NEW UNITARY PERFECT NUMBERS HAVE AT LEAST
 NINE ODD COMPONENTS

CHARLES R. WALL
Trident Technical College, Charleston, SC 29411
(Submitted November 1986)

1. INTRODUCTION

We say that a divisor d of an integer n is a unitary divisor if $\operatorname{gcd}(d, n / d)=1$,
in which case we write $d \| n$. By a component of an integer we mean a prime power unitary divisor.

Let $\sigma^{*}(n)$ denote the sum of the unitary divisors of n. Then σ^{*} is a multiplicative function, and $\sigma^{*}\left(p^{e}\right)=p^{e}+1$ if p is prime and $e \geqslant 1$. Throughout this paper we will let f be the ad hoc function defined by $f(n)=\sigma^{*}(n) / n$.

An integer n is unitary perfect if $\sigma^{*}(n)=2 n$, i.e., if $f(n)=2$. Subbarao and Warren [2] found the first four unitary perfect numbers, and this author [3] found the fifth. No other such numbers have been found, so at this stage the only known unitary perfect numbers are:
$6=2 \cdot 3,60=2^{2} 3 \cdot 5 ; 90=2 \cdot 3^{2} 5 ; 87360=2^{6} 3 \cdot 5 \cdot 7 \cdot 13 ;$ and
$146361946186458562560000=2^{18} 3 \cdot 5^{4} 7 \cdot 11 \cdot 13 \cdot 19 \cdot 37 \cdot 79 \cdot 109 \cdot 157 \cdot 313$
It is easy to show that any unitary perfect number must be even. Suppose that $N=2^{a} m$ is unitary perfect, where m is odd and m has b distinct prime divisors (i.e., suppose that N has b odd components). Subbarao and his co-workers [1] have shown that any new unitary perfect number $N=2^{a} m$ must have $a>10$ and $b>6$. In this paper we establish the improved bound $b>8$.

Much of this paper rests on a results in an earlier paper [4]:
Any new unitary perfect number has an odd component larger than 2^{15} (the smallest candidate is 32771).
Essential to this paper is the ability to find bounds for the smallest unknown odd component of a unitary perfect number. The procedure is laborious but simple, and can be illustrated by an example:

Suppose $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 19 \cdot 43 \cdot r q p$ is unitary perfect, where r, q, and p are distinct odd prime powers, $r<q<p, a \geqslant 12$, and $p \geqslant 32771$. Then $64<r<261$, because

$$
f(3 \cdot 5 \cdot 7 \cdot 19 \cdot 43) \cdot(262 / 261)^{4}<2<f(3 \cdot 5 \cdot 7 \cdot 19 \cdot 43) \cdot(65 / 64)
$$

NEW UNITARY PERFECT NUMBERS HAVE AT LEAST NINE ODD COMPONENTS

Consequently, $r<2^{\alpha}$ and $r<32771$. But $f\left(2^{\alpha}\right) \leqslant 4097 / 4096$ as $\alpha \geqslant 12$, and $f(3 \cdot 5 \cdot 6 \cdot 19 \cdot 43) \cdot(4097 / 4096) \cdot(32772 / 32771) \cdot(134 / 132)^{2}<2$, so $64<r<133$.

In the interests of brevity, we will simply outline the proofs, omitting repetitive details.

2. SEVEN ODD COMPONENTS

Throughout this section, suppose $N=2^{a}$ vutsrqp is unitary perfect, where p, \ldots, v are powers of distinct odd primes, and $v<u<t<s<r<q<p$. Then we know that $a \geqslant 11$ and $p \geqslant 32771$.

Theorem 2.1: $v=3, u=5, t=7$, and $\alpha \geqslant 12$.
Proof: We have $v=3$ or else $f(N)<2$, so there is only one component $\equiv-1$ (mod 3), and none $\equiv-1(\bmod 9)$. But

$$
f\left(2^{11} 3 \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 25 \cdot 32771\right)<2
$$

so $u=5$. Then there are no more components $\equiv-1(\bmod 3)$, only one $\equiv-1$ (mod 5), and none $\equiv-1(\bmod 25)$. As a result, α is even, so $a \geqslant 12$. Then $t=7$, or else $f(N)<2$.

