PELL POLYNOMIALS AND A CONJECTURE OF MAHON AND HORADAM

PAUL DUVALL and THERESA VAUGHAN
University of North Carolina at Greensboro, NC 27412
(Submitted December 1986)

1. INTRODUCTION

In [1], Horadam and Mahon define a family of $n \times n$ matrices V_{n} in connection with the Pell polynomials $U_{n}(x)$. They conjecture that the characteristic polynomial of V_{n} is given by
where

$$
\begin{equation*}
C_{n}(\lambda)=\sum_{k=0}^{n}(-1)^{\left(k^{2}+k\right) / 2}\{n, k\} \lambda^{n-k}, \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\{n, k\}=\prod_{i=1}^{n} U_{i}(x) / \prod_{i=1}^{k} U_{i}(x) \prod_{i=1}^{n-k} U_{i}(x) \tag{1.2}
\end{equation*}
$$

In this paper we prove the conjecture of Horadam and Mahon and also derive various other results concerning the structure of V_{n} and $C_{n}(\lambda)$.

2. NOTATION

The Pell polynomials are defined recursively by

$$
\begin{aligned}
& U_{0}(x)=0, \quad U_{1}(x)=1, \\
& U_{n}(x)=2 x U_{n-1}(x)+U_{n-2}(x) \quad(n \geqslant 2)
\end{aligned}
$$

and the associated Pell-Lucas polynomials by

$$
\begin{aligned}
& W_{0}(x)=2, \quad W_{1}(x)=2 x, \\
& W_{n}(x)=2 x W_{n-1}(x)+W_{n-2}(x) \quad(n \geqslant 2) .
\end{aligned}
$$

In this paper, to keep the notation as simple as possible, we shall work with the following closely related polynomials in the indeterminate t :

$$
\begin{aligned}
& P_{0}(t)=0, \quad P_{1}(t)=1 \\
& P_{n}(t)=t P_{n-1}(t)+P_{n-2}(t) \quad(n \geqslant 2)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{0}(t)=2, \quad Q_{1}(t)=t \\
& Q_{n}(t)=t Q_{n-1}(t)+Q_{n-2}(t) \quad(n \geqslant 2) .
\end{aligned}
$$

Standard manipulations with difference equations give the Binet formulas:

$$
P_{n}(t)=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \text { and } Q_{n}(t)=\alpha^{n}+\beta^{n},
$$

where α, β are the roots of the polynomial $y^{2}-t y-1$;

$$
=\frac{1}{2}\left[t+\sqrt{t^{2}+4}\right] \text { and }=\frac{1}{2}\left[t-\sqrt{t^{2}+4}\right] .
$$

We shall require the easily proven identity

$$
\begin{equation*}
P_{n}(t)=\sum_{k=1}^{[n / 2]}(n-k-1) t_{k}^{n-1-2 k} . \tag{2.1}
\end{equation*}
$$

V_{n} is defined to be the $n \times n$ matrix whose (i, j) entry is

$$
\left(V_{n}\right)_{i j}=\binom{j-1}{j+i-n-1} t^{i+j-n-1}
$$

for example,

$$
V_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 t \\
0 & 1 & 2 t & 3 t^{2} \\
1 & t & t^{2} & t^{3}
\end{array}\right] .
$$

3. A SIMILARITY TRANSFORMATION ON V_{n}

The main result of this section (Theorem 3.2) shows that V_{n} is similar to a particularly nice matrix in block upper triangular form. This form will lead to a recursion for the characteristic polynomial of V_{n}.

