{i-1} = 0.$$

Let us write this as $\alpha_k \alpha_{k-1} \alpha_{k-2} \cdots \alpha_3 \alpha_2$. The Zeckendorf representation of an integer then provides a binary sequence, called a *Fibonacci sequence*, that does not contain two consecutive ones, and the number of Fibonacci sequences of length k - 1 is exactly F_{k+1} .

The Zeckendorf representation of integers perserves the lexicographic ordering based on $0 \le 1$ (see [1]).

A tree code is the code obtained by labeling each branch of a tree with a code symbol and representing each terminal node with the path of labels from the root to it. We stress that tree codes are prefix codes (i.e., no codeword is the beginning of any other codeword) and have a natural encoding and decoding. Moreover, tree codes preserve the order structure of the encoded set in the sense that, if x precedes y, the codeword for x lexicographically precedes the codeword for y.

In the sequel, we use 0 for each left branch and 1 for each right branch in a binary tree. The Fibonacci code, denoted C_k , is the binary code obtained in this way from T_k . For example, C_6 is shown in the following table.

0	00000	5	0100	10	101
1	00001	6	0101	11	110
2	0001	7	011	12	111
3	0010	8	1000		
4	0011	9	1001		

The first result of this note is the determination of the asymptotic proportions of zeros and ones in the Fibonacci codes.

Let N_k^0 and N_k^1 denote the total number of 0's and 1's in C_k , respectively, and let $N_k = N_k^0 + N_k^1$ denote the total number of symbols. For example, $N_6^0 = 30$ and $N_6^1 = 20$. Put $p = \lim_{k \to \infty} (N_k^0/N_k)$ and $q = 1 - p = \lim_{k \to \infty} (N_k^1/N_k)$. We will show the following

Theorem 1: $p = \frac{1}{\Phi}$ and $q = 1 - \frac{1}{\Phi}$, where $\Phi = \lim_{n \to \infty} \frac{F_{n+1}}{F_n}$ is the golden ratio $\frac{1 + \sqrt{5}}{2}$. Proof: From the inductive construction of the Fibonacci tree and the fact that T_k has F_{k+1} terminal nodes, one has the following equations:

$$N_k = F_{k+1} + N_{k-1} + N_{k-2};$$

1988]

319

$$N_{k}^{0} = F_{k} + N_{k-1}^{0} + N_{k-2}^{0};$$

$$N_{k}^{1} = F_{k-1} + N_{k-1}^{1} + N_{k-2}^{1}.$$

These equations, applied recursively, give

$$N_{k} = \sum_{i=0}^{k-1} F_{i} F_{k-i+2}, \quad N_{k}^{0} = \sum_{i=0}^{k-1} F_{i} F_{k-i+1}, \quad N_{k}^{1} = \sum_{i=0}^{k-1} F_{i} F_{k-i}.$$

Therefrom one gets: $N_k^0 / N_k = \sum_{i=0}^{k-1} F_i F_{k-i+1} / \sum_{i=0}^{k-1} F_i F_{k-i+2}$.

To evaluate the asymptotic behavior of $\sum_{i=0}^{k-1} F_i F_{k-i+j}$, we use Binet's formula

$$F_k = \frac{1}{\sqrt{5}}(\Phi^k - \Gamma^k)$$
, where $\Gamma = \frac{1 - \sqrt{5}}{2}$.

We then have

$$\begin{split} \sum_{i=0}^{k-1} F_i F_{k-i+j} &= \frac{1}{5} \left(\sum_{i=0}^{k-1} \Phi^{k+j} + \sum_{i=0}^{k-1} \Gamma^{k+j} - \sum_{i=0}^{k-1} \Phi^i \Gamma^{k-i+j} - \sum_{i=0}^{k-1} \Phi^{k-i+j} \Gamma^i \right) \\ &= \frac{1}{5} \left(k \Phi^{k+j} + k \Gamma^{k+j} - \Gamma^{j+1} \frac{\Gamma^k - \Phi^k}{\Gamma - \Phi} - \Phi^{j+1} \frac{\Phi^k - \Gamma^k}{\Phi - \Gamma} \right) \\ &= \frac{1}{5} \left(k \Phi^{k+j} + k \Gamma^{k+j} - \frac{\Gamma^{j+1}}{\sqrt{5}} (\Phi^k - \Gamma^k) - \frac{\Phi^{j+1}}{\sqrt{5}} (\Phi^k - \Gamma^k) \right) \\ &= \frac{1}{5} k \Phi^{k+j} + O(\Phi^k) \,. \end{split}$$

From the above, one finally obtains

$$\lim_{k \to \infty} \frac{N_k^0}{N_k} = \lim_{k \to \infty} \frac{\sum_{i=0}^{k-1} F_i F_{k-i+1}}{\sum_{i=0}^{k-1} F_i F_{k-i+2}} = \frac{1}{\Phi}.$$

[Nov.

