A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES

PAVEL HORAK
J. E. Purkynè University, Brno, Czechoslovakia

(Submitted January 1987)
A $k^{\text {th }}$-order 1 inear recurrent sequence $u=\left\{u_{n}: n=1,2, \ldots\right\}$ of integers satisfying the following equation for greatest common divisors,

$$
\begin{equation*}
\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right| \text { for all } i, j \geqslant 1, \tag{1}
\end{equation*}
$$

is called a $k^{\text {th }}$-order strong divisibility sequence. A complete characterization of all the second-order strong divisibility sequences was given in [1] for integers and then in [3] for an arbitrary algebraic number field. In this note we shall study the third-order strong divisibility sequences.

The system of all the sequences of integers $\mathbf{u}=\left\{u_{n}: n=1,2, \ldots\right\}$ defined by

$$
\begin{align*}
& u_{1}=1, \quad u_{2}=v, \quad u_{3}=\mu, \tag{2}\\
& u_{n+3}=a \cdot u_{n+2}+b \cdot u_{n+1}+c \cdot u_{n} \text { for } n \geqslant 1 \tag{3}
\end{align*}
$$

(where ν, μ, a, b, c are integers) will be denoted by U. The system of all the strong divisibility sequences from U [i.e., sequences from U satisfying (1)] will be denoted by D.

The aim of this paper is to find all the strong divisibility sequences in certain subsystems of U and, further, to give some necessary conditions for a sequence from U to be a strong divisibility sequence. Notice that we may take $u_{1}=1$ without loss of generality because all the third-order strong divisibility sequences are obviously all the integral multiples of sequences from D.

$$
\text { 1. THE CASES } u_{2}=0 \text { AND } u_{3}=0
$$

Let U_{1} denote the system of all the sequences from U satisfying $u_{2}=0$ and let U_{2} denote all the sequences from U satisfying $u_{3}=0$. Further, let

$$
A=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\} \text { and } B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}, \mathbf{b}_{5}, \mathbf{b}_{6}\right\}
$$

where

$$
\begin{array}{ll}
a_{1}=\{1,0,1,0,1, \ldots\} & a_{2}=\{1,0,1,0,-1,0,1,0,-1, \ldots\} \\
a_{3}=\{1,0,-1,0,-1, \ldots\} & a_{4}=\{1,0,-1,0,1,0,-1,0,1, \ldots\}
\end{array}
$$

A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES

$$
\begin{aligned}
& \mathbf{b}_{1}=\{1,1,0,1,1,0, \ldots\} \\
& b_{2}=\{1,1,0,-1,-1,0,1,1,0,-1,-1,0, \ldots\} \\
& b_{3}=\{1,1,0,-1,1,0,-1,1,0, \ldots\} \\
& b_{4}=\{1,-1,0,-1,1,0,1,-1,0, \ldots\} \\
& b_{5}=\{1,-1,0,1,-1,0, \ldots\} \\
& b_{6}=\{1,-1,0,1,1,0,-1,-1,0,1,1,0, \ldots\}
\end{aligned}
$$

Directly from the definitions, we get: $A \subseteq D \cap U_{1} ; B \subseteq D \cap U_{2}$. The following propositions show that both the inclusions are, in fact, equalities, i.e., the sequences from A (from B) are precisely all the strong divisibility sequences from $U_{1}\left(\right.$ from $\left.U_{2}\right)$.