Let T_{n} be the $n \times n$ matrix whose columns carry the recurrence satisfied by $P_{n}(-t)$, i.e.,

$$
\left(T_{n}\right)_{i j}=\left\{\begin{aligned}
1, & \text { if } i=j \\
t, & \text { if } i=j+1 \\
-1, & \text { if } i=j+2 \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

Then we have
Lemma 3.1: The inverse of T_{n} is given by

$$
\left(T_{n}^{-1}\right)_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i<j \\ P_{k+1}(-t), & \text { if } i=j+k .\end{cases}
$$

Proof: Let A denote the matrix defined in the statement of the Lemma, and let $B=T_{n} A$. Then B is lower triangular, with diagonal elements all equal to one. A typical element below the diagonal has the form

$$
P_{i}(-t)+t P_{i-1}(-t)-P_{i-2}(-t)=P_{i}(-t)-(-t) P_{i-1}(-t)-P_{i-2}(-t)=0,
$$

since this is the recursion defining $P_{i}(-t)$. Thus, $B=I$ and $A=T_{n}^{-1}$.
Theorem 3.2: The matrix $T_{n}^{-1} V_{n} T_{n}$ has the block form $\left[\begin{array}{cc}-V_{n-2} & X \\ 0 & Y\end{array}\right]$, where X is
$(n-2) \times 2, Y$ is 2×2, and

$$
Y=\left[\begin{array}{ll}
P_{n}(t) & P_{n-1}(t) \\
P_{n-1}(t) & P_{n-2}(t)
\end{array}\right] .
$$

Proof: First we show, by induction, that the first $n-2$ columns of the matrix

$$
A=\left(a_{i j}\right)=T_{n}^{-1} V_{n} T_{n}
$$

have the desired form.
The $i^{\text {th }}$ row of T_{n}^{-1} is

$$
R_{i}=\left[P_{i}(-t), P_{i-1}(-t), \ldots, P_{2}(-t), 1,0, \ldots, 0\right]
$$

and the $j^{\text {th }}$ column of $V_{n} T_{n}$ is $C_{j}=\operatorname{col}\left(x_{1}, \ldots, x_{n}\right)$, where

$$
\begin{aligned}
& x_{k}=0(k=1,2, \ldots, n-j-2) \\
& x_{n-j-1}=-1 \\
& x_{n-j}=-\binom{j+1}{1} t+t \\
& x_{n-j+k}=-\binom{j+1}{k+1} t^{k+1}+\binom{j}{k} t^{k+1}+\binom{j-1}{k-1} t^{k-1} .
\end{aligned}
$$

Then $\alpha_{i j}$ is the dot product $R_{i} \cdot C_{j}$, and to start the induction, we have:

$$
\begin{aligned}
& a_{i j}=0 \text { if } n-j-2 \geqslant i \\
& a_{i j}=-1 \text { if } n-j-2=i-1 \\
& a_{i j}=-\binom{j-1}{1} t \text { if } n-j-2=i-2 \\
& a_{i j}=-\binom{j-1}{2} t^{2} \text { if } n-j-2=i-3 .
\end{aligned}
$$

Now suppose that, if $0 \leqslant s<r$ and $n-j-2=i-s$, then

$$
a_{i j}=-\binom{j-1}{s-1} t^{s-1}
$$

Then, for $n-j-2=i-r$,

$$
\begin{aligned}
a_{i j}= & \sum_{k=1}^{i} P_{i+1-k}(-t) x_{k}=\sum_{k=r+1}^{i} P_{i+1-k}(-t) x_{k} \\
= & \sum_{k=1-r+1}^{i-1} P_{i+1-k}(-t) x_{k}+P_{1}(-t) x_{i} \\
= & \sum_{k=r+1}^{i-1}\left[(-t) P_{i-k}(-t)+P_{i-k-1}(-t)\right] x_{k}+P_{1}(-t) x_{i} \\
= & (-t)\left[-t^{r-2}\binom{j-1}{r-2}\right]+\left[-t^{r-3}\binom{j-1}{r-3}\right]-\binom{j+1}{r-1} t^{r-1} \\
& \quad+\binom{j}{r-2} t^{r-1}+\binom{j-1}{r-3} t^{r-3}
\end{aligned}
$$

$$
=-t^{r-1}\binom{j-1}{r-1} .
$$

This completes the induction.
From the definition of V_{n}, the j th column of V_{n-2} must be

$$
\operatorname{col}\left[0,0, \ldots, 0,1,\binom{j-1}{1} t,\binom{j-1}{2} t, \ldots,\binom{j-1}{j-2} t^{j-2}, t^{j-1}\right]
$$

therefore, the upper left diagonal $(n-2) \times(n-2)$ block of $T_{n}{ }^{1} V_{n} T_{n}$ is indeed $-V_{n-2}$.