The remainder of this note is devoted to exploring relationships between the Fibonacci codes and the Zeckendorf representation of integers. In particular, we show that the Zeckendorf representation of integers can be obtained as a variant of the Fibonacci codes by inserting some redundant digits 0.

To this end, let us define the *uniform Fibonacci tree* of order k (denoted U_k) as follows: For $k \leq 2$, the uniform Fibonacci tree coincides with the Fibonacci tree. If k > 2, the root is F_k ; the left subtree is U_{k-1} ; the right subtree has root $F_k + F_{k-1}$ whose right subtree is empty and whose left subtree is U_{k-2} with all numbers increased by F_k .

A uniform Fibonacci tree is the Fibonacci tree with dummy nodes after each right branch that force the leaves to be at the same level. The uniform Fibonacci tree can be obtained from the branch labeling of the Fibonacci tree, as described in [3]. The relationships between this labeling and the Zeckendorf representation of integers have been unnoticed. Figure 2 above shows U_6 . Some properties of U_k are given in the following theorems.

Theorem 2: U_k has F_{i+2} nodes at level i, $0 \le i \le k - 1$.

 $L(0, k) = F_2, L(1, k) = F_3,$

Proof: Theorem 2 is trivially true for k = 1, 2. Suppose it is true for each U_i , $i \le k$ $(k \ge 2)$. We prove that it is true for U_k .

Let us denote by L(i, k) the number of nodes that U_k has at level *i*. The construction of U_k implies

and

 $L(i, k) = L(i - 1, k - 1) + L(i - 2, k - 2), 2 \le i \le k - 1.$

By the induction hypothesis, this gives $L(i, k) = F_{i+1} + F_i = F_{i+2}$.

Corollary 1: U_k is obtained by adding F_k - 1 internal nodes to T_k .

Proof: From Theorem 2, U_k has $\sum_{i=2}^k F_i = F_{k+2} - 2$ internal nodes. Since T_k has $F_{k+1} - 1$ internal nodes, we get that U_k has $F_{k+2} - 2 - F_{k+1} + 1 = F_k - 1$ additional nodes.

Similarly, as was done in [3] for Fibonacci trees, it is possible to classify terminal nodes of U_k into:

@-nodes, the terminal nodes that are right sons, and
&-nodes, the terminal nodes that are left sons.

Lemma 1: U_k has F_{k-1} R-nodes and F_k L-nodes.

1988]

A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS

Proof: By induction. Trivially true for k = 2, 3. Suppose the lemma is true for each uniform Fibonacci tree of order less than k, k > 3. The definition of \mathfrak{R} -nodes and \mathfrak{L} -nodes implies that the type (\mathfrak{R} or \mathfrak{L}) determination within each of the left and right subtrees of any uniform Fibonacci tree gives the correct type determination in the whole tree. Hence, by the construction of U_k and by the induction hypothesis, U_k has $F_{k-2} + F_{k-3}$ \mathfrak{R} -nodes and $F_{k-1} + F_{k-2}$ \mathfrak{L} -nodes. This completes the proof.

As was done in [2] for Fibonacci trees, and as Theorem 2 suggests, one can construct U_{k+1} by properly splitting terminal nodes of U_k . However, the recursive construction for uniform Fibonacci trees is slightly different from that described in [2] for Fibonacci trees. This time, all terminal nodes generate offsprings.

Theorem 3: If each \mathfrak{R} -node of U_k , $k \ge 2$, generates only the left node and each \mathfrak{L} -node generates two nodes, then the resulting tree that has F_k \mathfrak{R} -nodes and $F_{k-1} + F_k$ \mathfrak{L} -nodes is exactly U_{k+1} .

Proof: By induction. Suppose the theorem is true for each U_i , i < k, k > 3 (when k = 2, 3, the assertion is easily shown). U_k has, as its left subtree, U_{k-1} with F_{k-2} G-nodes and F_{k-1} L-nodes. Making terminal nodes of this U_{k-1} generate offsprings produces U_k by the induction hypothesis. Similarly, the right subtree of U_k has empty right subtree and has U_{k-2} as the left subtree. Making the F_{k-3} G-nodes and the F_{k-2} L-nodes of this U_{k-2} generate offsprings produces U_{k-1} subtree of the induction hypothesis. Therefore, making all G-nodes of U_k generate left sons and all L-nodes generate two sons produces U_{k+1} .

We now relate the tree code of U_k , the uniform Fibonacci tree code of order k (denoted in the sequel by B_k), to the Zeckendorf representation of integers. For example, B_6 is given by:

0	00000	5	01000	10	10010
1	00001	6	01001	11	10100
2	00010	7	01010	12	10101
3	00100	8	10000		
4	00101	9	10001		

Lemma 2: The uniform Fibonacci code of order k is the set of all Fibonacci sequences of length k - 1.