Proposition 1.1: Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{1}$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in A$.
Proof: Let $u \in D$; then, from $\left(u_{2}, u_{2 k}\right)=0$ and $\left(u_{2}, u_{k+1}\right)=1$, we get $u_{2 k}=0$ and $u_{2 k+1}= \pm 1$ for every $k \geqslant 1$. Now, from $u_{3}= \pm 1, u_{4}=0, u_{5}= \pm 1$, we obtain four cases:
(i) $u_{3}=u_{5}=1 \Rightarrow u=a_{1}$;
(ii) $u_{3}=1, u_{5}=-1 \Rightarrow \mathbf{u}=a_{2}$;
(iii) $u_{3}=-1, u_{5}=1 \Rightarrow \mathbf{u}=a_{4}$;
(iv) $u_{3}=u_{5}=-1 \Rightarrow u=a_{3}$;
hence, we get $u \in A$. The converse is obvious.
Proposition 1.2: Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{2}$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in B$.
Proof: Let $\mathbf{u} \in D$; then, from

$$
\left|u_{n}\right|=\left(u_{3}, u_{n}\right)=\left\{\begin{array}{ll}
\left|u_{3}\right| & \text { for } 3 \mid n \\
\left|u_{1}\right| & \text { for } 3 \nmid_{n 2}
\end{array} \text {, we get } u_{n}=\left\{\begin{aligned}
0 & \text { for } 3 \mid n \\
\pm 1 & \text { for }\left.3\right|_{n}
\end{aligned}\right. \text {. }\right.
$$

Thus, $u_{2}= \pm 1, u_{4}= \pm 1, u_{5}= \pm 1, u_{6}=0$, and we obtain eight cases:
(i) $u_{2}=u_{4}=u_{5}=1 \Rightarrow u=b_{1}$;
(ii) $u_{2}=u_{4}=1, u_{5}=-1 \Rightarrow u_{6}=2$, a contradiction;
(iii) $u_{2}=1, u_{4}=-1, u_{5}=1 \Rightarrow u=b_{3}$;
(iv) $u_{2}=1, u_{4}=u_{5}=-1 \Rightarrow u=b_{2}$;
(v) $u_{2}=-1, u_{4}=u_{5}=1 \Rightarrow u=b_{6}$;
(vi) $u_{2}=-1, u_{4}=1, u_{5}=-1 \Rightarrow u=b_{5}$;
(vii) $u_{2}=u_{4}=-1, u_{5}=1 \Rightarrow u=b_{4}$;
(viii) $u_{2}=u_{4}=u_{5}=-1 \Rightarrow u_{6}=-2$, a contradiction;
hence, we get $\mathbf{u} \in B$. Again, the converse is obvious.

2. THE CASE $u_{2} \neq 0, u_{3} \neq 0$

Let U_{3} denote the system of all the sequences from U satisfying $u_{2} \neq 0$ and $u_{3} \neq 0$. Obvious1y: $U=U_{1} \cup U_{2} \cup U_{3}$ and $U_{1} \cap U_{3}=U_{2} \cap U_{3}=\emptyset$. Moreover, it is obvious that, for all the sequences from U, it holds that

$$
\left(u_{1}, u_{n}\right)=\left|u_{(1, n)}\right| \text { for al1 } n \geqslant 1
$$

Proposition 2.1: Let $u=\left\{u_{n}\right\} \in U_{3}$. Then $\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right|$ for $1 \leqslant i$, $j \leqslant 4$ if and only if the following conditions hold:

$$
\begin{align*}
& (\nu, \mu)=1 \tag{4}\\
& c=f \cdot \nu-a \cdot \mu, \text { where } f \text { is a fixed integer } \tag{5}\\
& (\mu, b+f)=1 \tag{6}
\end{align*}
$$

Proof: Obviously $\left(u_{2}, u_{3}\right)=\left|u_{1}\right| \Leftrightarrow(\nu, \mu)=1$ and $\left(u_{2}, u_{4}\right)=\left|u_{2}\right| \Leftrightarrow$ there exists an integer f such that $f v=\alpha \mu+c$. Finally, let (4) and (5) hold; then,

$$
\left(u_{3}, u_{4}\right)=\left|u_{1}\right| \Leftrightarrow(\mu, b \nu+f \nu)=1 \Leftrightarrow(\mu, b+f)=1
$$