The entries $a_{n-1, j}$ and $a_{n, j}$ for $1 \leqslant j \leqslant n-2$ are all zero because, if $i=$ $n-1$, then $n-j-2=i-r$ implies $r=j+1$. Then the term

$$
-t^{r-1}\binom{j-1}{r-1}=-t^{r-1}\binom{j-1}{j}=0
$$

If $i=n$ and $n-j-2=i-r$, then $r=j+2$ and we have

$$
-t^{r-1}\binom{j-1}{r-1}=-t^{r-1}\binom{j-1}{j+1}=0
$$

It remains to show that the lower right diagonal 2×2 block of $T_{n}^{-1} V_{n} T_{n}$ is given by

$$
\left[\begin{array}{ll}
P_{n}(t) & P_{n-1}(t) \\
P_{n-1}(t) & P_{n-2}(t)
\end{array}\right]
$$

We shall compute $a_{n, n}$ in detail. The other three cases are similar. Recalling that

$$
R_{n}=\left[P_{n}(-t), P_{n-1}(-t), \ldots, P_{2}(-t), 1\right]
$$

and

$$
C_{n}=\operatorname{co1}\left[1,\binom{n-1}{1} t,\binom{n-1}{2} t^{2}, \ldots, t^{n-1}\right]
$$

we have

$$
\begin{aligned}
a_{n, n} & =\sum_{k=0}^{n-1}\binom{n-1}{k} t^{k} P_{n-k}(-t) \\
& =\sum_{k=0}^{n-1}\binom{n-1}{k} t^{k} \sum_{j=0}^{[(n-k) / 2]}\binom{n-k-1-j}{j}(-t)^{n-k-1-2 j},
\end{aligned}
$$

by (2.1). Reversing the order of summation gives

$$
a_{n, n}=\sum_{j=0}^{[n / 2]} t^{n-1-2 j} \sum_{k=0}^{n-2 j}\binom{n-1}{k}\binom{n-j-k-1}{j}(-1)^{n-k-1-2 j}
$$

Consider the inner sum

$$
S=\sum_{k=0}^{n-2 j}\binom{n-1}{k}(n-j-k-1)(-1)^{n-k-1-2 j}
$$

When $k=n-2 j$, the binomial coefficient $\binom{n-j-k-1}{j}=\binom{j-1}{j}=0$, so we may take the upper limit to be $n-2 j-1$.

Now, make the substitution $p=n-2 j-1$ in S to get

$$
S=\sum_{k=0}^{p}\binom{p+2 j}{k}\binom{p+j-k}{j}(-1)^{p-k}=\sum_{k=0}^{p}\binom{p+2 j}{k}\binom{p+j-k}{p-k}(-1)^{p-k}
$$

Note that $\binom{p+2 j}{k}$ is the coefficient of x^{k} in the expansion of $(1+x)^{p+2 j}$ and that $\binom{p+j-k}{p-k}(-1)^{p-k}$ is the coefficient of x^{p-k} in the expansion of $(1+x)^{-j-1}$. Then S is the coefficient of x^{p} in the expansion of

$$
(1+x)^{p+2 j-j-1}=(1+x)^{n-j-2},
$$

that is,

$$
S=\binom{n-j-2}{n-2 j-1}=\binom{n-j-2}{j-1}
$$

Returning to the calculation of $a_{n, n}$, we have

$$
a_{n, n}=\sum_{j=0}^{[n / 2]} t^{n-1-2 j}\binom{n-j-2}{j-1}=\sum_{k=0}^{[(n-2) / 2]}\binom{n-3-k}{k} t^{n-3-2 k}
$$

