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1. INTRODUCTION 

We say that a divisor d of an integer n is a unitary divisor if 

gcd(J, n/d) = 1, 

in which case we write d\n. By a component of an integer we mean a prime power 

unitary divisor. 

Let a*(ft) denote the sum of the unitary divisors of ft. Then G* is a mul-

tiplicative function, and 0*(pe) = pe + 1 if p is prime and e ^ 1. Throughout 

this paper we will let / be the ad hoc function defined by fin) = o*(n)/n. 

An integer ft is unitary perfect if a*(ft) = 2ft, i.e., if /(ft) =2. Subbarao 

and Warren [2] found the first four unitary perfect numbers, and this author 

[3] found the fifth. No other such numbers have been found, so at this stage 

the only known unitary perfect numbers are: 

6 = 2-3, 60 = 223 • 5; 90 = 2 • 325; 87360 = 263 • 5 • 7 • 13; and 

146361946186458562560000 = 2183 • 547 • 11 • 13 • 19 • 37 • 79 • 109 • 157 • 313 

It is easy to show that any unitary perfect number must be even. Suppose 

that N = 2am is unitary perfect, where m is odd and m has b distinct prime di-

visors (i.e., suppose that 217 has b odd components). Subbarao and his co-workers 

[1] have shown that any new unitary perfect number N = 2am must have a > 10 and 

b > 6. In this paper we establish the improved bound b > 8. 

Much of this paper rests on a results in an earlier paper [4]: 

Any new unitary perfect number has an odd component larger than 
2 1 5 (the smallest candidate is 32771). 

Essential to this paper is the ability to find bounds for the smallest un-

known odd component of a unitary perfect number. The procedure is laborious 

but simple, and can be illustrated by an example: 

Suppose N = 2a3 • 5 • 7 * 19 • 43 • rqp is unitary perfect, where r, q, and p 

are distinct odd prime powers, p < g < p , a^l2, and p> 32771. Then 64<r<261, 

because 

/(3 • 5 • 7 • 19 • 43) • (262/261)4 < 2 < f(3 • 5 • 7 • 19 • 43) • (65/64). 
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Consequently, r<2a and r< 32771. But f(2a) < 4097/4096 as a> 12, and 
/(3 • 5 • 6 • 19 • 43) - (4097/4096) • (32772/32771) • (134/132)2< 2, 

so 6 4 < P < 133. 

In the interests of brevity, we will simply outline the proofs, omitting 

repetitive details. 

2. SEVEN ODD COMPONENTS 

Throughout this section, suppose N = 2avutsrqp is unitary perfect, where 

p, ...9v are powers of distinct odd primes, and V <u< t< s <r< qKp. Then we 

know that a> 11 and p> 32771. 

Theorem 2.1: ?; = 3, u = 5, £ = 7, and a >12. 

Proof: We have z; = 3 or else f(N)<2, so there is only one component E -1 (mod 

3)3 and none E -1 (mod 9). But 

f(2n 3 • 7 • 11 • 13 • 19 • 25 • 32771) < 2, 

so u = 5. Then there are no more components E -1 (mod 3), only one E -1 (mod 

5), and none E -1 (mod 25). As a result, a is even, so a^ 12. Then t = 7, or 
else /(#)< 2. • 

Theorem 2.2: s = 13. 

Proof: We easily have s = 13 or s = 19, or else f(N)<29 so suppose s = 19. 

Then 25<r<53. If P is 43 or 37, then (respectively) 64<q<66 or 85<q<88, 

both of which are impossible. Thus, v = 31, so 151<q<159 and then q = 157. 
But then 79 |p and p>2 1 5 , so p = 79c with c >39 whence 792|a*(2a), which is 

impossible. • 

Theorem 2.3*. v - 67. 

Proof: We have N = 2a3 • 5 • 7 • 13 * rqp, p> 32771, and a> 12, so 64<r< 131. If 
r> 79, easy contradictions follow. 

If p = 79, then 341<<?<377, so q = 361, 367, or 373. But q = 373 implies 
11 • 17|p, a contradiction. If q = 367, then p = 23c with c> 4, so 233|a*(2a), 
which is impossible. If <? = 361, then p = 181e with c>3, so 18l|c*(2a), hence 

90|a, whence 52\N9 a contradiction. 

Finally, if P = 73, then 526<q<615 and 37|qp, so p = 37c with c>3. But 

73|a*(2a37c), so 73\(q + 1), which is impossible. 

