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1. INTRODUCTION 

In [1], Horadam and Mahon define a family of n x n matrices Vn in connec-

tion with the Pell polynomials U(x). They conjecture that the characteristic 

polynomial of Vn is given by 

cnw = t (-DikZ + k)/2{n, mn-k, ( l .D 
k = 0 

where 

{n, k} = fl ̂ (x)/n Ui{x)nf\Ui{x). (1.2) 
£ = 1 / £ = 1 £ = 1 

In this paper we prove the conjecture of Horadam and Mahon and also derive 

various other results concerning the structure of Vn and Cn{\). 

2. NOTATION 

The Pell polynomials are defined recursively by 

UQ(x) = 0, U1(x) = 1, 

Un(x) = 2xUn_1(x) + Un.,2{x) (n > 2) 

and the associated Pell-Lucas polynomials by 

WQ(x) = 2, W±(x) = 2a?, 

tfn0c) = 2xWn_1(x) + tfn_2(a:) (n > 2). 

In this paper, to keep the notation as simple as possible, we shall work 

with the following closely related polynomials in the indeterminate t: 

P0(t) = 0, P^t) = 1, 

Pn(t) = tPn_1(t) + Pn_2(£) (n > 2) 
and 

Q0(t) = 2, ^(t) = *, 

Standard manipulations with difference equations give the Binet formulas: 

Pn(t) = (an - gn)/(a - 6) and Gn(*) = a" + Bn, 
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where a, (3 are the roots of the polynomial y2 - ty - 1; 

= j[t + Vt2 + 4] and = |[t - Vt2 + 4] . 

We shall require the easily proven identity 

p„(t) 
[n/2] "•I <- J / 

5( 
n - fe - 1 

k = l 
)tn~1-2k. 

Vn is defined to be the n x n matrix whose (i, j) entry is 

(F*^ = 0 + i J - 1 
i - n 

Li + j - n - l 

for example, 

0 0 0 1 
0 0 1 3t 
0 1 It 3t2 

(2.1) 

A SIMILARITY TRANSFORMATION ON V 

The main result of this section (Theorem 3.2) shows that Vn is similar to 

a particularly nice matrix in block upper triangular form. This form will lead 

to a recursion for the characteristic polynomial of Vn -

Let Tn be the n x n matrix whose columns carry the recurrence satisfied by 

Pn(-t)9 i.e., 

1, if i = j 
t, if t = j + 1 

|-1, if t = j + 2 
0, otherwise. 

Then we have 

(T ) .. 

Lemma 3*1: The inverse of Tn is given by 

tj 

if ^ = J 
if i < j 

v^ + i^)* i f l = 3 + k. 

Proof: Let A denote the matrix defined in the statement of the Lemma, and let 

B = T A. Then B is lower triangular, with diagonal elements all equal to one. 

A typical element below the diagonal has the form 

since this is the recursion defining P.(-£). Thus, B = I and A = T~ . • 

Theorem 3«2: The matrix Tn VnTn has the block form 

(n 2)x 2, J is 2 x 2, and 

-Vr, 
where X is 
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Pn(t) Pn.x(t) 

Proof: First we show, by induction, that the first n - 2 columns•of the matrix 

A = (a,p = T-n\Tn 

have the desired form. 
i -•, The ^cn row of T~n
x is 

Ri = [^("^)9 ^ _ i ( ~ t ) s •••» ?2(-t), 1.0, ..., 0] 

and the j t h column of K, JL\, i s C,- = col (x . . . . , x ) , where 

xk = 0 (k = I, 2, ..., n - j - 2) 
Xn-j-l = _ 1 

xn_3. = -(j \ l ) t + t 

= . « - m - - ( i : i ) * k + i + u > * + i + ( i : i ) * k - 1 - ' 
Then a-, is the dot product R^ • c77-9 and to start the induction, we have: -LJ 

a .. = 0 i f n - j - 2 > i 
<SfJ 

id 

"id 

a . • 

-1 i f n - j - 2 = i - 1 

-(J° ~ X ) t i f n - j - 2 = i - 2 

-(J' ^ X ) * 2 i f n - j - 2 = i - 3 . 