(eliminating zero terms and replacing $j-1$ by k). Thus, $a_{n, n}=P_{n-2}(t)$, by (2.1). The sums for $a_{n, n-1}, a_{n-1, n}$, and $a_{n-1, n-1}$ can be evaluated by the same methods, but we omit the proofs here.
4. THE CHARACTERISTIC POLYNOMIAL OF $V_{n}(t)$

Let A_{n} denote the matrix $T_{n}^{-1} V_{n} T_{n}$ and let $C_{n}(\lambda)$ be the characteristic polynomial of V_{n}. As before, let $Y=Y_{n}$ be the matrix

$$
Y_{n}=\left[\begin{array}{ll}
P_{n}(t) & P_{n-1}(t) \\
P_{n-1}(t) & P_{n-2}(t)
\end{array}\right]
$$

In this section, we establish some basic properties of $C_{n}(\lambda)$ and prove the conjecture of Mahon and Horadam.

Lemma 4.1: The characteristic polynomial $C_{n}(\lambda)$ of V_{n} satisfies the recurrence:

$$
\begin{aligned}
& C_{2}(\lambda)=\lambda^{2}-t \lambda-1 \\
& C_{3}(\lambda)=(\lambda+1)\left(\lambda^{2}+Q_{2}(t) \lambda+1\right) \\
& C_{n}(\lambda)=(-1)^{n-2} C_{n-2}(-\lambda)\left(\lambda^{2}-Q_{n-1}(t) \lambda+(-1)^{n-1}\right) .
\end{aligned}
$$

Proof: Since A_{n} and V_{n} are similar, $C_{n}(\lambda)=\left|\lambda I-A_{n}\right|$. By the block form of A_{n},

$$
\left|\lambda I-A_{n}\right|=\left|\lambda I+V_{n-2}\right| \cdot\left|\lambda I-Y_{n}\right| .
$$

Since $P_{n}(t) P_{n-2}(t)-P_{n-1}(t)^{2}=(-1)^{n-1}$ and $P_{n}(t)+P_{n-2}(t)=Q_{n-1}(t)$,

$$
\left|\lambda I-Y_{n}\right|=\lambda^{2}-Q_{n-1}(t) \lambda+(-1)^{n-1}
$$

Since $\left|\lambda I+V_{n-2}\right|=(-1)^{n-2} C_{n-2}(-\lambda)$, Lemma 4.1 follows.

Corollary 4.2:

a) If n is even, say $n=2 k$, then

$$
C_{2 k}(\lambda)=\prod_{j=0}^{k-1}\left(\lambda^{2}-Q_{n-1-2 j}(t) \cdot(-1)^{j} \lambda-1\right),
$$

and the characteristic roots of $C_{2 k}(\lambda)$ are

$$
\left\{(-1)^{j} \alpha^{n-1-2 j},(-1)^{j} \beta^{n-1-2 j}: j=0,1, \ldots, k-1\right\}
$$

b) If n is odd, say $n=2 k+1$, then

$$
C_{2 k+1}(\lambda)=\left(\lambda-(-1)^{k}\right) \prod_{j=0}^{k-1}\left(\lambda^{2}-Q_{n-1-2 j}(t) \cdot(-1)^{j} \lambda+1\right),
$$

and the characteristic roots of $C_{2 k+1}(\lambda)$ are

$$
\left\{(-1)^{k},(-1)^{j} \alpha^{n-1-2 j},(-1)^{j} \beta^{n-1-2 j}: j=0,1, \ldots, k-1\right\}
$$

Proof: We prove b); the proof of a) is similar. From Lemma 4.1, we get

$$
C_{5}(\lambda)=\left(\lambda^{2}-Q_{4}(t) \lambda+1\right)\left(\lambda^{2}-Q_{2}(t)(-\lambda)+1\right)(\lambda-1)
$$

and from the recurrence, for $n \geqslant 5$, we derive

$$
C_{n}(\lambda)=\left(\lambda^{2}-Q_{n-1}(t) \lambda+1\right)\left(\lambda^{2}-Q_{n-3}(t)(-\lambda)+1\right) C_{n-4}(\lambda) .
$$

