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1. INTRODUCTION 

Pascal (1623-1662) made extensive use of the famous arithmetical triangle 

which now bears his name. He wrote upon its properties in 1653, but the paper 

was not printed until 1665 ([1], "Traite du triangle arithmetique"). The tri-

angle now appears in virtually every text on elementary combinatorics. All 

textbook authors note the recurrence relation satisfied by binomial coeffi-

cients in adjacent rows of the triangles and a few point out the "curious" fact 

that certain diagonals of the triangle have Fibonacci numbers as their sums 

(apparently first noted by E. Lucas in 1876). 

In this paper we give a graph theory approach that provides an easy access 

to associations between Pascal-T triangles and generalized Fibonacci sequences. 

The approach is to use certain sequences of tree graphs9 which are called con-

volution trees for a reason which is explained in Section 3. These trees con-

sist of nodes and branches that are introduced and "grown" according to a given 

construction rule; integer weights are assigned to the nodes as the construc-

tion proceeds, 

The weights are obtained from a color sequence {cn}, and they are assigned 

to the nodes in a well-defined manner. The choice of generalized Fibonacci 

sequences of use for {cn} enables many attractive identities to be discovered9 

almost by inspection. 

In Section 6 we define a level counting function for the trees that counts 

certain of the colored nodes in the trees and also provides generalizations of 

Pascal's triangle. The arithmetic triangles which arise are known as Pascal-^7 

triangles [2]. 

The main results of the paper are collected together as Theorem 5 in Sec-

tion 6. This demonstrates the links between various properties of the Pascal-

T triangles and the generalized Fibonacci sequences which the study of colored 

convolution trees reveals. 
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A graph is a set of nodes (or -points') together with a set of edges (in tree 

graphs they are often called branches). An edge is, informally, a line joining 

two of the nodes. The total number of edges which attach to a given node is 

the valency (or degree) of that node. A circuit is a path in a graph which 

proceeds from node-edge-node-edge-node- • •»-node and is such that the first node 

and the last node are the same node. 

A tree is a graph that has no circuits. 

In a tree we may distinguish any one node and call it the root of the tree. 

Then we may distinguish all nodes in the tree (other than the root) whose val-

encies are one (unity) and call them leaf nodes. 

We are now in a position to present the rules by which colored convolution 

trees are constructed. 

2. FIBONACCI CONVOLUTION TREES 

The Fibonacci convolution trees are defined by a recurrence construction 

which builds the trees {Fn} sequentially, assigning the integer weights or 

colors {en} as they are built. A similar construction (but not the coloring) 

was given in [3] . The method parallels the definition of Fibonacci numbers 

(namely fn = fn_2 + fn_±9 with f1 = 1, f2 = 1), with a binary operation 0 that 

works as follows. We define the initial colored rooted trees in the sequence 

to be 
c2 ® 

F1 = o1 © and F2 = 

c1 i 
Then, given any two consecutive trees Fn_2* ^ . ^ we obtain the next tree 

by Fn = Fn_ © Fn-i> ttie J° ining operation © being indicated by the diagram: 

F o F -, 
n-2 n-1 

Gn 

Note that one new root node, labelled cn , is introduced during this operation. 

Figure 1 shows the first four trees in the sequence. In Figure 1 and in subse-

quent tree diagrams, the color alone is used to depict the colored node, for 

convenience. 
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Figure 1. Fibonacci Convolution Tree Sequence 

3. PROPERTIES OF A CONVOLUTION TREE 

We next tabulate basic graph properties of the convolution trees. It will 

be seen that the parameters listed have an attractive set of formulas in terms 

of the Fibonacci numbers {fn} = {l, 1, 29 3, 5, . . .}. Some graph terms used in 

the table may require definition for the reader, thus: 

In any rooted tree a unique path may be traced from the root to any 
other given node in the tree. The number of edges (branches) in that 
path is called the level of the given node. The height of a convolution 
tree is the maximum level occurring. 

