STROEKER'S EQUATION AND FIBONACCI NUMBERS

ANDRZEJ MA̧KOWSKI
University of Warsaw, 00-901 Warsaw, Poland
(Submitted December 1986)
R. J. Stroeker [1] considered the Diophantine equation

$$
\begin{equation*}
\left(x^{2}+y\right)\left(x+y^{2}\right)=N(x-y)^{3}, \tag{1}
\end{equation*}
$$

where N is a positive integer. He found all solutions of (1) for $N \leqslant 51$ and proved that if x, y satisfy this equation with $N \neq 1,2,4$ then

$$
\max (|x|,|y|)<N^{3} \quad(\text { see Theorem } 1 \text { of [1]). }
$$

For every N equation, (1) has the trivial solution $x=y=-1$. Theorem 2 of [1] asserts that for odd $N>1$ there exists a nontrivial solution with $x y \neq 0$, and for infinitely many such values of N there are at least five such solutions. The table given at the end of [1] shows that for many even N there is only the trivial solution.

Below, we exhibit a connection between (1) and Fibonacci numbers defined by $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$. The following identities are well known:

$$
\begin{align*}
& F_{k} F_{k+1}+(-1)^{k}=F_{k-1} F_{k+2} ; \tag{2}\\
& F_{k-n} F_{k+n}-F_{k}^{2}=(-1)^{k+n+1} F_{n}^{2} \tag{3}
\end{align*}
$$

When we put $n=1$ or 2 in identity (3), it becomes, respectively,

$$
\begin{align*}
& F_{k-1} F_{k+1}-F_{k}^{2}=(-1)^{k} \tag{4}\\
& F_{k}^{2}-(-1)^{k}=F_{k-2} F_{k+2} \tag{5}
\end{align*}
$$

Taking (4) with k replaced by $k+1$ and multiplying it by F_{k+1}, we get

$$
\begin{aligned}
& F_{k} F_{k+1} F_{k+2}-F_{k+1}^{3}=(-1)^{k+1} F_{k+1}, \\
& F_{k+1}^{3}-(-1)^{k}\left(F_{k+2}-F_{k}\right)=F_{k} F_{k+1} F_{k+2}, \\
& F_{k+1}^{3}+(-1)^{k} F_{k}=\left[F_{k} F_{k+1}+(-1)^{k}\right] F_{k+2}
\end{aligned}
$$

which, in view of (2), may be written in the form

$$
\begin{equation*}
F_{k+1}^{3}+(-1)^{k} F_{k}=F_{k-1} F_{k+2}^{2} . \tag{6}
\end{equation*}
$$

Multiplying (5) and (6), we get

$$
\left[F_{k}^{2}-(-1)^{k}\right]\left[F_{k+1}^{3}+(-1)^{k} F_{k}\right]=F_{k-2} F_{k-1}\left(F_{k}+F_{k+1}\right)^{3}
$$

and

$$
\left[F_{k}^{2} F_{k+1}^{2}-(-1)^{k} F_{k+1}^{2}\right]\left[F_{k+1}^{4}+(-1)^{k} F_{k} F_{k+1}\right]=F_{k-2} F_{k-1}\left(F_{k} F_{k+1}+F_{k+1}^{2}\right)^{3}
$$

This shows that, for $N=F_{k-2} F_{k-1}$, equation (1) is satisfied by

$$
x=F_{k} F_{k+1}, y=-F_{k+1}^{2} \quad(k \text { even })
$$

and by

$$
x=F_{k+1}^{2}, y=-F_{k} F_{k+1} \quad(k \text { odd }) .
$$

Therefore, for infinitely many values of N, the number max $(|x|,|y|)$ is larger than 11 N because

$$
\lim _{k \rightarrow \infty} \frac{F_{k+1}^{2}}{F_{k-2} F_{k-1}}=\left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)^{5}>11
$$

Furthermore, since there are infinitely many even Fibonacci numbers, there are infinitely many positive even integers N such that (1) has a nontrivial solution. The last result, however, can be proved in a simpler way:

For $N=\left[(\alpha+1)^{3}+1\right]\left(\alpha^{3}+1\right)$, the numbers $x=\alpha(\alpha+1)^{2}$, $y=a^{2}(a+1)$ satisfy (1).

The following question remains open: Do there exist infinitely many positive (even) integers N such that equation (l) has only the trivial solution?

REFERENCE

1. R. J. Stroeker. "The Diophantine Equation $\left(x^{2}+y\right)\left(x+y^{2}\right)=N(x-y)^{3}$." Simon Stevin 54 (1980):151-163.

$\diamond \diamond \diamond$