Since $C_{3}(\lambda)$ has the factor $(\lambda+1)$, if $n \equiv 3(\bmod 4), C_{n}(\lambda)$ will also have the the factor

$$
(\lambda+1)=\lambda+(-1)^{(n-1) / 2}
$$

Since $C_{5}(\lambda)$ has the factor $(\lambda-1)$, if $n \equiv 1(\bmod 4), C_{n}(\lambda)$ will also have the factor

$$
(\lambda-1)=\lambda+(-1)^{(n-1) / 2}
$$

The rest of b) is clear.
The characteristic roots of $C_{n}(\lambda)$ are the roots of its factors. We have

$$
\left(\lambda-\alpha^{j}\right)\left(\lambda-\beta^{j}\right)=\lambda^{2}-\left(\alpha^{j}+\beta^{j}\right) \lambda+(\alpha \beta)^{j}=\lambda^{2}-Q_{j}(t)+(-1)^{j}
$$

and

$$
\left(\lambda+\alpha^{j}\right)\left(\lambda+\beta^{j}\right)=\lambda^{2}-Q_{j}(t)(-\lambda)+(-1)^{j},
$$

and this completes the proof.
Define the coefficient $\{n, k\}$ by

$$
\{n, k\}=\prod_{i=1}^{n} P_{i}(t) / \prod_{i=1}^{k} P_{i}(t) \prod_{i=1}^{n-k} P_{i}(t)
$$

and define the polynomial $R_{n}(\lambda)$ by

$$
R_{n}(\lambda)=\sum_{k=0}^{n}(-1)^{\left(k^{2}+k\right) / 2}\{n, k\} \lambda^{n-k}
$$

The next theorem states that $R_{n}(\lambda)=C_{n}(\lambda)$. Then the conjecture of Mahon and Horadam follows by making the substitution $t=2 x$.

Theorem 4.3: For all $n \geqslant 2, R_{n}(\lambda)=C_{n}(\lambda)$.
Proof: It is easy to verify the cases $n=2$, 3 . Thus, we need only show that $R_{n}(\lambda)$ satisfies the recurrence of Lemma 4.1 ; that is, we must show that

$$
\begin{equation*}
R_{n}(\lambda)=(-1)^{n} R_{n-2}(-\lambda) \cdot\left(\lambda^{2}-Q_{n-1}(t) \lambda+(-1)^{n-1}\right) . \tag{*}
\end{equation*}
$$

Let $F(\lambda)$ denote the right-hand side of $(*)$, let α_{j} denote the coefficient of λ^{j} in $R_{n}(\lambda)$, and b_{j} the coefficient of λ^{j} in $F(\lambda)$. Then, from the definition of $R_{n}(\lambda), a_{n}=1, a_{n-1}=-P_{n}, a_{1}=(-1)^{\left(n^{2}-n\right) / 2} P_{n}$, and $a_{0}=(-1)^{\left(n^{2}+n\right) / 2}$.

The $n^{\text {th }}$ term in $F(\lambda)$ is

$$
(-1)^{n}(-\lambda)^{n-2} \lambda^{2}=\lambda^{n},
$$

so $b_{n}=1=a_{n}$.
The $(n-1)^{\text {th }}$ term in $F(\lambda)$ is

$$
\begin{aligned}
& (-1)^{n} \lambda^{2}(-\lambda)^{n-2}(-1)\{n-2,1\}+(-1)^{n}\left(-Q_{n-1}(t) \lambda\right)(-\lambda)^{n-2} \\
& =\lambda^{n-1}\left(P_{n-2}(t)-Q_{n-1}(t)\right)=\lambda^{n-1}\left(-P_{n-1}(t)\right),
\end{aligned}
$$

