A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES

PAVEL HORAK

J. E. Purkynè University, Brno, Czechoslovakia (Submitted January 1987)

A k^{th} -order linear recurrent sequence $\mathbf{u} = \{u_n : n = 1, 2, ...\}$ of integers satisfying the following equation for greatest common divisors,

$$(u_i, u_j) = |u_{(i,j)}|$$
 for all $i, j \ge 1$, (1)

is called a k^{th} -order strong divisibility sequence. A complete characterization of all the second-order strong divisibility sequences was given in [1] for integers and then in [3] for an arbitrary algebraic number field. In this note we shall study the third-order strong divisibility sequences.

The system of all the sequences of integers $\mathbf{u} = \{u_n : n = 1, 2, ...\}$ defined by

$$u_1 = 1, \quad u_2 = v, \quad u_3 = \mu,$$
 (2)

$$u_{n+3} = a \cdot u_{n+2} + b \cdot u_{n+1} + c \cdot u_n \text{ for } n \ge 1$$
(3)

(where v, μ , a, b, c are integers) will be denoted by U. The system of all the strong divisibility sequences from U [i.e., sequences from U satisfying (1)] will be denoted by D.

The aim of this paper is to find all the strong divisibility sequences in certain subsystems of U and, further, to give some necessary conditions for a sequence from U to be a strong divisibility sequence. Notice that we may take $u_1 = 1$ without loss of generality because all the third-order strong divisibility sequences are obviously all the integral multiples of sequences from D.

1. THE CASES $u_2 = 0$ and $u_3 = 0$

Let U_1 denote the system of all the sequences from U satisfying $u_2 = 0$ and let U_2 denote all the sequences from U satisfying $u_3 = 0$. Further, let

 $A = \{a_1, a_2, a_3, a_4\}$ and $B = \{b_1, b_2, b_3, b_4, b_5, b_6\}$, where

 $a_1 = \{1, 0, 1, 0, 1, ...\}$ $a_2 = \{1, 0, 1, 0, -1, 0, 1, 0, -1, ...\}$ $a_3 = \{1, 0, -1, 0, -1, ...\}$ $a_4 = \{1, 0, -1, 0, 1, 0, -1, 0, 1, ...\}$

[Nov.

366

 $b_{1} = \{1, 1, 0, 1, 1, 0, \ldots\}$ $b_{2} = \{1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, \ldots\}$ $b_{3} = \{1, 1, 0, -1, 1, 0, -1, 1, 0, \ldots\}$ $b_{4} = \{1, -1, 0, -1, 1, 0, 1, -1, 0, \ldots\}$ $b_{5} = \{1, -1, 0, 1, -1, 0, \ldots\}$ $b_{6} = \{1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, \ldots\}$

Directly from the definitions, we get: $A \subseteq D \cap U_1$; $B \subseteq D \cap U_2$. The following propositions show that both the inclusions are, in fact, equalities, i.e., the sequences from A (from B) are precisely all the strong divisibility sequences from U_1 (from U_2).

Proposition 1.1: Let $\mathbf{u} = \{u_n\} \in U_1$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in A$.

Proof: Let $\mathbf{u} \in D$; then, from $(u_2, u_{2k}) = 0$ and $(u_2, u_{k+1}) = 1$, we get $u_{2k} = 0$ and $u_{2k+1} = \pm 1$ for every $k \ge 1$. Now, from $u_3 = \pm 1$, $u_4 = 0$, $u_5 = \pm 1$, we obtain four cases:

- (i) $u_3 = u_5 = 1 \Rightarrow u = a_1;$
- (ii) $u_3 = 1$, $u_5 = -1 \Rightarrow u = a_2$;
- (iii) $u_3 = -1, u_5 = 1 \Rightarrow u = a_4;$
- (iy) $u_3 = u_5 = -1 \Rightarrow u = a_3;$

hence, we get $\mathbf{u} \in A$. The converse is obvious.

Proposition 1.2: Let $\mathbf{u} = \{u_n\} \in U_2$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in B$.