The symbols (c * f) refer to the nth term of the convolution of sequences 

c and f; this term is defined to be c.f + c0f , + • * • + c f\ . 
' 1J n 2J n -1 nJ 1 

Table 1. Properties of Fibonacci Convolution Trees 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

Parameter 

Number of nodes 

Number of edges 

Number of nodes ( v = 1 

of valency v: < V = 2 

(n > 2) (v = 3 

Number of leaf nodes 

Height 

Weight (sum of node cole 

Lowest leaf-node level 

Number of leaf nodes at 

rs) 

level m 

Formula 

Fn E 

Fn -

fn 
Jn-l 

fn ~ 

f 
J n 
n -

(c * 

[t] 
\ n -

(for Fn) 

n 

1 

1 

~ 

+ 1 

2 

1 

f>„ 

m \ 
m - l) 
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Proofs: All of the formulas given in the table can be proved using a combina-

tion of graph definitions, the tree construction rule, simple algebra, and 

mathematical induction,. 

The convolution result (vi) is the reason for the name we gave to the tree 

graphs. To demonstrate a proof method, we shall give the proof for (vi) only* 

It is proved as follows: using Q(F) to mean "weight of Fu (i.e., the sum of the 

node colors in F), we have, from the construction rule, 

tt(Fn) = Sl(Fn_2) + n(Fn_x) + cn, for n > 2. (1) 

Noting that Q(FX) = o1f1 = (c * f) ±, and Q(F2) = cj2 + c2f1 = (c * f ) 2 , it is 

easy to proceed by induction. That is, we may show that, if 

n(*i> = cifi + Gzfi-i + ••• + cifx = (c * f). 
for i = 1, 2, . .., n, then 

n(^„+1) = (c * f ) „ + 1 . 

We leave the details to the reader. 

k. SOME THEOREMS DERIVED FROM THE TREES 

Weighted convolution trees are structured configurations of integers, and 

in the long tradition of such structures (c.f. figurate numbers, Ferrer's dia-

grams and the like) they can be used to reveal identities and relations between 

given sequence elements. The next four theorems illustrate many interesting 

relations between Fibonacci numbers, Fibonacci convolutions, and binomial coef-

ficients. 

Theorem 1 (Lucas, 1876): fn = Yl ( _ - 1/ w i t h m v a rY i ng from \— to n - 1, 

where [x] is the greatest integer function. 

This follows from formulas (iv) and (viii) of Table 1. 

Theorem 2: Let v = 
1 with n ^ 3. Then 

tf„ = (f * f)n - t (i) ( f * f)i + l' 
i = 0 

Proof strategy: This theorem gives a relationship between Fibonacci integers, 

terms of the convolution sequence f * f , and binomial coefficients. It is an 

example of how interesting identities may be discovered virtually by inspection 

of the colored convolution trees. We shall describe the proof strategy with 
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reference to tree F5. The reader may care to fill in the details of the proof, 

and then to look for other identities of a similar nature. 

First we note that a cut along a dotted line 
drawn immediately below the lowest leaf-node 
(which is [n/2]; see Table l(vii)) would, in 
effect, split the tree into a lower portion 
that is a full binary-tree and an upper col-
lection of separated smaller convolution 
trees. 

By full binary tree we mean a rooted tree of 
which the root node has valency two, and all 
other non-leaf nodes have valency three. 

Next we observe that the smaller convolution 
trees are F19 F2> and F3 and that they occur 
with frequencies given by the binomial coef-
ficients 

(S). Q. - (j). i t * , - [ f ] - 1 . 

Collecting this information together, and equating the weight of F to the 

sum of the weights of all the subtrees we have described, we get 

2 

n(F5) = (f * f ) 5 = Q(full binary tree) + £ (?)(f * f ) f + 1 -
i = 0 

Finally, inspection of the full binary tree reveals that the sum of the 

colors on the nodes at each level is f5; and there are r = 2 levels, so 

Q(full binary tree) = 2f5. 

Inserting this in the above equation and rearranging to place 2f5 alone on the 

left-hand side, we obtain a demonstration of the formula for the tree F5. 

Each one of the observations made with regard to the properties of the sub-

trees of F5 can be shown by induction to hold, generally, for subtrees obtained 

similarly from tree Fn. Then the proof strategy carries through for Fn, for 

n > 3. 
Note that the Lucas sum for fn from Theorem 1 can be exchanged for f in 

Theorem 2 and another identity obtained immediately. 