so $b_{n-1}=a_{n-1}$.
The constant term of $F(\lambda)$ is

$$
(-1)^{n}(-1)^{n-1}(-1)^{(n-1)(n-2) / 2}=(-1)^{(n+1) n / 2} \text {, }
$$

so $a_{0}=b_{0}$.
For b_{1}, we have

$$
\begin{aligned}
b_{1}= & (-1)^{n}\left(-Q_{n-1}(t)\right) \lambda(-1)^{(n-1)(n-2) / 2} \\
& +(-1)^{n}(-1)^{n-1}(-\lambda)(-1)^{(n-2)(n-3) / 2}\{n-2, n-3\} \\
= & (-1)^{n(n-1) / 2}\left(Q_{n-1}(t)-P_{n-2}(t)\right) \lambda \\
= & (-1)^{n(n-1) / 2} P_{n}(t),
\end{aligned}
$$

giving $a_{1}=b_{1}$.
For the remaining coefficients we need to show that, for $2 \leqslant k \leqslant n-2$, $a_{n-k}=b_{n-k}$; that is,

$$
\begin{aligned}
(-1)^{(k+1) k / 2}\{n, k\} & =(-1)^{n}(-1)^{n-k-2}(-1)^{(k+1) k / 2}\{n-2, k\} \\
& +(-1)^{n}(-1)^{n-k-1}(-1)^{k(k-1) / 2}\{n-2, k-1\}\left(-Q_{n-1}(t)\right) \\
& +(-1)^{n}(-1)^{n-k}(-1)^{(k-1)(k-2) / 2}\{n-2, k-2\}(-1)^{n-1} .
\end{aligned}
$$

Clearing signs, this reduces to

$$
\begin{align*}
\{n, k\}=(-1)^{k}\{n-2, k\} & +Q_{n-1}(t)\{n-2, k-1\} \\
& +(-1)^{n+k}\{n-2, k-2\} . \tag{**}
\end{align*}
$$

Factoring out $\{n-2, k-1\}$ reduces ($* *$) to

$$
\frac{P_{n}(t) P_{n-1}(t)}{P_{k}(t) P_{n-k}(t)}=(-1)^{k} \frac{P_{n-k-1}(t)}{P_{k}(t)}+Q_{n-1}(t)+(-1)^{n+k} \frac{P_{k-1}(t)}{P_{n-k}(t)}
$$

Thus, it suffices to show that for $2 \leqslant k \leqslant n-2$,

$$
\begin{aligned}
& P_{n}(t) P_{n-1}(t)-P_{k}(t) P_{n-k}(t) Q_{n-1}(t) \\
& =(-1)^{k} P_{n-k}(t) P_{n-k-1}(t)+(-1)^{n-k} P_{k}(t) P_{k-1}(t)
\end{aligned}
$$

This last identity is proven using the Binet formulas and the properties of α and β. For convenience, denote $P_{n}(t)$ by P_{n} and so on. First,
and

$$
\begin{aligned}
& P_{n} P_{n-1}=\left(\alpha^{n}-\beta^{n}\right)\left(\alpha^{n-1}-\beta^{n-1}\right) /(\alpha-\beta)^{2}=Q_{2 n-1}+(-1)^{n} Q_{1}, \\
& Q_{n-1} P_{k} P_{n-k}=\left(\alpha^{n-1}+\beta^{n-1}\right)\left(\alpha^{n}+\beta^{n}-\beta^{k} \alpha^{n-k}-\alpha^{k} \beta^{n-k}\right) /(\alpha-\beta)^{2} \\
&=\left(\alpha^{2 n-1}+\beta^{2 n-1}+(-1)^{n-1}(\beta+\alpha)-(-1)^{k}\left(\alpha^{2 n-2 k-1}\right.\right. \\
&\left.\left.+\beta^{2 n-2 k-1}\right)-(-1)^{n-k}\left(\alpha^{2 k-1}+\beta^{2 k-1}\right)\right) /(\alpha-\beta)^{2} \\
&=\left(Q_{2 n-1}+(-1)^{n-1} Q_{1}+(-1)^{k+1} Q_{2 n-2 k-1}\right. \\
&\left.+(-1)^{n-k-1} Q_{2 k-1}\right) /(\alpha-\beta)^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& P_{n} P_{n-1}-P_{k} P_{n-k} Q_{n-1} \\
& =\left((-1)^{k} Q_{2 n-2 k-1}+(-1)^{n-k} Q_{2 k-1}+2(-1)^{n} Q_{1}\right) /(\alpha-\beta)^{2}
\end{aligned}
$$