Theorem 2.2: $s=13$.
Proof: We easily have $s=13$ or $s=19$, or else $f(N)<2$, so suppose $s=19$. Then $25<r<53$. If r is 43 or 37 , then (respectively) $64<q<66$ or $85<q<88$, both of which are impossible. Thus, $r=31$, so $151<q<159$ and then $q=157$. But then $79 \mid p$ and $p>2^{15}$, so $p=79^{c}$ with $c \geqslant 3$, whence $79^{2} \mid \sigma^{*}\left(2^{a}\right)$, which is impossible.

Theorem 2.3: $r=67$.
Proof: We have $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot r q p, p \geqslant 32771$, and $a \geqslant 12$, so $64<r<131$. If $r>79$, easy contradictions follow.

If $r=79$, then $341<q<377$, so $q=361$, 267 , or 373. But $q=373$ implies $11 \cdot 17 \mid p$, a contradiction. If $q=367$, then $p=23^{c}$ with $c \geqslant 4$, so $23^{3} \mid \sigma^{*}\left(2^{a}\right)$, which is impossible. If $q=361$, then $p=181^{c}$ with $c \geqslant 3$, so $181 \mid \sigma *\left(2^{a}\right)$, hence $90 \mid \alpha$, whence $5^{2} \mid N$, a contradiction.

Finally, if $r=73$, then $526<q<615$ and $37 \mid q p$, so $p=37^{c}$ with $c \geqslant 3$. But $73 \nmid \sigma^{*}\left(2^{a} 37^{c}\right)$, so $73 \mid(q+1)$, which is impossible.

Theorem 2.4: There is no unitary perfect number with exactly seven odd components.

NEW UNITARY PERFECT NUMBERS HAVE AT LEAST NINE ODD COMPONENTS

Proof: If this is so, then $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 67 \cdot q p$. Then $1450<q<4353$, so $p \geqslant 32771$, whence $1450<q<3037$. Then $a \geqslant 12$ implies $1450<q<2413$. Now, $17^{3} \| N$ implies $3^{3} \mid N$, so $p=17^{c}$ with $c \geqslant 4$. But $17^{2} \nmid \sigma^{*}\left(2^{a}\right)$, or else q is a multiple of 354689 , so $17^{3} \mid(q+1)$, which is impossible.

3. EIGHT ODD COMPONENTS

Throughout this section, assume that $N=2^{\alpha}$ woutsrqp is unitary perfect, where p, \ldots, w are powers of distinct odd primes, and $w<v<u<t<s<r<q<p$. Then $a \geqslant 11$ and $p \geqslant 32771$ as before.

Theorem 3.1: $w=3, v=5$, and $\alpha \geqslant 12$.
Proof: Similar to that for Theorem 2.1.
Theorem 3.2: $u=7$, and $t=13$ or $t=19$.
Proof: From $f\left(2^{12} 3 \cdot 5 \cdot 13 \cdot 19 \cdot 31 \cdot 37 \cdot 43 \cdot 32771\right)<2$, we have $u=7$, so there is only one component $\equiv-1(\bmod 7)$. Thus, $t \leqslant 31$. If t is neither 13 nor 19 , then $t=31$, so $a \geqslant 14$, and we quickly obtain $s=37$ and $r=43$. But then we have $N=2^{\alpha} 3 \cdot 5 \cdot 7 \cdot 31 \cdot 37 \cdot 43 \cdot q p$, subject to $121<q<125$ and $11 \cdot 19 \mid q p$, an impossibility.

Theorem 3.3: If $t=19$, then $s=31$.
Proof: Suppose $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 19 \cdot$ srqp with $s<r<q<p$. Then $25<s<73$. Easy contradictions follow if $s>43$.

If $s=43$, then $64<r<133$. If $r=121$, then $140<q<147$, which is impossible. Other choices for r force q and p to be powers of 11 and another odd prime (in some order) with no acceptable choice for q in its implied interval.

If $s=37$, then $85<r<176$, so r is $103,121,127,157$, or 163 . If r is 157 or 163 , there in only one choice for q, and it implies that p is divisible by two different odd primes. If $r=127$, then $a>20$ and so $262<q<265$, an impossibility. If $r=121$, then $291<q<318$, so q is 307 or 313 ; but $q=313$ implies $61 \cdot 157 \mid p$, and if $q=307$, then $p=61^{c}$ with $c \geqslant 3$, so $61^{2} \mid \sigma^{*}\left(2^{a}\right)$, whence $5^{2} \mid N$, a contradiction. If $r=103$, then $502<q<583$ and $13 \mid q p$, so $p=13$ with $c \geqslant 4$; but $13 \nmid \sigma^{*}\left(2^{a}\right)$, or else $5^{2} \mid N$, so $13^{3} \mid(q+1)$, which is impossible.