Theorem 3 (general c ) : We have already noted in Section 3 the fundamental con-

volution property, namely, 

(c * f ) n = (c * f)n_2 + (c * f ) n _ x + an, 

where f is the Fibonacci sequence and c = {a , c , . . . } . 
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We now examine the effect on the total weight, say fin(c), of the nth con-

volution tree when c is changed to c(p) = {cr+1, ^r + 2, . - . } . In terms of the 

shift operator E, operating on the subscripts of the sequence terms c •, we can 

write C ^ = Ec; and, in general, c(r) = Erc = {cr + 1> . .. } . Let us also intro-

duce the difference operator A, now operating on subscripted terms, so that 

Ac = {c2-c19 o3-c2, . . . } ; and then A2C = A(Ac), and so on to A^C in general. 

Then the following results hold, pertaining to the total weight of the convo-

lution trees. We now give Theorem 4 as further illustration of how attractive 

identities and formulas (this time involving E and A) can be derived with lit-

tle effort from the colored tree sequence. 

Theorem k: 

(i) 5 ^ = Qn(Ec) - Qn(c) = (f * Ac)„; 

r - 1 
6{

n
r) = Qn(Erc) - fi„(c) = (f * Er-1(Ac))n + £ <5(„J\ v > 2. 

3 = 1 

(ii) (setting c = f) 

(a) Ac = Af = E^f; (f * krf)n = (f * Erf)n_r. 

(b) (f * f)„ = f„+ (f * ^ f ) n _ x . 

(c) Qn(Erf) = ftw(£r-2f) + fin(^r-1f), P > 2, with 

ftn(#Pf) = (f * f )„ when r = 0, and 

= (f * f )„ + (f * f )n-l w h e n ^ = 1-

(iii) [corollary of (ii) (c) , writing finjr for Qn(£'rf)] 

^ , , = (f * n n / , + 1 + (f * f)n_1/I.» ^ > i-

The proofs of (i), (ii), and (iii) require only simple algebra and Fibonacci 

number identities. 

5. HIGHER ORDER C0NV0LUTS0N TREES 

The construction rules given in Section 2 may be extended to define se-

quences of higher-order convolution trees. Thus, for third-order trees: 

Recurrence rule: Gn+3 

tree combinations thus: 

G, CL G„ ,, using a triple fork to effect the 

"n + 3 

In Figure 2 we show the first five trees in the sequence obtained when the 

Fo, Fn trees are used as the initial ones. 
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C\ C\ C\ C2 

C1 C2 C\ C\ Ci C± C\ Ci C\ C2 C% 

Co C3 Ci c2 c, c2 
SC3 

Cit Cs 

Figure 2. The First Five Third-Order Convolution Trees 

We will not tabulate their structural properties as we did for the second-

order ones, but we may note that the numbers of leaf nodes follow the sequence 

g={l,l,2,4,75 . ..}, and that the weight &(Gn) can be shown to be (c * g)n , 

which are generalizations of the second-degree convolution tree properties. 

We are now in a position to derive Pascal-27 triangles from the sequences 

of trees. 

6. A COMBINATORY FUNCTION AND THE PASCAL-T TRIANGLES 

Consider the convolution tree Gn, colored by integers of the sequence c = 

{c , c , c , ...}. We define the level counting function: 

L = f 1 - I = the number of nodes in G„ having level m and color o.. 
\m\iI n ^ 

Then, if G is defined in some tree sequence {Gn :n = l,2,3, . ..}, we can 

tabulate L in a sequence of (jn9 n) tables for each value of i. We show tables 

for the second- and third-order trees with regard to color c1 only. 

Table 2. U) for the Second-Order Trees F^ 

0 
1 
2 
3 
4 

! 5 
6 

Column Sum 

*i 

1 
0 
0 
0 
0 
0 
0 

1 

F 
r 2 
0 
1 
0 
0 
0 
0 
0 

1 

F3 

0 
1 
1 
0 
0 
0 
0 

2 

F, 

0 
0 
2 
1 
0 
0 
0 

3 

^5 

0 
0 
1 
3 
1 
0 
0 

5 

Fe 

0 
-0 
0 
3 
4 
1 
0 

8 

F7 

0 ... 
0 ... 
0 ... 
1 . . . 
6 ... 
5 ... 
1 ... 

13 ... 