Now suppose t h a t , i f 0 ^ s < 20 and n - j ~ 2 = i - s , then 

^3 \s - 1 / 
Then, for n - j - 2 = i - r , 

•2-J = £ p i t l . t ( - t ) = 
fc = l 

i - 1 

Zc = £ - r + 1 

-£ - 1 

k=i-r+i 

= (-*) 
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This completes the induction. 

From the definition of Vn , the j t h column of Vn_2 must be 

coi[o, o,..... o, i, (j - l)t, p' - ̂  ,..., ( j : \ y - 2 , f'-1" 
therefore, the upper left diagonal (n - 2) x (n - 2) block of Tn

1VnTn is indeed 

-K-2-
The entries a n - 1, j and an • for 1 < j < n - 2 are all zero because, if t = 

n - l , then n - j - 2 = i ~ r implies v = J + 1. Then the term 

- * ~ ( j : ; ) - -t*-^ -l) - o. 
If i = n and n - j - 2 = z - r , then r3 = j + 2 and we have 

• ' ( * : ! ) - - ' • ' « ; ! ) 

0. 

I t remains to show tha t the lower r i g h t diagonal 2 x 2 block of Tn VnTn i s 

given by 

>„(*) ?„-!(*)" 

We s h a l l compute an?n in d e t a i l . The other th ree cases are s i m i l a r . Recalling 

t h a t 
Rn= lPn(-t), P n . , ( - * ) , •••> P2(-*)> 1] 

and 

C = c ol[l. (» " > , (» " V . 
we have 

n - l 

I(", K-.H) fc = 0 

n - l 

. = 0 \ K I A = o J k = 0 v J 

by ( 2 . 1 ) . Reversing the order of summation gives 

tl/2] „ , _• nzJJ in - l\(n - j - k - 1 
j = o fc = o 

[n/2] . n~ 2j" / r 7 _ i x / 

*„.« = Z *n'1-2j L ( k )( J 
^ - l ) " - . ^ 1 " ^ 

Consider the inner sum 

n-2J 

s - " i f ( n f c 1 ) ( " - ' / ^ - 1 ) ( - i > B " * " 1 " 2 J 

fe = 0 

( ? 2 — 7* — fc~~l\ / 7* "- 1 \ . j = ^ . j = 09 so 
we may take the upper limit to be n - 2j - 1. 
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N 

Now, make the substitution p = n - 2j - 1 in S to get 

a - if 12v+ j - *)<-»'-* - i f \ w ) ( p ; i i «)<-»*->• 
ote that [" - ) is the coefficient of xk in the expansion of (1 + x ) p + 2j* 

and that (-" ^ - )(-l)p~k is the coefficient of xp~ in the expansion of 

(1 + x)'3"1. Then S is the coefficient of xp in the expansion of 

(1 + xy + ^'-i-1 = (1 + ^ ) n " J " - 2 , 

that is, 

.*-(,":6"-2i)-(V-l2)-
Returning to the calculation of an n, we have 

[n/2] -, o - / r 7 - -7 - ? \ t ( w - 2 ) / 2 ] / „ o _ l , \ a o 7 

j-o \ j - i / fe = 0 A: / 

(eliminating zero terms and replacing j - 1 by k). Thus, an n = Pn_2(t), by 

(2.1). The sums for a . a , and a , , can be evaluated by the same 

methods, but we omit the proofs here, m 

k. THE CHARACTERISTIC POLYNOMIAL OF Vn(t) 

Let An denote the matrix T"n
lVnTn and let Cn(X) be the characteristic poly-

nomial of Vn. As before, let Y = Yn be the matrix 

^n = 

In this section, we establish some basic properties of Cn(X) and prove the 

conjecture of Mahon and Horadam. 