On the other side,

$$
\begin{aligned}
& (-1)^{k} P_{n-k} P_{n-k-1}+(-1)^{n-k} P_{k} P_{k-1} \\
& =(-1)^{k}\left(Q_{2 n-2 k-1}+(-1)^{n-k} Q_{1}\right) /(\alpha-\beta)^{2} \\
& \quad+(-1)^{n-k}\left(Q_{2 k-1}+(-1)^{k} Q_{1}\right) /(\alpha-\beta)^{2} \\
& =\left((-1)^{k} Q_{2 n-2 k-1}+(-1)^{n-k} Q_{2 k-1}+2(-1)^{n} Q_{1}\right) /(\alpha-\beta)^{2}
\end{aligned}
$$

Thus, the identity is true, and ($* *$) is true; that is, $a_{n-k}=b_{n-k}$ for all k, $2 \leqslant k \leqslant n-2$. Then $R_{n}(\lambda)$ satisfies the recurrence and initial conditions of Lemma 4.1, and it follows that $R_{n}(\lambda)=C_{n}(\lambda)$. 또․

5. THE EIGENVECTORS OF V_{n}

The eigenvectors of V_{n} can be computed in a recursive way. The initial cases are given below.

Lemma 5.1: V_{2} has eigenvalues α, β. Eigenvectors v_{I} and v_{2} corresponding to α and β are given by

$$
v_{1}=\left[\begin{array}{c}
1 \\
\alpha
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
\beta
\end{array}\right] .
$$

The matrix V_{3} has eigenvalues $-1, \alpha^{2}, \beta^{2}$ with corresponding eigenvectors v_{1}, v_{2}, v_{3} given by

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
t \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
2 \alpha \\
\alpha^{2}
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2 \beta \\
\beta^{2}
\end{array}\right] .
$$

Lemma 5.2: Let $u=\operatorname{col}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $w=\operatorname{col}\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be adjacent columns of V_{n}, with u to the left of w. Then

$$
\begin{aligned}
& t u_{n}=w_{n} \\
& t u_{i}+u_{i+1}=w_{i} \quad(i=1,2, \ldots, n-1) .
\end{aligned}
$$

Proof: If u is column j, then for $i=1,2, \ldots, n-j-1$ we have $u=0$ and $t u_{i}+u_{i+1}=w_{i}$. If $i=n-j+k$ for some $k, 0 \leqslant k<j$, then

$$
t u_{i}+u_{i+1}=t\left(\begin{array}{l}
j \\
i
\end{array}-1\right) t^{i-1}+\left(\begin{array}{cc}
j & -1 \\
i
\end{array}\right) t^{i}=\binom{j}{i} t^{i}=w_{i}
$$

Since $u_{n}=t^{j-1}$ and $w_{n}=t^{j}$, we have $t u_{n}=w_{n}$ 。
Corollary 5.3: Define vectors x and y by

$$
\begin{aligned}
& \mathbf{x}=\operatorname{col}(\underbrace{0, \ldots, 0}_{j}, x_{1}, \ldots, x_{t}, \underbrace{0, \ldots, 0}_{k}) \\
& \mathbf{y}=\operatorname{col}(\underbrace{0, \ldots, 0}_{j+1}, x_{1}, \ldots, x_{t}, \underbrace{0, \ldots, 0}_{k-1})
\end{aligned}
$$

where $j+t+k=n$ and $k>0$. Put

$$
\mathbf{u}=V_{n} \mathbf{x} \quad \text { and } \quad \mathbf{v}=V_{n} \mathbf{y}
$$

with $u=\operatorname{col}\left(u_{1}, \ldots, u_{n}\right)$ and $v=\operatorname{col}\left(v_{1}, \ldots, v_{n}\right)$. Then $t u_{i}+u_{i+1}=v_{i}$.
Proof: Let e_{k} denote the column vector with 1 in the $k^{\text {th }}$ place and 0 everywhere else. By Lemma 5.2, the result is true for