Row Sum 

1 
2 
4 
8 

(16) 
(32) , 
(64) 
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We observe the following: 

(i) the nonzero elements correspond to Pascal's triangle, the rows beginning 
on the diagonal; let us designate this triangle A ^ ; 

(ii) the mth row sum of the table is 2m; 

(iii) the j t h column sum of the table is /., the j t h Fibonacci number. 

Table 3- ( .,) for the Third-Order Trees £„ 
\772 1 / n 

m^---^ 

0 
1 
2 
3 
4 
5 
6 

Column Sum 

*i 

1 
0 
0 
0 
0 
0 
0 

1 

G2 

0 
1 
0 
0 
0 
0 
0 

1 

£3 

0 
1 
1 
0 
0 
0 
0 

2 

G, 

0 
1 
2 
1 
0 
0 
0 

4 

£5 

0 
0 
3 
3 
1 
0 
0 

7 

^6 

0 
0 
2 
6 
4 
1 
0 

13 

G7 

0 ... 
0 ... 
1 ... 
7 ... 
10 ... 
5 ... 
1 . . . 

24 ... 

Row Sum 

1 
3 
9 
(27) 
(81) 
(243) 
(729) 

Notes: 

(i) the triangle now resting on the leading diagonal is the third-degree one, 

(ii) the /7?th row sum of the table is 3m; 

(iii) the j t h column sum of the table Is g. , where g is defined by 

&n + 3 $n $n + 1 $n + 2 5 

with (g±s g2, g3) = (fl9 f2, f 3 ) , a generalized Fibonacci sequence, 

It should be clear from the construction rules given in Section 5 how we 

can extend the order of convolution trees indefinitely, obtaining the sequence 

{G2}, {£3K {Gh}, ...of tree sequences. Then, tabulating f ,-j) for each would 

give a sequence of the triangles A , 6 = 2 , 3, 4, ...; and the row and column 

sums of the tables would be, respectively, powers of 6 and generalized Fibonacci 

numbers. 

We note also that every ( M ) i s a multinomial coefficient; it is easy to 

show that the m-row elements in each table are generated by the function: 

x(x + x2 + x3 + ••• + x6)m
3 

where 6 is the order of the trees being considered. 

We show below the second-, third-, and fourth-order triangles in the form 

that Pascal's triangle is usually shown. We do this in order to comment on the 

generalized row-to-row method of constructing the elements. 
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A(2) A(3) 

1 1 

1 2 1 1 1 1 

1 3 3 1 1 2 3 2 1 

1 4 6 4 1 1 3 6 7 6 3 1 

1 5 10 10 5 1 1 4 10 16 19 16 10 4 1 

A ( 4 ) 

1 

1 1 1 1 

1 2 3 4 3 2 1 

1 3 6 10 12 12 10 6 3 1 

1 4 10 20 31 40 44 40 31 20 10 4 1 

Figure 3- Pascal-T Triangles 

Note that, in each case, to get the j t h element in the mth row, take the 

sum of the 6 (6=2,3, 4) elements immediately above it in the preceding [i.e., 

the (jn - l)th] row. Use zeros if the summation has to extend beyond a boundary 

of the triangle. For example, to get 10, the third element in row 5 of A , we 

add 0 + 1 + 3 + 6 . 

Theorem 5 (Pascal-Lucas-Turner): Let S$ be a sequence of colored convolution 

trees of order 6, 6 = 2, 3, 4,.... Then the level function ( . . ], with i = 1, 
\m\zj 

has a table of values with the following properties: 

(i) m = 0, 1, 2, ...; n = 1, 2, 3, ...; 
(ii) the leading diagonal elements are all l's, and elements below this diag-

onal are all 0Ts; 

(iii) the sum of the m-row elements is 6m; 
(iv) the sum of the n-column elements is g , where g is the generalized Fibo-

nacci sequence defined by 

6-1 

9n + 6 = E #n+;> w i t h initial values f±9 f2, ..., f6 ; 

i = 0 

(v) I , J is the coefficient of xn in the expansion of xI ^ xz\ ; 

(v!> ( h W " " i f i W "",!,)+ ••• + ( "",!,) f o m > 1, m > 0 ; with \m\l/ \m - 11 1 / \m - 1|1/ \m - 1|1/ 
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Ul)- 1' Ul)-° - *°*n>l, and (j1/^) E 0 when n < i. 