Proof: Let $u \in D$; then, from

$$|u_n| = (u_3, u_n) = \begin{cases} |u_3| & \text{for } 3|n \\ & & \text{we get } u_n = \begin{cases} 0 & \text{for } 3|n \\ & & \text{the for } 3|n \end{cases}$$

Thus, $u_2 = \pm 1$, $u_4 = \pm 1$, $u_5 = \pm 1$, $u_6 = 0$, and we obtain eight cases:

(i) $u_2 = u_4 = u_5 = 1 \Rightarrow u = b_1;$ (ii) $u_2 = u_4 = 1, u_5 = -1 \Rightarrow u_6 = 2, \text{ a contradiction};$ (iii) $u_2 = 1, u_4 = -1, u_5 = 1 \Rightarrow u = b_3;$ (iv) $u_2 = 1, u_4 = u_5 = -1 \Rightarrow u = b_2;$ (v) $u_2 = -1, u_4 = u_5 = 1 \Rightarrow u = b_6;$ (vi) $u_2 = -1, u_4 = 1, u_5 = -1 \Rightarrow u = b_5;$ (vii) $u_2 = u_4 = -1, u_5 = 1 \Rightarrow u = b_4;$ (viii) $u_2 = u_4 = u_5 = -1 \Rightarrow u_6 = -2, \text{ a contradiction};$

hence, we get $u \in B$. Again, the converse is obvious.

1988]

367

2. THE CASE $u_2 \neq 0$, $u_3 \neq 0$

Let U_3 denote the system of all the sequences from U satisfying $u_2 \neq 0$ and $u_3 \neq 0$. Obviously: $U = U_1 \cup U_2 \cup U_3$ and $U_1 \cap U_3 = U_2 \cap U_3 = \emptyset$. Moreover, it is obvious that, for all the sequences from U, it holds that

$$(u_1, u_n) = |u_{(1,n)}|$$
 for all $n \ge 1$.

Proposition 2.1: Let $\mathbf{u} = \{u_n\} \in U_3$. Then $(u_i, u_j) = |u_{(i,j)}|$ for $1 \le i, j \le 4$ if and only if the following conditions hold:

 $(\nu, \mu) = 1;$ $c = f \cdot \nu - a \cdot \mu, \text{ where } f \text{ is a fixed integer};$ $(\mu, b + f) = 1.$ (6)

Proof: Obviously $(u_2, u_3) = |u_1| \Leftrightarrow (v, \mu) = 1$ and $(u_2, u_4) = |u_2| \Leftrightarrow$ there exists an integer f such that $fv = a\mu + c$. Finally, let (4) and (5) hold; then,

$$(u_3, u_4) = |u_1| \Leftrightarrow (\mu, b\nu + f\nu) = 1 \Leftrightarrow (\mu, b + f) = 1.$$

Proposition 2.2: Let $\mathbf{u} = \{u_n\} \in U_3$. Then $(u_i, u_j) = |u_{(i,j)}|$ for $1 \le i, j \le 5$ if and only if (4), (5), (6), and the following conditions hold:

$$(v, b) = 1;$$
 (7)

 $(\mu, \forall f + a \cdot (b + f)) = 1;$ (8)

$$(b + f, v \cdot (vf - \mu a) + \mu b) = 1.$$
 (9)

Proof: Let (4) and (5) hold; then,

$$u_{\mu} = v \cdot (b + f), u_{5} = av(b + f) + b\mu + (fv - a\mu)v.$$

Thus, $u_5 \equiv b\mu \pmod{|v|}$ and we get $(u_2, u_5) = |u_1| \Leftrightarrow (v, b) = 1$. Furthermore, $u_5 \equiv v \cdot (ab + af + fv) \pmod{|\mu|}$ and, therefore,

$$(u_3, u_5) = |u_1| \Leftrightarrow (\mu, ab + af + fv) = 1.$$

Finally, let (4), (5), and (7) hold; then,

$$(u_4, u_5) = |u_1| \Leftrightarrow (v(b+f), v(vf - a\mu) + \mu b) = 1 \Leftrightarrow (b+f, v(vf - a\mu) + \mu b) = 1,$$

which completes the proof.