Theorem 3.4: $\quad t=13$.
Proof: If $t \neq 13$, then $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 19 \cdot 31 \cdot r q p$ with $r<q<p$ and $a \geqslant 16$, so $151<r<307$. Since $r \not \equiv-1(\bmod 5)$, r must be $157,163,181,193,211,223,241$, 271,277 , or 283 . If r is 271,241 , or 223 , there is no prime power in the
implied interval for q (note $a \geqslant 20$ if $r=223$). If r is 283, 277, 211, or 193, the only choices for q require that p be divisible by two distinct primes.

If $r=163$, then $2202<q<2450$, so $p=41$ with $c \geqslant 4$; thus, $2202<q<2281$, and the only primes that can divide $q+1$ are $2,7,19,31,41$, and 163 , but no such q exists. If $r=181$, then $p=13^{c}$ with $c \geqslant 4$, as $942<q<985$ and $13 \mid q p$; but $13 \nmid \sigma^{*}\left(2^{a}\right)$, or else $5^{2} \mid N$, so $13^{3} \mid(q+1)$, which is impossible. If $r=157$, then $79 \mid q p$ and $4525<q<5709$, so $p=79^{c}$ with $c \geqslant 3$; however, $79 \nmid \sigma^{*}\left(2^{a}\right)$, and so $79^{2} \mid(q+1)$, an impossibility.

Corollary: There are no more components $\equiv-1(\bmod 7)$, and none $\equiv-1\left(\bmod 13^{2}\right)$. Theorem 3.5: $s \leqslant 73$.

Proof: We have $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot s r q p$, and $61<s<193$ follows easily, so s is $67,73,79,103,109,121,151,157$, or 163.

If s is 163 or 157 , then any acceptable choice of r forces $q p$ to be divisible by two distinct odd primes with no acceptable choice for q in its implied interval. The same occurs with $s=151$ unless $r=163$; but if $s=151$ and $r=$ 163, then $358<q<398$ and $19 \cdot 41 \mid q p$, so $q=19^{2}$, whence $41 \cdot 181 \mid p$, an impossibility. If $s=127$, then $a \geqslant 16$ and, for each r, any acceptable choice for q forces p to be divisible by two distinct primes.

If $s=121$ and $r \neq 241$, then two known odd primes divide $q p$ and there is no acceptable choice for q in its implied interval. If $s=121$ and $r=241$, then $318<q<350$ and $61 \mid q p$, so $p=61^{c}$ with $c \geqslant 3$; but $61 \nmid \sigma^{*}\left(2^{a}\right)$ unless $41 \mid q$, hence $61^{2} \mid(q+1)$, which is impossible.

Suppose $s=109$. Then $156<r<328$ and $11 \mid r q p$, so $11^{4} \mid q p$ as $11^{3} \|_{N}$ implies $3^{2} \mid N$. Now, $109 \nmid \sigma^{*}\left(2^{a}\right)$, or else $5^{2} \mid N$. If $109 \mid \sigma^{*}\left(11^{c}\right)$, then $11 \cdot 61 \cdot 1117 \mid r q p$, an impossibility. Thus, one of q and p is 11^{c} with $c \geqslant 4$, and the other is a component $\equiv-1(\bmod 109)$, and the least candidate for this component is 2833. Then $156<r<175$, so r is 157 or 163 . If $r=163$, then $a \neq 12$, or else $11 \cdot 17$ - 41-241|rqp, so $a \geqslant 14$, whence $11 \cdot 41 \mid q p$ and $3913<p<6100$, an impossibility. If $r=157$, then $a \geqslant 16$, and $11 \cdot 79 \mid q p$ and $44000<q<300000$, whence $q=11^{5}$ and $3^{2} \mid N$, a contradiction.

If $s=103$ and $r=271$, then $\alpha \geqslant 16$ and $462<q<473$, so $q=463$ and $17 \cdot 29 \mid p$, an impossibility. If $s=103$ and $r \neq 271$, then $r+1$ includes an odd prime π and the interval for q forces $p=\pi^{c}(c \geqslant 2)$. But in each case, $\pi \mid \sigma^{*}\left(2^{a}\right)$ implies a contradiction, so $\pi^{c-1} \mid(q+1)$, an impossibility.

