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A fcth-order linear recurrent sequence u = {un in = 1, 2, ...} of integers 

satisfying the following equation for greatest common divisors, 

(u,9 u.) = |w ( i f J - ) | f o r a H i9 j > 19 (1) 

is.called a kth-order strong divisibility sequence. A complete characteriza-

tion of all the second-order strong divisibility sequences was given in [1] for 

integers and then in [3] for an arbitrary algebraic number field. In this note 

we shall study the third-order strong divisibility sequences. 

The system of all the sequences of integers u = {un : n = 1, 2, . . .} defined 

by 

u1 = l9 u2 = v, u3 = y, (2) 

iin + 3 = a • un + 2 + b • un + 1 + c • un for n ^ 1 (3) 

(where V, y, a, Z?, c are integers) will be denoted by U. The system of all the 

strong divisibility sequences from U [i.e., sequences from U satisfying (1)] 

will be denoted by D. 

The aim of this paper is to find all the strong divisibility sequences in 

certain subsystems of U and, further, to give some necessary conditions for a 

sequence from U to be a strong divisibility sequence. Notice that we may take 

u1= I without loss of generality because all the third-order strong divisibil-

ity sequences are obviously all the integral multiples of sequences from D. 

1. THE CASES u2 = 0 AND u3 = 0 

Let U1 denote the system of all the sequences from U satisfying u2 - 0 and 

let U2 denote all the sequences from U satisfying u = 0. Further, let 

A = {al9 a2, a3, a j and B = {bx, fc»2, fc>3, b^, b5, b j , 

where 

ax = {1,0, 1,0, 1,...} a2 = {1,0, 1,0, -1,0, 1,0, -1,...} 

a 3 = {1, 0, -1, 0, -1, ...} a4 = {1, 0, -1, 0, 1, 0, -1, 0, 1, ...} 
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b± = {1, 1, 0, 1, 1, 0, ...} 

b2 = {1, 1, 0,-1, -1,0, 1, 1, 0,-1, -1,0, 

b3 = {1, 1, 0, -1, 1, 0, -1 

bk = {1, -1, 0,-1, 1, 0, 1 

b5 = {1, -1, 0, 1, -1, 0, . 

b6 = {1,-1, 0, 1, 1, 0, -1 

1, 0, ...} 

-1, 0, ...} 

.} 
-1, 0, 1, 1, 0, .} 

Directly from the definitions, we get: A C D fl^; B C D n U2. The following 

propositions show that both the inclusions are, in fact, equalities, i.e., the 

sequences from A (from B) are precisely all the strong divisibility sequences 

from U (from U ). 

Proposition 1.1: Let u = {un} e U1. Then u e D if and only if u e A. 

Proof: Let u G D; then, from (u9, u0j.) = 0 and (ur k+i ) = 1, we get u7]. = 0 

and u2k+1 = ±1 for every k ^ 1. Now, from u 3 = ±1, uh = 0, u5 

four cases: 

±1, we obtain 

( 

(i 

( 

1 => u = a x; 

) u3 = 1, u5 = -1 =̂  u 

) Uo = -1, u,- = 1 => u 

u3 = u5 = -1 => u = a 3; 
hence, we get u G A. The converse is obvious. 

Proposition 1.2: Let u = {un} e Uz. Then u G D if and only if u e B. 

Proof: Let u G D; then, from 

for 3\n 
(w3, w„) 

for 3JV 
, we get uu 

Thus, ur ±1, u = ±1, uq = ±1, u = 0, and we obtain eight cases: 

(i 

(vi 

(v i i 

u5 = 1 =̂  u 

u^ = 1, w5 -1 =̂  ̂ fi = 2, a contradiction; 

u2 = 1, w 4 

Ẑ  n = - 1 , W . 

64. o J- , L-i u 

-1, W 5 = 1 

U5 

= Ur 

u = b 3 ; 

1 =•> u = b 2; 

1 =5> u = b ; 

1, w c -1 u = b 5 ; 

uh = - 1 , ẑ 5 1 =*u = b^; 

-1 =» u = -2, a contradiction; 

hence, we get u G Again, the converse is obvious. 
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2. THE CASE u2 ± 0, U3 ± 0 

Let U3 denote the system of all the sequences from U satisfying u2 ^ 0 and 

u3 + 0. Obviously: U = U1 U U2 U £/3 and U1 n U3 = U2 n U3 =0. Moreover, it 

is obvious that, for all the sequences from U9 it holds that 

(ul5 wn) = |^(i,n)| for all n > 1. 