Lemma k.\: The characteristic polynomial Cn(X) of Vn satisfies the recurrence: 

CZ(X) = X2 - tX - I 

C3(A) = (X + 1)(X2 + Q2(t)X + 1) 

Cn{X) = (-l)"-2Cn.2(-A)(A2 - Qn_l(t)X+ (-I)""1). 

Proof: Since An and 7n are similar, C (X) - \Xl - An\ . By the block form of 

A 
\XI - An\ = \XI + 7„_2| • |XJ - Yn\. 

Since P„(t)Pn_2(*) - Pn.x{t)2 = (-1)""1 and P„ (*) + Pn.2(t) = Qn.^t) t 
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|AJ - Yn\ - X2 - Qn^(t)X + (-l)*"1. 

Since jXI + Fn„2| = (-1)"~2Cn^2(-X), Lemma 4.1 follows, • 

Corollary k.2: 

a) If n is even5 say n = 2/<9 then 

k-i 

j = o 

and the characteristic roots of C2k (X) are 

{(-lya*-1-2*, (-I^'B"-1"2^ : j = 0, 1, ..., fc - 1}. 

b) If n is odd, say n = 2k + 1, then 

C2k + 1(A) = (X - (-1)*) n (X2 - Qn_1_2At) • (-1)J'A + 1), 

and the characteristic roots of C.JL+.(A) are 

{(-l)fc, (-l^'a"-1-^', (-1)5 B"-1-2^ : j = 0, 1, ...,fe-l}. 

Proof: We prove b); the proof of a) is similar. From Lemma 4.1, we get 

C5(X) = (A2 - Qk(t)\ + 1)(A2 - «2(t)(-X) + 1)(A - 1), 

and from the recurrence, for n ^ 5, we derive 

Cn(X) = (X2 - Qn^(t)X + 1)(X2 - C„.3(t)(-X) + l)c7n_4(A)e 

Since C3(X) has the factor (X + 1), if n = 3 (mod 4), Cn(X) will also have the 

the factor 

a + i) = x + ( - i ) ( n - 1 ) / 2 . 
Since C5(X) has the factor (X - 1), if n E 1 (mod 4), Cn(\) will also have the 

factor 

(X - 1) = X + (-l)(n-1)/2. 

The rest of b) is clear. 

The characteristic roots of Cn(X) are the roots of its factors. We have 

(X - a«0(X - (5J") = X2 - (a«* + 3J')X + (a$)J' = X2 - ̂ (t) + (-l)J' 
and 

(X + ĉ ')(X + B^) = X2 - «7.(£)(-X) + (-DJS 

and this completes the proof, a 

Define the coefficient {n3 /c} by 

{n, /<} - n p7. ^ ) / ri ^ (t) "TIP,, (t) 
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and define the polynomial i?n(X) by 

*»tt> = t (-D(k2 + k)/2in, k}\n'k. 

k = 0 

The next theorem states that i?n(X) - Cn(X) . Then the conjecture of Mahon 

and Horadam follows by making the substitution t = 2x. 
Theorem 4.3: For all n > 2, Rn(X) = Cn(X). 

Proof: It is easy to verify the cases n = 2, 3. Thus, we need only show that 

i?n(X) satisfies the recurrence of Lemma 4.1; that is, we must show that 

Bn(X) = (.-DnRn_2i-\) • (A2 - Qn_1(t)X + (-1)""1). (*) 

Let F(X) denote the right-hand side of (*), let a^ denote the coefficient of XJ 

in Rn(X)9 and bj the coefficient of XJ in F(X) . Then, from the definition of 

i?n(X), an = 1, an_x = -Pn, a, = (-l)(n2"
 n)/% , and aQ = (-l)("2+*>/2. 

The nth term in F(X) is 

(-l)n(-X)n~2X2 = Xn, 

so bn = 1 = an. 