Theorem 2.4: There is no unitary perfect number with exactly seven odd compo-

nents. 
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Proof: If this is so, then N = 2a3 • 5 • 7 • 13 • 67 • qp. Then 1450 <q< 4353, so 

p> 32771, whence 1450<q<3037. Then a> 12 implies 1450<^<2413. Now, 173\\N 

implies 33|/1/, so p = 17c with c>k. But 172ja*(2a), or else q is a multiple 

of 354689, so 173|(^ + 1), which is impossible, s 

3. EIGHT ODD COMPONENTS 

Throughout this section, assume that N = 2awvutsrqp is unitary perfect, 

where p, . .., w are powers of distinct odd primes, and w < y < w < t < s < P < ^ < p . 

Then a^ll and p ^ 32771 as before. 

Theorem 3-1: w = 3, v = 5, and a > 12. 

Proof: Similar to that for Theorem 2.1. m 

Theorem 3.2: u = 7, and t = 13 or t = 19. 

Proof: From /(2123 • 5 • 13 • 19 • 31 • 37 • 43 • 32771)< 2, we have u = 7, so there 

is only one component E -1 (mod 7). Thus, £<31. If t is neither 13 nor 19, 

then t = 31, so a ̂ 1 4, and we quickly obtain s = 37 and r3 = 43. But then we 

have N = 2a3 • 5 • 7 • 31 • 37 • 43 • qp, subject to 121<q< 125 and 11 • 19\qp, an 

impossibility. • 

Theorem 3-3: If t = 19, then s = 31. 

Proof: Suppose N = 2a3 • 5 • 7 • 19 • srqp with s<r<q<p. Then 25<s< 73. Easy 

contradictions follow if s>43. 

If s = 43, then 64<r<133. If P = 121, then 140<q<147, which is impos-

sible. Other choices for v force q and p to be powers of 11 and another odd 

prime (in some order) with no acceptable choice for q in its implied interval. 

If s = 37, then 85<r< 176, so v is 103, 121, 127, 157, or 163. If r is 157 

or 163, there in only one choice for q, and it implies that p is divisible by 

two different odd primes. If r = 127, then a> 20 and so 262<q<265, an impos-

sibility. If v = 121, then 291<q<318, so q is 307 or 313; but q = 313 im-

plies 61 • 157 |p, and if q = 307, then p = 61c with c>3, so 612|a*(2a), whence 

52\N, a contradiction. If r = 103, then 502<^<583 and I3\qp9 so p= 13 with 

c> 4; but 13|a*(2a), or else 52\N, SO 133|(q + 1), which is impossible, m 

Theorem 3-4: t = 13. 

Proof: If t ^ 13, then N = 2a3 • 5 • 7 • 19 • 31 • rqp with r<q<p and a> 16, so 

1 5 1 < P < 3 0 7 . Since r t -1 (mod 5), r must be 157, 163, 181, 193, 211, 223, 241, 

271, 277, or 283. If v is 271, 241, or 223, there is no prime power in the 
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implied interval for q (note a>20 if v = 223) . If r is 283, 277, 211, or 193, 

the only choices for q require that p be divisible by two distinct primes. 

If r = 163, then 2202 < q< 2450, so p = 41 with c> 4; thus, 2202 < q< 2281, 

and the only primes that can divide q+ 1 are 2, 7, 19, 31, 41, and 163, but no 

such q exists. If r = 181, then p = 13c with c > 4 , as 942<^<985 and I3\qp; 

but 13|a*(2a), or else 52\N, SO 133|(g + 1), which is impossible. If r = 157, 

then 79|<7p and 4525 <<?< 5709, so p = 79c with o>3; however, 79|cr*(2a), and so 

792|(q + 1 ) , an impossibility, m 

Corollary: There are no more components E -1 (mod 7), and none E -1 (mod 13 ). 

Theorem 3.5: s< 73. 

Proof: We have 71/ = 2a3 • 5 • 7 • 13 • srqp, and 61<s< 193 follows easily, so s is 

67, 73, 79, 103, 109, 121, 151, 157, or 163. 

If s is 163 or 157, then any acceptable choice of v forces qp to be divisi-

ble by two distinct odd primes with no acceptable choice for q in its implied 

interval. The same occurs with s = 151 unless r = 163; but if s = 151 and r = 

163, then 358<q<398 and 19°  4l|gp, so q = 192, whence 41 • 181 |p, an impossi-

bility. If s = 127, then a^l6 and, for each r, any acceptable choice for q 

forces p to be divisible by two distinct primes. 