Proposition 2.1: Let u = {un} e U3. Then (w^, u^) = |̂ (i,j)| for 1 < i, j < 4 

if and only if the following conditions hold: 

(v, y) = 1; (4) 

c = f • v - a • y, where / is a fixed integer; (5) 

(y, £ + /) = 1. (6) 

Proof: Obviously (u2,.w )= |w1|«=^>(v, y) = 1 and (u2, u^) = |u|<^>there exists 

an integer / such that fv = a\i + c. Finally, let (4) and (5) hold; then, 

(w3, uh) = |Wl|^=#>(y, Z?v + /v) = l«=Ky, fc + f) = 1. 

Proposition 2.2: Let u = { M J G i73 . Then (w^, ẑ -) = |u(i .)| for 1 < i, j < 5 

if and only if (4), (5), (6), and the following conditions hold: 

(v, b) = 1; (7) 

(y, vf + a* (b + /)) = 1; (8) 

(b + f9 v (v/ - ya) + y£) = 1. (9) 

Proof: Let (4) and (5) hold; then , 

uk = v • (b + f) 9 u5 == av(£> + / ) + £>y + (fv - a\i)v. 

Thus, u5 = b\i (mod |v|) and we get (u2, u5) = |u1|«=»(v, b) = 1. Furthermore, 
u5 = V » (a£> + a/ + /v) (mod |y|) and, therefore, 

(u3, u5) = |ux | <̂ > (y, a& + a/* + /v) = 1. 

Finally, let (4), (5), and (7) hold; then, 

(u^9 u5) = \u1\<$=$> (v(£> + / ) , v(vf - ay) + \ib) = 1 
<^(6 + f, v(v/ - ay) + y2>) = 1, 

which completes the proof. 

Proposition 2.3: Let u = {un} e U3. Then (ui9 u-) = |w(i>J-)| for 1 < i, j < 6 

if and only if (4)-(9) and the following conditions hold: 

v\a(b - y); (10) 
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]i\(vaf + (a2 + b)(b + /)); (11) 

(b + f9 Vaf 4- y(/ - a2 + a ( \ " y ) ) ) = 1; (12) 

(v(a(fc + / - y) + fv) + y&, v((£ + f) (a2 + b) + 

+ a(/v - ay) + /y) + \ia(b - y)) = 1. (13) 

Proof: Let (5) hold, then uh = v • (2? + / ) ; u5 = v * (a(£ + / - y) + fv) + y£; 

w6 = v((fe + /)(a2 + fc) + a(/v - ay) + f\i) + \\a(b - y); and obviously (u5, uB) = 

>(13). Further, let (4) and (5) hold; then, 

(u2, u6) = |w2|^=^(10) and (z 3̂, uQ) = |U 3 | < = > (11). 

Finally, let (5) and (10) hold; then 

(u4, w6) = |w2|<=»(12) , 

which completes the proof. 

Lemma 2.4: Let u = {un} e £/3 , u satisfying (5) and (10). Then 

u2£ E 0 (mod |v|); ^2fe+i E ^k~1 9 "M (mod |v|) f o r a H fc > 1. (14) 

Proof: From (5) and (10), we get: c E -aZ? (mod |v|) and, hence, 

wn + 3 E a • un + 2 + Z? • un + 1 - ab * un (mod | v| ) . 

Now, using mathematical induction with respect to k, we get (14). 

Theorem 2.5: Let u = {un} e U33 u satisfying (4), (5), (7), and (10). Then 

(w2, u-) = | ^ ( 2 j J - ) | f o r a 1 1 J ̂  1-

Proof: Let j ̂  1 be even; then, from Lemma 2.4, we get 

(w2, Uj) = \v\ = |u(2j j)! . 

Now, let j > 1 be odd; then, from (4) and (7), it follows that (v, bk~1 • y) = 1 

for all k ^ 1 and, hence, from Lemma 2.4, we get 

(u2, Wj.) = 1 = |w(2f j)). 

3. A SPECIAL CASE OF u2 ^ 0, U3 ^ 0 

Let T73 denote the system of all the sequence from U3 satisfying the con-

ditions, 

(ui9 u-) = |^(isj)| for 1 < i, j < 6, (15) 

b + f = 0, (16) 

where f is the integer from (5). Further, let 
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c = {1,2, 1,0, 1,2, 1,0, . . . } , d = {1,-2, 1,0, 1,-2, 1,0, . . . } . 

