A NOTE ON SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS

PENTTI HAUKKANEN
University of Tampere, SF-33101 Tampere, Finland
(Submitted December 1986)
An arithmetic function f is called multiplicative if

$$
\begin{equation*}
f(m n)=f(m) f(n), \tag{1}
\end{equation*}
$$

whenever $(m, n)=1$. A multiplicative function f is called completely multiplicative if (1) holds for all m, n. Further, a multiplicative function f is said to be a quadratic (see [1], [3], [8]) or a specially multiplicative function (see [2], [4], [6], [7]) if

$$
\begin{equation*}
f=a \circ b, \tag{2}
\end{equation*}
$$

where a, b are completely multiplicative functions and o denotes the Dirichlet product. It is known that (2) is equivalent to

$$
f(m n)=\sum_{d \mid\left(m, r_{i}\right)} f(m / d) f(n / d) g(d) \mu(d)
$$

where g is a completely multiplicative function and μ denotes the Möbius function. The completely multiplicative function g is defined for every prime by

$$
g(p)=(a b)(p) \text { or } g(p)=f(p)^{2}-f\left(p^{2}\right) \text { or } g(p)=f^{-1}\left(p^{2}\right)
$$

where f^{-1} denotes the Dirichlet inverse of f. Since a quadratic f is multiplicative, the values $f(n)$ are known if the values $f\left(p^{m}\right)$ are known for all primes p and all positive integers m. Furthermore, the values $f\left(p^{m}\right)$ are known if the values $f(p), f\left(p^{2}\right)$ [or the values $f(p), f^{-1}\left(p^{2}\right)$ or the values $a(p), b(p)$] are known. The values $f\left(p^{m}\right)$ are given recursively by

$$
\begin{align*}
& f(1)=1, \\
& f(p), f\left(p^{2}\right) \text { are arbitrary, } \\
& f\left(p^{m}\right)=f(p) f\left(p^{m-1}\right)-g(p) f\left(p^{m-2}\right), m=3,4, \ldots . \tag{3}
\end{align*}
$$

Consequently, if we put $f\left(p^{m}\right)=S_{m}$, we obtain a generalized Fibonacci sequence determined by
$S_{0}=1$,
S_{1}, S_{2} are arbitrary,
$S_{m+1}=S_{1} S_{m}-\left(\left(S_{1}\right)^{2}-S_{2}\right) S_{m-1}, m=2,3,4, \ldots$.
If we let $S_{1}=1, S_{2}=2$, we obtain the Fibonacci sequence.

A NOTE ON SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS

If f is specially multiplicative and $f=\alpha \circ b$, where a, b are completely multiplicative, then the generating series of f to the base p is given by

$$
f_{(p)}(x)=\frac{1}{(1-\alpha x)(1-\beta x)} \quad(p \text { a prime }),
$$

where $\alpha=\alpha(p), \beta=b(p)$. Then

$$
f_{(p)}(x)=\frac{1}{1-f(p) x+g(p) x^{2}}
$$

where $f(p)=\alpha+\beta$ and $g(p)=\alpha \beta$. Noting that the generating function of the Fibonacci sequence $\left\{F_{n}\right\}$ is

$$
\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{1}{1-x-x^{2}}
$$

$f_{(p)}(x)$ will generate $\left\{F_{n}\right\}$ if $f(p)=1$ and $g(p)=-1$.
If α is any nonzero complex number, one could consider f for which $f(p)=a$ and $g(p)=-\alpha^{2}$. It will follow that

$$
f_{(p)}(x)=\frac{1}{1-a x-a^{2} x^{2}}=\sum_{n=0}^{\infty} a^{n} F_{n} x^{n} .
$$

Hence, $f\left(p^{n}\right)=a^{n} F_{n}$. Write $f\left(p^{n}\right)=G_{n}$. Using known properties (see [5], [9]) of the Fibonacci sequence $\left\{F_{n}\right\}$, for example, the following properties of the sequence $\left\{G_{n}\right\}$ can be derived:

$$
\begin{aligned}
& \sum_{k=0}^{n} a^{n-k+2} G_{k}=G_{n+2}-a^{n+2}, \\
& \sum_{k=0}^{n}(-1)^{k} a^{n-k} G_{k}=(-1)^{n} a G_{n-1}+a^{n}, \\
& \sum_{k=0}^{n} a^{2(n-k)+1} G_{2 k}=G_{2 n+1}, \\
& \sum_{k=1}^{n} a^{2(n-k)+1} G_{2 k-1}=G_{2 n}-a^{2 n}, \\
& 2 \sum_{k=1}^{n} a^{3(n-k)+2} G_{3 k-1}=G_{3 n+1}-a^{3 n+1}, \\
& \sum_{k=0}^{n}(n-k) a^{n-k+3} G_{k}=G_{n+3}-(n+3) a^{n+3}, \\
& \sum_{k=0}^{2 n} a^{2(2 n-k)+1} G_{k} G_{k+1}=G_{2 n+1}^{2}, \\
& 2 n-1 \\
& \sum_{k=0}^{2(2 n-k)-1} a_{G_{k}} G_{k+1}=G_{2 n}^{2}-a^{4 n}, \\
& \sum_{k=0}^{n} a^{2(n-k)+1} G_{k}^{2}=G_{n} G_{n+1},
\end{aligned}
$$

$$
\begin{aligned}
& 10 \sum_{k=0}^{n} a^{3(n-k)+4} G_{k}^{3}=G_{3 n+4}+(-1)^{n} 6 a^{2 n+5} G_{n-1}+5 a^{3 n+4} \\
& G_{n+m}=G_{n} G_{m}+a^{2} G_{n-1} G_{m-1}, \\
& G_{n}^{2}-G_{n-k} G_{n+k}=(-1)^{n-k+1} G_{k-1}^{2} a^{2(n-k+1)}, \\
& \alpha G_{3 n+2}=G_{n+1}^{3}+a^{3} G_{n}^{3}-a^{6} G_{n-1}^{3}, \\
& \alpha G_{2 n+1}=G_{n+1}^{2}-a^{4} G_{n-1}^{2} .
\end{aligned}
$$

The proofs of the above relations are omitted.

ACKNOWLEDGMENT

The author wishes to thank the referee for his valuable comments.

REFERENCES

1. T. B. Carroll\&A. A. Gioia. "On a Subgroup of the Group of Multiplicative Arithmetic Functions." J. Austral. Math. Soc., Ser. A, 20, no. 3 (1975):348358.
2. D. H. Lehmer. "Some Functions of Ramanujan." Math. Student 27 (1959):105116.
3. P. J. McCarthy. "Busche-Ramanujan Identities." Amer. Math. Monthly 67 (1960):966-970.
4. A. Mercier. "Remarques sur les Fonctions Specialement Multiplicatives." Ann. Sc. Math. Quebec 6, no. 1 (1982):99-107.
5. K. Subba Rao. "Some Properties of Fibonacci Numbers." Amer. Math. Monthly 60 (1953):680-684.
6. D. Redmond \& R. Sivaramakrishnan. "Some Properties of Specially Multiplicative Functions." J. Number Theory 13, no. 2 (1981):210-227.
7. R. Sivaramakrishnan. "On a Class of Multiplicative Arithmetic Functions." J. Reine Angew. Math. 280 (1976):157-162.
8. R. Vaidyanathaswamy. "The Theory of Multiplicative Arithmetic Functions." Trans. Amer. Math. Soc. 33 (1931):579-662.
9. N. N. Vorob'ev. Fibonacci Numbers. New York: Pergamon Press, 1961.