Proposition 2.2: Let $u=\left\{u_{n}\right\} \in U_{3}$. Then $\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right|$ for $1 \leqslant i$, $j \leqslant 5$ if and only if (4), (5), (6), and the following conditions hold:

$$
\begin{align*}
& (\nu, b)=1 \tag{7}\\
& (\mu, \nu f+a \cdot(b+f))=1 \tag{8}\\
& (b+f, \nu \cdot(\nu f-\mu a)+\mu b)=1 \tag{9}
\end{align*}
$$

Proof: Let (4) and (5) hold; then,

$$
u_{4}=v \cdot(b+f), u_{5}=a v(b+f)+b \mu+(f v-a \mu) v .
$$

Thus, $u_{5} \equiv b \mu(\bmod |\nu|)$ and we get $\left(u_{2}, u_{5}\right)=\left|u_{1}\right| \Leftrightarrow(\nu, b)=1$. Furthermore, $u_{5} \equiv \nu \cdot(a b+a f+f v)(\bmod |\mu|)$ and, therefore,

$$
\left(u_{3}, u_{5}\right)=\left|u_{1}\right| \Leftrightarrow(\mu, a b+a f+f \nu)=1
$$

Finally, let (4), (5), and (7) hold; then,

$$
\begin{aligned}
\left(u_{4}, u_{5}\right)=\left|u_{1}\right| & \Leftrightarrow(\nu(b+f), \nu(\nu f-\alpha \mu)+\mu b)=1 \\
& \Leftrightarrow(b+f, \nu(\nu f-\alpha \mu)+\mu b)=1,
\end{aligned}
$$

which completes the proof.
Proposition 2.3: Let $u=\left\{u_{n}\right\} \in U_{3}$. Then $\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right|$ for $1 \leqslant i, j \leqslant 6$ if and only if (4)-(9) and the following conditions hold:

$$
\begin{equation*}
\nu \mid a(b-\mu) ; \tag{10}
\end{equation*}
$$

A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES

$$
\begin{align*}
& \mu \mid\left(v a f+\left(a^{2}+b\right)(b+f)\right) ; \tag{11}\\
& \left(b+f, v a f+\mu\left(f-a^{2}+\frac{a(b-\mu)}{\nu}\right)\right)=1 ; \tag{12}\\
& \left(\nu(a(b+f-\mu)+f \nu)+\mu b, v\left((b+f)\left(a^{2}+b\right)+\right.\right. \\
& \quad+a(f \nu-a \mu)+f \mu)+\mu a(b-\mu))=1 . \tag{13}
\end{align*}
$$

Proof: Let (5) hold, then $u_{4}=\nu \cdot(b+f) ; u_{5}=\nu \cdot(\alpha(b+f-\mu)+f \nu)+\mu b ;$ $u_{6}=\nu\left((b+f)\left(a^{2}+b\right)+a(f \nu-a \mu)+f \mu\right)+\mu a(b-\mu)$; and obviously $\left(u_{5}, u_{6}\right)=$ $\left|u_{1}\right| \Longleftrightarrow(13) . ~ F u r t h e r, ~ l e t ~(4) ~ a n d ~(5) ~ h o l d ; ~ t h e n, ~$

$$
\left(u_{2}, u_{6}\right)=\left|u_{2}\right| \Longleftrightarrow(10) \quad \text { and } \quad\left(u_{3}, u_{6}\right)=\left|u_{3}\right| \Longleftrightarrow(11)
$$

Finally, let (5) and (10) hold; then

$$
\left(u_{4}, u_{6}\right)=\left|u_{2}\right| \Longleftrightarrow(12),
$$

which completes the proof.
Lemma 2.4: Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{3}, \mathbf{u}$ satisfying (5) and (10). Then

$$
\begin{equation*}
u_{2 k} \equiv 0(\bmod |\nu|) ; u_{2 k+1} \equiv b^{k-1} \cdot \mu(\bmod |\nu|) \text { for all } k \geqslant 1 \tag{14}
\end{equation*}
$$

Proof: From (5) and (10), we get: $c \equiv-\alpha b(\bmod |\nu|)$ and, hence,

$$
u_{n+3} \equiv a \cdot u_{n+2}+b \cdot u_{n+1}-a b \cdot u_{n}(\bmod |\nu|) .
$$

Now, using mathematical induction with respect to k, we get (14).