The following theorem will give a complete characterization of all the strong 

divisibility sequences in U , showing that C and d are the only strong divisi-

bility sequences in U , i.e., U D D = {c, d}. 

Theorem 3-1: Let u = {un} £ U3. Then u e D if and only if u = c or u = d, 

Proof: Obviously, c, d e U3 n D. Conversely, let u e U3 be a strong divisi-

bility sequence. Let us denote x = v • (vf - \ia) + \ib 9 y = v2af + v\i(f - a2) + 

\ia(b - y) . Then, from (16), (6), (9), and (12), we get y = ±1, x = ±1, y = ±V, 

so that we have eight possibilities: 

(i) ]i = l 9 x = l 9 y = v 

From y = 1 and x = 1, we get b - 1 = Va - V2/\ Then, from z/. = V, we get vf = V 

so that f = 1 and, consequently, & = -1, aV = V2 - 2, and c = V - a, using (5). 

Then u = {1, V, 1,0, l,V,v2-3, . . .}. But from (u^, u?) = \u1\ 9 we get v = ±2 

and, hence, u = c or u = d. 

(ii) ] i = l s x = l s y = - v 

Similarly, as in (i) , we get / = -1, 2? = 1, a = -V, and c = 0. Then we obtain 

u = { l , v , 1,0, 1,-V, v 2 + l , . . .}, a contradiction, since (u4, uy) = V2 + 1 4 

(iii) y = l s x = -l,z/=v 

Using y = 1, f - -b in # = -1, we get va = -v22? + & + 1 and then, from yv = v2, 

we get b • (V2 - 2) = V2 + 2. Let |v| > 2, then V2 E -2 (mod (V2 - 2)). Trivi-

ally, V2 E 2 (mod (V2 - 2)), so that (v2 - 2)|4 and, consequently, V = ±2. But 

V = ±2 implies b = 3, a = +4, and c = +2, a contradiction, since (uh9 u7) = 11 

4 l^xl- The remaining cases V = ±1 lead to b = -3, a = ±1, and a = ±2, a con-

tradiction, since (w^, u?) = 4 ^ |ẑ 11 . 

(iv) y = l,ar = -l,z/=-v 

Similarly, as in (iii), we get va = -V2b + b + 1 and & • (v2 - 2) = -V2 + 2 so 

that 2? = -1, a = V, and c = 0. Then u = {1, V, 1,0, -1,-V, -V2 + 1, . . . }, a con-

tradiction, since (uh, uS) 4 \u
x\* 

(v.) y = -l,x = l,2/=v 

Similarly, as in (i), we get / = - l , 2? = 1, e = a - v , and av = v2 + 2, which 

gives u = { l , v , -1,0, 1, V, v 2 + 3 , . . . } , a contradiction, since (w4, u7) = V2 + 

3 + \u1\. 

(vi) y = -1, x = 1, y = -v 
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In the same way as in (i) , we get / = ] _ , & = -13 a = -V, and c = 0 so that u = 

{1, V, -1,03 1,-V, V 2- 13 . . . } , a contradiction, since (u4 , u ) = v2 - 1 ± \u1\ . 

• (vi i) y = -1, x = -1, z/ = v 

Similarly, as in (iii), we get & * (v2 + 2) = -V2 + 2 and, hence, v2 E 2 (mod 

(V2 + 2 ) ) . Trivially, V2 E -2 (mod (v2 + 2 ) ) , so that we get (v2 + 2)[4 and9 

consequently, V2 = -1,0, 2, a contradiction., 

(viii) y = -1, x = -1, y = -v 

Similarly, as in (iii), we get va = V2Z? + b - 1 and £>(v2 + 2) = V2 + 2, so that 

J = 1, a = V, e = 0. Hence, u = {l,V, -1,0, -1,-V, - v 2 - l , . . . } , a contradic-

tion, since (w^, u7) = V2 + 1 ^ |w | . 

Remark: We did not use conditions (8), (11), and (13) in the proof of Theorem 

3.1, so that we can, in fact, weaken the assumptions (15) by omitting 

(w3, u5) = \u1\, (u3, u6) = \u3\, and (u5, u6) = |u1|. 
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