$$
x=e_{j+1} \quad \text { and } \quad y=e_{j+2} \quad(j+2 \leqslant n)
$$

and hence is true in general by linearity. .
Theorem 5.4: Let $n>1$ be odd, so that V_{n} has
$\varepsilon=(-1)^{(n-1) / 2}$
as an eigenvalue. Let

$$
\mathbf{v}=\operatorname{col}\left(v_{1}, \ldots, v_{n}\right)
$$

be an eigenvector corresponding to ε. Put

$$
\begin{aligned}
w & =\operatorname{col}\left(v_{1}, \ldots, v_{n}, 0,0\right) \\
& +\operatorname{col}\left(0, t v_{1}, \ldots, t v_{n}, 0\right) \\
& +\operatorname{col}\left(0,0,-v_{1}, \ldots,-v_{n}\right) .
\end{aligned}
$$

Then w is an eigenvector for V_{n+2}, corresponding to the eigenvalue

$$
-\varepsilon=(-1)^{(n+1) / 2}
$$

Proof: Put $w=w_{1}+w_{2}+w_{3}$, where the w_{i} are the summands in the statement of the Theorem. From the form of V_{n} (it has V_{n-2} in the lower left block, with zeros above it), it is clear that

$$
V_{n+2} \mathbf{w}_{1}=\varepsilon\left(0,0, v_{1}, \ldots, v_{n}\right)
$$

since v is an eigenvector for V_{n} corresponding to ε. Then by Corollary 5.3,

$$
V_{n+2} \mathbf{w}_{2}=\operatorname{t\varepsilon }\left[\left(0, v_{1}, \ldots, v_{n}, 0\right)+t\left(0,0, v_{1}, \ldots, v_{n}\right)\right]
$$

so

$$
V_{n+2} w_{3}=-\varepsilon\left[w_{1}+2 w_{2}-t^{2} w_{3}\right]
$$

$$
V_{n+2} w=\varepsilon\left(-w_{1}-w_{2}-w_{3}\right)=-\varepsilon w
$$

Theorem 5.5: Suppose that $v=\operatorname{col}\left(v_{1}, \ldots, v_{n-1}\right)$ is an eigenvector for V_{n-1} corresponding to the eigenvalue $\alpha^{i}(i \geqslant 0)$. Put

$$
\mathbf{w}=\operatorname{col}\left(v_{1}, \ldots, v_{n-1}, 0\right)+\alpha \operatorname{col}\left(0, v_{1}, \ldots, v_{n}\right)=x+\alpha y
$$

Then \mathbf{w} is an eigenvector for V_{n} corresponding to the eigenvalue α^{i+1}.
Proof: We have

$$
\begin{aligned}
& V_{n} \mathbf{x}=\alpha^{i} \mathbf{y} \\
& \text { so that } V_{n} \mathbf{y}=\alpha^{i} \mathbf{x}+\alpha^{i} t \mathbf{y} \\
& V_{n}(\mathbf{x}+\alpha \mathbf{y})=\alpha^{i}(\mathbf{y}+\alpha \mathbf{x}+\alpha t \mathbf{y}) \\
& \text { Since } \alpha^{2}=1+\alpha t, \\
& V_{n}(\mathbf{x}+\alpha \mathbf{y})=\alpha^{i}\left(\alpha \mathbf{x}+\alpha^{2} \mathbf{y}\right)=\alpha^{i+1}(\mathbf{x}+\alpha \mathbf{y})
\end{aligned}
$$

as required.
Remark: The analogous result also holds for the eigenvectors corresponding to the eigenvalues β^{i}.

Corollary 5.6: All of the eigenvectors of V_{n} can be computed in terms of the eigenvectors of V_{n-1} and V_{n-2}.

REFERENCE

1. J. M. Mahon \& A. F. Horadam. "Matrix and Other Summation Techniques for Pell Polynomials." The Fibonacei Quarterly 24, no. 4 (1986):290-308.