Theorem 2.5: Let $u=\left\{u_{n}\right\} \in U_{3}, u$ satisfying (4), (5), (7), and (10). Then

$$
\left(u_{2}, u_{j}\right)=\left|u_{(2, j)}\right| \text { for all } j \geqslant 1
$$

Proof: Let $j \geqslant 1$ be even; then, from Lemma 2.4, we get

$$
\left(u_{2}, u_{j}\right)=|\nu|=\left|u_{(2, j)}\right| .
$$

Now, let $j \geqslant 1$ be odd; then, from (4) and (7), it follows that ($\nu, b^{k-1} \cdot \mu$) $=1$ for all $k \geqslant 1$ and, hence, from Lemma 2.4, we get

$$
\left(u_{2}, u_{j}\right)=1=\left|u_{(2, j)}\right|
$$

3. A SPECIAL CASE OF $u_{2} \neq 0, u_{3} \neq 0$

Let \bar{U}_{3} denote the system of all the sequence from U_{3} satisfying the conditions,

$$
\begin{align*}
& \left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right| \text { for } 1 \leqslant i, j \leqslant 6 \tag{15}\\
& b+f=0 \tag{16}
\end{align*}
$$

where f is the integer from (5). Further, let

$$
\mathbf{c}=\{1,2,1,0,1,2,1,0, \ldots\}, \quad d=\{1,-2,1,0,1,-2,1,0, \ldots\} .
$$

The following theorem will give a complete characterization of all the strong divisibility sequences in \bar{U}_{3}, showing that c and d are the only strong divisibility sequences in \bar{U}_{3}, i.e., $\bar{U}_{3} \cap D=\{c, d\}$.

Theorem 3.1: Let $\mathbf{u}=\left\{u_{n}\right\} \in \bar{U}_{3}$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u}=\mathbf{c}$ or $\mathbf{u}=\mathbf{d}$.
Proof: Obviously, c, $\mathbf{d} \in \bar{U}_{3} \cap D$. Conversely, let $\mathbf{u} \in \bar{U}_{3}$ be a strong divisibility sequence. Let us denote $x=\nu \cdot(\nu f-\mu a)+\mu b, y=\nu^{2} a f+\nu \mu\left(f-a^{2}\right)+$ $\mu a(b-\mu)$. Then, from (16), (6), (9), and (12), we get $\mu= \pm 1, x= \pm 1, y= \pm \nu$, so that we have eight possibilities:
(i) $\mu=1, x=1, y=v$

From $\mu=1$ and $x=1$, we get $b-1=v a-v^{2} f$. Then, from $y=\nu$, we get $\nu f=v$ so that $f=1$ and, consequently, $b=-1, a v=\nu^{2}-2$, and $c=\nu-a$, using (5). Then $u=\left\{1, v, 1,0,1, v, \nu^{2}-3, \ldots\right\}$. But from $\left(u_{4}, u_{7}\right)=\left|u_{1}\right|$, we get $\nu= \pm 2$ and, hence, $u=c$ or $u=d$.
(ii) $\mu=1, x=1, y=-v$

Similarly, as in (i), we get $f=-1, b=1, a=-v$, and $c=0$. Then we obtain $\mathbf{u}=\left\{1, \nu, 1,0,1,-\nu, \nu^{2}+1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=\nu^{2}+1 \neq$ $\left|u_{1}\right|$.
(iii) $\mu=1, x=-1, y=v$