The (n - l) t h term in F(X) is 

(_l)n2(-X)n-2(-l){n - 2, 1} + (-l)n(-Sn_1(t)X)(-X)^2 

= xn~1(pn.2(t) - e n . ! ( t ) ) = : x n - 1 ( - p „ . 1 ( t ) ) , 
so i n - 1 = an_1. 

The constant term of F(X) is 
(_1)W(_1)"-1(_1)(«- 1)("- 2)/2 = (_!)(«+ l)rc/2 ̂  

so a0 = £0. 

For b19 we have 

2^ = (-D"(-«n.1(t))X(-l)("-1)("-2)/2 

+ (-l)"(-i)"-i(-x)(-l)("-2)("-3)/2 {„ _ 2 , n - 3} 

= (-l)n("-1)/2(«n.1(*) - Pn.z(t))\ 

= (-D"(n-1)/2Pn(t), 

giving a± = b1. 

For the remaining coefficients we need to show that, for 2 ^ k < n - 2, 

an.k = bn_k; that is, 

+ (-i)»(-i)»-k-i(-i)^-i)/2{„ - 2, k - 1}(-Q„.x(t)) 
+ (-l)B(-l)"-*(-l)(J:-1)«-2)/2{„ - 2, fe - 2}(-l)"-1. 

Clearing signs, this reduces to 
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{w, k] = (~l)k{n - 2, k} + Qn_1(t){n - 2, k ~ 1} 

+ (~l)n+k{n - 2, k - 2}B 

Factoring out {n - 2, k - 1} reduces (**) to 
(**) 

P (t)P n(£) 
Pk(t)P„.k(t) ^ " P,(t) 

Thus, it suffices to show that for 2 < k < n - 2, 

PnOOP^C*) -P.Ct)^,^*)^.^) 
= ( - D ^ - f c O ^ . f e - x C * ) + (- i )n- f cp f ca)pf c . 1 (*) . 

This last identity is proven using the Binet formulas and the properties of a 

and 3« For convenience, denote Pn(t) by Pn and so on. First, 

- e-Mc^-1 - e " - 1 ) / ^ - 3)2 = e2n_x + ( -D n e 1 5 

(an_1 + 3n_1)(an + 3n - &kan'k - afeB""fe)/(a - 3) 2 

^k^2n-2k -1 

j 2 f e - h \ / / n , ON 2 

and 
P P = ( a r 

^n-l^kPn-k 

= ( a 2 7 7 " 1 + 3 2 " " 1 + ( - l ) n _ 1 ( 3 + a ) - ( - l ) " ( a * 

+ g2"-2fc- i ) - ( - l ) * - * ^ 2 * - 1 + 3 " / < " 1 ) ) / ( a 

(C, ( - l ) " " 1 ^ ! + ( - D k + i , 
j2n ~ 2k - 1 

Then 
+ ( - D " " k " 1 e 2 k . 1 ) / ( a - 3)2< 

Priori-1 PkPn-k^n-l 

= «-l)kQ2n-2k-i + (~l)n~kQ2k-i + 2 ( - l ) n S 1 ) / ( a - 3)2> 

On t h e o t h e r s i d e , 

= (-Dk(e2 n_2^_1 + (-i)w"f cc1)/(a - e)2 

+ ( - i ) n " k ( e 2 f e - i + ( - i ) k « i ) / ( a - e ) 2 

= ( ( - i ) / c e 2 n-2^i + <-Dn~*e2fc-i + 2 ( - D n e 1 ) / ( a - 3)2» 
Thus, the identity is true, and (**) is true; that is, an_k = £>n„k for all k9 

2 < k < n - 2. Then Pn(A) satisfies the recurrence and initial conditions of 

Lemma 4.1, and it follows that Rn(\) = C„(X) . • 

5. THE EIGENVECTORS OF Vn 

The eigenvectors of Vn can be computed in a recursive way* The initial 

cases are given below. 