If s = 121 and r £ 241, then two known odd primes divide qp and there is no 

acceptable choice for q in its implied interval. If s = 121 and r = 241, then 

318<q<350 and 6l|qp, so p = 61c with c> 3; but 6lja*(2a) unless 4l|^, hence 

612|(q + 1), which is impossible. 

Suppose s = 109. Then 156<r<328 and ll\rqp, so ll1* |qp as ll3\\N implies 

32|/1/. Now, 109ja*(2a), or else 52\N. If 109|a*(llc), then 11 • 61 • 1117 \rqp, 

an impossibility. Thus, one of q and p is lle with c ^ 4 , and the other is a 

component E -1 (mod 109), and the least candidate for this component is 2833. 

Then 156<r<175, so r is 157 or 163. If P = 163, then a + 12, or else 11- 17 
9 41°  24l|pgp, so a>14, whence 11°  hl\qp and 3913<p<6100, an impossibility. 

If r = 157, then a>169 and 11 • 79\qp and 44000 < q< 300000, whence q = ll5 and 

3 \N9 a contradiction. 

If s = 103 and r = 111, then a> 16 and 462<^< 473, so q = 463 and 17 • 29|p, 

an impossibility. If s = 103 and v 4- 271, then v + 1 includes an odd prime Tf 

and the interval for q forces p = i\° (c>2). But in each case, 7i|a*(2a) implies 

a contradiction, so i\c~1\(q + 1 ) , an impossibility. 

If s = 79, then a>16, as a = 14 implies 52|/1/, so 3 4 1 < P < 6 9 5 . Except for 

r = 373, r + 1 includes an odd prime TT and the Interval for q forces p = nc 
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(c^2), but in each instance 7r|a*(2a) either is impossible or implies condi-

tions on q which cannot be met. If v = 373, then 4031 < q < 4944 and 11 • 17 \qp9 

so q = 173, whence 32\N9 a contradiction. & 

Theorem 3-6: s = 67. 

Proof: Suppose not: then N = 2a3 • 5 • 7 • 13 • 73 • rqp, 526 <r< 1232, and 37\rqp. 

The cases 372\\N and 373\\N are easily eliminated, so 37h\N. Now, 73|a*(2a37c), 

so N has an odd component, not 37c, which is E -1 (mod 73), and the two small-

est candidates are 1459 and 5839. If 21/ = 2a3 8 5 • 7 • 13 • 73 • 1459 • qp, then 

823<(?<1032, but 37|a*(2a), or else 52|/lf, so 373|(q+l), which is impossible. 

Now, call p = 37e (c>4), q E -1 (mod 73), and ̂ >5839. Then 526<r<674, 

so 37J(P + 1). Consequently, q E -1 (mod 373), so q + 1> 2 • 37373 and, hence, 

q^ 7395337. If a = 12 or a = 14, then r Is in an interval with no prime powers. 

Therefore, a>16, so 526<r<531, which forces r = 529. Then a>lS9 but a = 18 

implies 52\N, SO a>20. But then 100000 < q < 240000 and 53* 37\qp, so q = 533, 

which implies 32\N9 a contradiction, H 

Theorem 3-7^ There is no unitary perfect number with exactly eight odd compo-

nents. 

Proof: Assume not: then we have N = 2a3 • 5 • 7 * 13 • 67 • vqp with 1450<r< 4825. 

Now, 67fa*(2a), or else 32\N. Also, 17 \N and 172<r. But 17 cannot divide N 

an odd number of times, or else 32\N, SO 17^\N. 

We already have a ^ 12 and a even. The cases a - 12 and a = 14 are easily 

eliminated, so a>16 and then 1450<r<3022. 

Note that 67|a*(17c), so N has an odd component, not 17c, which is E -1 

(mod 67), and the three smallest candidates are 1741, 2143, and 4153. If the 

component E -1 (mod 67) exceeds 2143, then 1450<r<2375. Thus, we may require 

1450 < P < 2375 in any event. 

We cannot have 172|a*(2a), or else 17- 3546898°  2879347902817\rqp, and this 

is obviously impossible. If 17\(r + 1), then r is 1597, 1801, 2209, or 2311. 

If 67|(P + 1), then r is 1741 or 2143. If r + 1 is divisible by neither 17 nor 

67, then we may take p = !7° (c>4, so p ^ 83521) and q E -1 (mod 17267), whence 

q> 116177, so 1450<P<1531. Thus, in any event, r must be one of the follow-

ing numbers: 1453, 1459, 1471, 1489, 1597, 1741, 1801, 2143, 2209, or 2311. 

But each of these cases leads to a contradiction, so the theorem is proved, m 
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