Proofs: The proofs follow directly from the recurrence construction rules for 

the trees. 

7. OTHER LEVEL-FUNCTION TRIANGLES 

Although we have presented our topic so far by showing how level functions 

(with i = 1) provide Pascal's triangle and generalizations of it, we would now 

like to shift the point of view firmly. 

In the theory of convolution trees, the level function seems to us to be 

an important object of study. Every sequence of convolution trees gives rise 

to a sequence of tables for the level functions ( . . ), and the types of values 

they take depend entirely on the construction rules used to define the trees „ 

Changing the tree recurrences, or the initial trees, or using a more complex 

coloring rule, will produce triangles of numbers which are not, in general, 

multinomial coefficients. If generating functions can be found, they will be 

more complex than the ones given above. 

Therefore, we wish to view the tabulation of level functions of convolution 

trees as a broad topic in its own right. Pascal's triangle arises as a special 

case in connection with second-order Fibonacci trees. 

For reasons of space we cannot give many examples of other triangles here; 

however, we discuss two further cases to help make our point clear. The first 

gives rise to "shifted" Pascal triangles; the second arises from Lucas trees, 

and turns out to be a superposition of two Pascal triangles. 

Case 1. J i0 s, from the Fibonacci trees \m\ 2) 

If we look at the rooted trees in {Ft} and {G^}, we see that all the leaf 

nodes are colored c]_. Pruning any tree Fn (i.e., removing all the leaf nodes 

and their adjacent branches) leaves the tree F„_15 but with colors c2, c3, c^3 

... instead of c , c2, <?3, ... . 

Hence, the table of ( . ) again has a Pascal triangle in it, but "shifted 

to the right" and starting at the diagonal above the leading diagonal. 

Similarly, ( . f has a Pascal triangle shifted one step further to the J \m\3J 
right; and so on. 
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Case 2. ml , Lucas convolution trees 

Using a special initial tree, L , we can generate the sequence L , L , L , 

. .., called Lucas convolution trees and shown below in Figure 4. Note that the 

numbers of leaves follow the Lucas sequence £ = 1, 3, 49 75 ..., which is gen-

erated by the recurrence equation £ n + 2 = In + ^n+1s with i± = 1, £2 = 3. The 

color sequence used is C = (oQ9 ol9 £2, c~ 

begins with tree L3 and color c. . 

, ) ; the recurrence construction 

£3 

°3 °1 

\ / V 
\ / 

V 

c3 

?3 ,C1 C2 C0 

Figure 4. The Lucas Convolution Trees 

These trees have many properties which relate the Fibonacci and Lucas num-

bers. We give the table for I 1 j, then follow it by the Lucas-Z7 triangle for 

this level function. 

Table 4. ( i, ] for the Second-Order Lucas Trees 
\m\ 1/ 

0 
1 
2 
3 
4 
5 
6 

Column Sum 

L1 L2 L3 Lh L5 L6 L? 

1 0 0 0 0 0 0 . . . 
0 0 1 0 0 0 0 . . . 
0 1 0 1 1 0 0 . . . 
0 0 1 1 1 2 1 . . . 
0 0 0 1 2 2 3 . . . 
0 0 0 0 1 3 4 . . . 
0 0 0 0 0 1 4 . . . 

1 1 2 3 5 8 

Row Sum 

1 
1 

3 x 2° = 2° + 2 1 

3 x 2 1 = 2 1 + 2 2 

3 x 2 2 = 2 2 + 2 3 

3 x 2 3 = 2 3 + 2h 

3 x 2h = 2h + 2 5 

Note that the row sums are (after m = 1) expressible as 2m~ + 2m~ , and 

that the column sums are again Fibonacci numbers. The diagram below shows (by 

dotted and full lines) how the triangle from these Lucas trees is the super-

position of two Pascal triangles (after m = 0). 
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Figure 5°  The Lucas ( . ) Triangle 

We have developed a notation for writing the I , . ) triangles to be derived 

from various types of recurrently constructed and colored trees, expressing 

them as superpositions of triangles of multinomial coefficients. The formulas 

can be given once the construction and coloring rules are given. 
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