Lemma 5*1°  V2 has eigenvalues as 3* Eigenvectors v1 and v? corresponding to 

a and 3 are given by 

1 
a Vo = 3 
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The matrix V3 has eigenvalues -1, a2, 32 with corresponding eigenvectors 

v i s V 2 S v 3 g i v e n b Y 

1 
t 
1 

, v 2 = 
1 
2a 
a 2 

, v 3 = 
1 
2 

Lemma 5*2: Let u = col(u15 u2, B*»3 un) and w = col(w15 W2, . . . , Wn) be adja-
cent columns of Vn , with u to the left of w. Then 

tun = wn 

tui + ui+1 = wi (i = 1, 25 »»93 n - 1). 

Proof: If u is column j s then for i = 1, 23 ..., n - j - 1 we have w = 0 and 

tz^ + ui+1 = Wi» If i - n - j + k for some fc9 0 < k < J, then 

Since un - t° "1 and Wn = t°, we have tun = Un°  B 

Corollary 5®3: Define vectors x and y by 

x = col(09 ..., 03 x,, ...s x+9 05 . * * 3 0) 
.. L^ ̂  J- ^ v^~^-.m.mv.~~^._^ 

&?„• 

y = col(09 . . . , 03 x\ , 
%. J -1 

•5 # £ » 0 , . . .» 0 ) 

J + 1 7< ~ 1 

where j + t + k = n and A: > 0, Put . 

u - Vnx and v = Vny 
with u = colC^, . .., un) and v = col(y1, * » « 5 y n^ s Then tw^ + ui + 1 = ^ . 

Proof: Let e^ denote the column vector with 1 in the kth place and 0 every-

where else* By Lemma 5*2§ the result Is true for 

x - ej+1 and y = ej+2 (j + 2 < n), 
and hence is true in general by linearity. • 

Theorem S»h: Let n > 1 be odd$ so that Vn has 

e = (-i)<»-D/2 

as an eigenvalue. Let 

v = col(v19 . . . , i;„) 

be an eigenvector corresponding to e. Put 

w = col (v1$ . . . , z;n , 0 s 0) 

+ col(05 tv19 . .., ti?n, 0) 

+ col(09 0, -v19 . . - , -tf„) . 
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Then w is an eigenvector for Vn+2, corresponding to the eigenvalue 

-£ = (-l)(n+1>/2. 

Proof: Put w = w1 + w2 + w3, where the W { are the summands in the statement 

of the Theorem. From the form of Vn (it has Vn_2 in the lower left block, with 

zeros above it), it is clear that 

7n+2Wi = £(° ' °> y i ' • • • > Vn) 

since V is an eigenvector for Vn corresponding to e. Then by Corollary 5.3, 

Frz + 2 W2 = t £ [ ( ° ' * V * " 5 Vn> 0 ) + t ( 0 s ° ' Vl> '••> ^n)] 

V w = -e[w + 2w - £2w ] 
n+2 3 L 1 2 3 J 

so 
V w = e(-w1 - w2 - w ) = -ew. H 

Theorem 5-5: Suppose that v = col(i>19 . .., y _x) is an eigenvector for V ± 

corresponding to the eigenvalue a^ (i ̂  0) . Put 

w = col(y15 . . ., y„_15 0) + a col(0, v19 ..., i>„) = x + ay. 

Then w is an eigenvector for Vn corresponding to the eigenvalue a1 

Proof: We have 

Vnx = azy 

Vny = o^x + aHy 
so that 

Vn (x + ay) = ai(y + ax + aty). 

Since a2 = 1 + at, 

V (x + ay) = ai(ax + a2y) = aL+L(x + ay) 

as required. • 

Remark: The analogous result also holds for the eigenvectors corresponding to 

the eigenvalues $z -

Corollary 5.6: All of the eigenvectors of Vn can be computed in terms of the 

eigenvectors of Vn_1 and Vn_2. * 
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