[Nov.

322

A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS

Proof: From the construction of the uniform Fibonacci tree, the uniform Fibonacci code does not allow two consecutive 1's in any codeword and contains F_{k+1} distinct codewords of length k - 1. The number of Fibonacci sequences of length k - 1 is also given by F_{k+1} .

Theorem 4: In a uniform Fibonacci code, the codeword that represents the terminal node i is the Zeckendorf representation of the integer i.

Proof: From Lemma 2, the uniform Fibonacci tree code of order k is the set of Fibonacci sequences of length k - 1. By definition, they provide the Zeckendorf representation of nonnegative integers $\leq F_{k+1}$. Since the Zeckendorf representation preserves the lexicographic ordering, the assertion is a straightforward consequence of the order-preserving property of tree codes.

Uniform Fibonacci trees, therefore, provide an efficient pretty mechanism for obtaining the Zeckendorf representation of integers. The procedure is:

Given the integer i, $0 \leq i < F_{k+1}$, construct the uniform Fibonacci tree of order k. The Zeckendorf representation of i is the path of labels from the root to terminal node i.

It is also worthwhile to note that the uniform Fibonacci trees in the setting of the Fibonacci numeration system play a role analogous to that of the complete binary trees in the setting of the binary numeration system:

The number of nodes at each level is given by a Fibonacci number (power of 2, in the binary case);

The path of labels to a terminal node is the Zeckendorf representation (the binary representation, in the binary case).

The last result is the determination of the number \overline{N}_k^1 of 1's and the number \overline{N}_k^0 of 0's in B_k . With the same notation of Theorem 1, we have

Theorem 5: $\overline{N}_k^1 = N_k^1$; $\overline{N}_k^0 = N_k^0 + N_k^1 - F_{k-1}$, $k \ge 2$.

Proof: The first part is immediate from the construction of trees T_k and U_k . The second part can be proved by induction. Suppose Theorem 5 is true for each uniform Fibonacci tree of order less than k, k > 3 (when k = 2, 3, the assertion is trivially true). By the construction of U_k , one has the equation:

 $\overline{N}_k^0 = (F_k + \overline{N}_{k-1}^0) + (F_{k-1} + \overline{N}_{k-2}^0).$

By the induction hypothesis, this gives

 $\overline{N}_{k}^{0} = F_{k} + F_{k-1} + N_{k-1}^{0} + N_{k-1}^{1} - F_{k-2} + N_{k-2}^{0} + N_{k-2}^{1} - F_{k-3}.$

1988]

Since $N_k^0 = F_k + N_{k-1}^0 + N_{k-2}^0$ and $N_k^1 = F_{k-1} + N_{k-1}^1 + N_{k-2}^1$ (see Theorem 1), the assertion is true.

Theorem 5 allows immediate computation of the asymptotic proportion of 1's (and 0's) in Fibonacci sequences (see [4]). Indeed, denoting by p, q and \overline{p} , \overline{q} , respectively, the asymptotic proportions of 0's and 1's in C_k and B_k , and recalling Theorem 1 and its proof, one obtains

$$\overline{q} = 1 - \overline{p} = \lim_{k \to \infty} \frac{N_k^1}{\overline{N}_k} = \lim_{k \to \infty} \frac{N_k^1}{N_k + N_k^1 - F_{k-1}} = \frac{q}{1+q} = \frac{\Phi - 1}{2\Phi - 1} = \frac{5 - \sqrt{5}}{10}.$$

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to the anonymous referee whose suggestions led to a substantial improvement in the presentation of this note.

REFERENCES

- 1. V. E. Hoggatt, Jr., & M. Bicknell-Johnson. "Lexicographic Ordering and Fibonacci Representations." The Fibonacci Quarterly 20, no.3 (1982):193-218.
- 2. Y. Horibe. "An Entropy View of Fibonacci Trees." The Fibonacci Quarterly 20, no.2 (1982):168-178.
- 3. Y. Horibe. "Notes on Fibonacci Trees and Their Optimality." The Fibonacci Quarterly 21, no. 2 (1983):118-128.
- 4. P. H. St. John. "On the Asymptotic Proportions of Zeros and Ones in Fibonacci Sequences." The Fibonacci Quarterly 22, no.2 (1984):144-145.
- 5. D. E. Knuth. The Art of Computer Programming. Vol. 3: Sorting and Searching. Reading, Mass.: Addison-Wesley, 1973.
- 6. E. Zeckendorf. "Representation des Nombres Naturels par une Somme de Nombres de Fibonacci ou de Nombres de Lucas." Bulletin de la Société Royale des Sciences de Liége, Nos. 2-3 (1972):179-182. This paper contains Zeckendorf's original proof dated 1939.

[Nov.

324