Using $\mu=1, f=-b$ in $x=-1$, we get $v a=-\nu^{2} b+b+1$ and then, from $y v=v^{2}$, we get $b \cdot\left(\nu^{2}-2\right)=\nu^{2}+2$. Let $|\nu| \geqslant 2$, then $\nu^{2} \equiv-2\left(\bmod \left(\nu^{2}-2\right)\right)$. Trivially, $\nu^{2} \equiv 2\left(\bmod \left(\nu^{2}-2\right)\right)$, so that $\left(\nu^{2}-2\right) \mid 4$ and, consequently, $v= \pm 2$. But $\nu= \pm 2$ implies $b=3, a=\mp 4$, and $c=\mp 2$, a contradiction, since $\left(u_{4}, u_{7}\right)=11$ $\neq\left|u_{1}\right|$. The remaining cases $\nu= \pm 1$ lead to $b=-3, a= \pm 1$, and $c= \pm 2$, a contradiction, since $\left(u_{4}, u_{7}\right)=4 \neq\left|u_{1}\right|$.
(iv) $\mu=1, x=-1, y=-v$

Similarly, as in (iii), we get $v a=-\nu^{2} b+b+1$ and $b \cdot\left(\nu^{2}-2\right)=-\nu^{2}+2$ so that $b=-1, a=\nu$, and $c=0$. Then $\mathbf{u}=\left\{1, \nu, 1,0,-1,-\nu,-\nu^{2}+1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right) \neq\left|u_{1}\right|$.
(v) $\mu=-1, x=1, y=v$

Similarly, as in (i), we get $f=-1, b=1, c=a-\nu$, and $a v=\nu^{2}+2$, which gives $u=\left\{1, v,-1,0,1, v, v^{2}+3, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=v^{2}+$ $3 \neq\left|u_{1}\right|$.

$$
\text { (vi) } \mu=-1, x=1, y=-v
$$

```
A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES
```

In the same way as in (i), we get $f=1, \bar{b}=-1, a=-\nu$, and $c=0$ so that $u=$ $\left\{1, \nu,-1,0,1,-\nu, \nu^{2}-1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=\nu^{2}-1 \neq\left|u_{1}\right|$.
(vii) $\mu=-1, x=-1, y=v$

Similarly, as in (iii), we get $b \cdot\left(\nu^{2}+2\right)=-\nu^{2}+2$ and, hence, $\nu^{2} \equiv 2$ (mod $\left.\left(\nu^{2}+2\right)\right)$. Trivially, $\nu^{2} \equiv-2\left(\bmod \left(\nu^{2}+2\right)\right)$, so that we get $\left(\nu^{2}+2\right) \mid 4$ and, consequently, $\nu^{2}=-1,0,2$, a contradiction.
(viii) $\mu=-1, x=-1, y=-v$

Similarly, as in (iii), we get $v a=v^{2} b+b-1$ and $b\left(v^{2}+2\right)=v^{2}+2$, so that $b=1, a=\nu, c=0$. Hence, $u=\left\{1, \nu,-1,0,-1,-\nu,-\nu^{2}-1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=v^{2}+1 \neq\left|u_{1}\right|$.

Remark: We did not use conditions (8), (11), and (13) in the proof of Theorem 3.1, so that we can, in fact, weaken the assumptions (15) by omitting

$$
\left(u_{3}, u_{5}\right)=\left|u_{1}\right|, \quad\left(u_{3}, u_{6}\right)=\left|u_{3}\right|, \quad \text { and } \quad\left(u_{5}, u_{6}\right)=\left|u_{1}\right|
$$

REFERENCES

1. P. Horak \& L. Skula. "A Characterization of the Second-Order Strong Divisibility Sequences." The Fibonacci Quarterly 23, no. 2 (1985):126-132.
2. C. Kimberling. "Strong Divisibility Sequences and Some Conjectures." The Fibonacci Quarterly 17 , no. 1 (1979):13-17.
3. A. Schinzel. "Second-Order Strong Divisibility Sequences in an Algebraic Number Field." Archivum Mathematicum (Brno) 23 (1987):181-186.