Proposition 2.3: Let $\mathbf{u} = \{u_n\} \in U_3$. Then $(u_i, u_j) = |u_{(i,j)}|$ for $1 \le i, j \le 6$ if and only if (4)-(9) and the following conditions hold:

 $v | a(b - \mu); \tag{10}$

368

[Nov.

$$\mu | (vaf + (a^2 + b)(b + f)); \tag{11}$$

$$(b + f, vaf + \mu(f - a^2 + \frac{a(b - \mu)}{v})) = 1;$$
 (12)

$$(\nu(a(b + f - \mu) + f\nu) + \mu b, \nu((b + f)(a^{2} + b) + a(f\nu - a\mu) + f\mu) + \mu a(b - \mu)) = 1.$$
(13)

Proof: Let (5) hold, then $u_4 = v \cdot (b + f)$; $u_5 = v \cdot (a(b + f - \mu) + fv) + \mu b$; $u_6 = v((b + f)(a^2 + b) + a(fv - a\mu) + f\mu) + \mu a(b - \mu)$; and obviously $(u_5, u_6) = |u_1| \iff (13)$. Further, let (4) and (5) hold; then,

$$(u_2, u_6) = |u_2| \iff (10)$$
 and $(u_3, u_6) = |u_3| \iff (11)$.

Finally, let (5) and (10) hold; then

 $(u_4, u_6) = |u_2| \iff (12),$

which completes the proof.

Lemma 2.4: Let $\mathbf{u} = \{u_n\} \in U_3$, \mathbf{u} satisfying (5) and (10). Then

$$u_{2k} \equiv 0 \pmod{|\nu|}; \quad u_{2k+1} \equiv b^{k-1} \cdot \mu \pmod{|\nu|} \quad \text{for all } k \ge 1.$$
(14)

Proof: From (5) and (10), we get: $c \equiv -ab \pmod{|v|}$ and, hence,

 $u_{n+3} \equiv a \cdot u_{n+2} + b \cdot u_{n+1} - ab \cdot u_n \pmod{|v|}.$

Now, using mathematical induction with respect to k, we get (14).

Theorem 2.5: Let $u = \{u_n\} \in U_3$, u satisfying (4), (5), (7), and (10). Then

 $(u_2, u_j) = |u_{(2, j)}| \quad \text{for all } j \ge 1.$

Proof: Let $j \ge 1$ be even; then, from Lemma 2.4, we get

 $(u_2, u_j) = |v| = |u_{(2, j)}|.$

Now, let $j \ge 1$ be odd; then, from (4) and (7), it follows that $(v, b^{k-1} \cdot \mu) = 1$ for all $k \ge 1$ and, hence, from Lemma 2.4, we get

$$(u_2, u_j) = 1 = |u_{(2, j)}|.$$

3. A SPECIAL CASE OF
$$u_2 \neq 0$$
, $u_3 \neq 0$

Let $\overline{U}_{\rm 3}$ denote the system of all the sequence from $U_{\rm 3}$ satisfying the conditions,

$$(u_i, u_j) = |u_{(i,j)}| \text{ for } 1 \le i, j \le 6,$$
 (15)

$$b + f = 0, \tag{16}$$

where f is the integer from (5). Further, let

1988]

369

 $c = \{1, 2, 1, 0, 1, 2, 1, 0, ...\}, d = \{1, -2, 1, 0, 1, -2, 1, 0, ...\}.$

The following theorem will give a complete characterization of all the strong divisibility sequences in \overline{U}_3 , showing that **c** and **d** are the only strong divisibility sequences in \overline{U}_3 , i.e., $\overline{U}_3 \cap D = \{c, d\}$.

Theorem 3.1: Let $\mathbf{u} = \{u_n\} \in \overline{U}_3$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} = \mathbf{c}$ or $\mathbf{u} = \mathbf{d}$.

Proof: Obviously, **c**, **d** $\in \overline{U}_3 \cap D$. Conversely, let $\mathbf{u} \in \overline{U}_3$ be a strong divisibility sequence. Let us denote $x = v \cdot (vf - \mu a) + \mu b$, $y = v^2 a f + v \mu (f - a^2) + \mu a (b - \mu)$. Then, from (16), (6), (9), and (12), we get $\mu = \pm 1$, $x = \pm 1$, $y = \pm v$, so that we have eight possibilities:

(i) $\mu = 1, x = 1, y = v$

From $\mu = 1$ and x = 1, we get $b - 1 = va - v^2 f$. Then, from y = v, we get vf = vso that f = 1 and, consequently, b = -1, $av = v^2 - 2$, and c = v - a, using (5). Then $\mathbf{u} = \{1, v, 1, 0, 1, v, v^2 - 3, \ldots\}$. But from $(u_4, u_7) = |u_1|$, we get $v = \pm 2$ and, hence, $\mathbf{u} = \mathbf{c}$ or $\mathbf{u} = \mathbf{d}$.

(ii) $\mu = 1, x = 1, y = -v$ Similarly, as in (i), we get f = -1, b = 1, a = -v, and c = 0. Then we obtain $\mathbf{u} = \{1, v, 1, 0, 1, -v, v^2 + 1, ...\}$, a contradiction, since $(u_4, u_7) = v^2 + 1 \neq 1$

 $|u_1|$.

(iii) $\mu = 1, x = -1, y = v$

Using $\mu = 1$, f = -b in x = -1, we get $\forall a = -\sqrt{2}b + b + 1$ and then, from $yv = \sqrt{2}$, we get $b \cdot (\sqrt{2} - 2) = \sqrt{2} + 2$. Let $|v| \ge 2$, then $\sqrt{2} \equiv -2 \pmod{(\sqrt{2} - 2)}$. Trivially, $\sqrt{2} \equiv 2 \pmod{(\sqrt{2} - 2)}$, so that $(\sqrt{2} - 2)|4$ and, consequently, $v = \pm 2$. But $v = \pm 2$ implies b = 3, $a = \mp 4$, and $c = \mp 2$, a contradiction, since $(u_4, u_7) = 11 \neq |u_1|$. The remaining cases $v = \pm 1$ lead to b = -3, $a = \pm 1$, and $c = \pm 2$, a contradiction, since $(u_4, u_7) = 4 \neq |u_1|$.

(iv) $\mu = 1, x = -1, y = -v$

Similarly, as in (iii), we get $\forall a = -\nu^2 b + b + 1$ and $b \cdot (\nu^2 - 2) = -\nu^2 + 2$ so that b = -1, $a = \nu$, and c = 0. Then $\mathbf{u} = \{1, \nu, 1, 0, -1, -\nu, -\nu^2 + 1, ...\}$, a contradiction, since $(u_4, u_7) \neq |u_1|$.

(v) $\mu = -1, x = 1, y = v$

Similarly, as in (i), we get f = -1, b = 1, c = a - v, and $av = v^2 + 2$, which gives $u = \{1, v, -1, 0, 1, v, v^2 + 3, ...\}$, a contradiction, since $(u_4, u_7) = v^2 + 3 \neq |u_1|$.

(vi)
$$\mu = -1, x = 1, y = -v$$

[Nov.

In the same way as in (i), we get f = 1, b = -1, $\alpha = -v$, and c = 0 so that $\mathbf{u} = \{1, v, -1, 0, 1, -v, v^2 - 1, \ldots\}$, a contradiction, since $(u_4, u_7) = v^2 - 1 \neq |u_1|$.

(vii) $\mu = -1, x = -1, y = v$

Similarly, as in (iii), we get $b \cdot (v^2 + 2) = -v^2 + 2$ and, hence, $v^2 \equiv 2 \pmod{(v^2 + 2)}$. Trivially, $v^2 \equiv -2 \pmod{(v^2 + 2)}$, so that we get $(v^2 + 2) | 4$ and, consequently, $v^2 \equiv -1, 0, 2$, a contradiction.

(viii) $\mu = -1, x = -1, y = -v$

Similarly, as in (iii), we get $\forall a = \sqrt{2}b + b - 1$ and $b(\sqrt{2} + 2) = \sqrt{2} + 2$, so that $b = 1, a = \nu, c = 0$. Hence, $u = \{1, \nu, -1, 0, -1, -\nu, -\nu^2 - 1, ...\}$, a contradiction, since $(u_4, u_7) = \sqrt{2} + 1 \neq |u_1|$.

Remark: We did not use conditions (8), (11), and (13) in the proof of Theorem 3.1, so that we can, in fact, weaken the assumptions (15) by omitting

$$(u_3, u_5) = |u_1|, (u_3, u_6) = |u_3|, \text{ and } (u_5, u_6) = |u_1|.$$

REFERENCES

- 1. P. Horak & L. Skula. "A Characterization of the Second-Order Strong Divisibility Sequences." The Fibonacci Quarterly 23, no. 2 (1985):126-132.
- C. Kimberling. "Strong Divisibility Sequences and Some Conjectures." The Fibonacci Quarterly 17, no. 1 (1979):13-17.
- 3. A. Schinzel. "Second-Order Strong Divisibility Sequences in an Algebraic Number Field." Archivum Mathematicum (Brno) 23 (1987):181-186.

 $\diamond \diamond \diamond \diamond \diamond$