If $s=79$, then $\alpha \geqslant 16$, as $\alpha=14$ implies $5^{2} \mid N$, so $341<r<695$. Except for $r=373, r+1$ includes an odd prime π and the interval for q forces $p=\pi^{c}$

NEW UNITARY PERFECT NUMBERS HAVE AT LEAST NINE ODD COMPONENTS

$(c \geqslant 2)$, but in each instance $\pi \mid \sigma^{*}\left(2^{a}\right)$ either is impossible or implies conditions on q which cannot be met. If $r=373$, then $4031<q<4944$ and $11 \cdot 17 \mid q p$, so $q=17^{3}$, whence $3^{2} \mid N$, a contradiction.

Theorem 3.6: $s=67$.
Proof: Suppose not: then $N=2^{\alpha} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 73 \cdot$ rqp, $526<r<1232$, and $37 \mid r q p$. The cases $37^{2} \| N$ and $37^{3} \| N$ are easily eliminated, so $37^{4} \mid N$. Now, $73 \nmid \sigma^{*}\left(2^{a} 37^{c}\right)$, so N has an odd component, not 37^{c}, which is $\equiv-1(\bmod 73)$, and the two sma11est candidates are 1459 and 5839. If $N=2^{\alpha} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 73 \cdot 1459 \cdot q p$, then $823<q<1032$, but $37 \nmid \sigma^{*}\left(2^{\alpha}\right)$, or else $5^{2} \mid N$, so $37^{3} \mid(q+1)$, which is impossible.

Now, call $p=37^{c}(c \geqslant 4), q \equiv-1(\bmod 73)$, and $q \geqslant 5839$. Then $526<r<674$, so $37 \nmid(r+1)$. Consequently, $q \equiv-1\left(\bmod 37^{3}\right)$, so $q+1 \geqslant 2 \cdot 37^{3} 73$ and, hence, $q \geqslant 7395337$. If $\alpha=12$ or $a=14$, then r is in an interval with no prime powers. Therefore, $a \geqslant 16$, so $526<r<531$, which forces $r=529$. Then $a \geqslant 18$, but $a=18$ implies $5^{2} \mid N$, so $a \geqslant 20$. But then $100000<q<240000$ and $53 \cdot 37 \mid q p$, so $q=53^{3}$, which implies $3^{2} \mid N$, a contradiction.

Theorem 3.7: There is no unitary perfect number with exactly eight odd components.

Proof: Assume not: then we have $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 67 \cdot$ rqp with $1450<r<4825$. Now, $67 \nmid \sigma^{*}\left(2^{a}\right)$, or else $3^{2} \mid N$. Also, $17 \mid N$ and $17^{2}<r$. But 17 cannot divide N an odd number of times, or else $3^{2} \mid N$, so $17^{4} \mid N$.

We already have $\alpha \geqslant 12$ and a even. The cases $\alpha=12$ and $\alpha=14$ are easily eliminated, so $\alpha \geqslant 16$ and then $1450<r<3022$.

Note that $67 \nmid \sigma^{*}\left(17^{c}\right)$, so N has an odd component, not 17^{c}, which is $\equiv-1$ (mod 67), and the three smallest candidates are 1741, 2143, and 4153. If the component $\equiv-1(\bmod 67)$ exceeds 2143 , then $1450<r<2375$. Thus, we may require $1450<r<2375$ in any event.

We cannot have $17^{2} \mid \sigma^{*}\left(2^{\alpha}\right)$, or else $17 \cdot 3546898 \cdot 2879347902817 \mid r q p$, and this is obviously impossible. If $17 \mid(r+1)$, then r is $1597,1801,2209$, or 2311. If $67(r+1)$, then r is 1741 or 2143. If $r+1$ is divisible by neither 17 nor 67, then we may take $p=17^{c}(c \geqslant 4$, so $p \geqslant 83521)$ and $q \equiv-1\left(\bmod 17^{2} 67\right)$, whence $q \geqslant 116177$, so $1450<r<1531$. Thus, in any event, r must be one of the following numbers: $1453,1459,1471,1489,1597,1741,1801,2143,2209$, or 2311. But each of these cases leads to a contradiction, so the theorem is proved.

REFERENCES
1．M．V．Subbarao，T．J．Cook，R．S．Newberry，\＆J．M．Weber．＂On Unitary Per－ fect Numbers．＂Deてta 3，no． 1 （Spring 1972）：22－26．MR 48非224．

2．M．V．Subbarao \＆L．J．Warren．＂Unitary Perfect Numbers．＂Canad．Math． Buて乙． 9 （1966）：147－153．MR 33非3994。

3．Charles R．Wall．＂The Fifth Unitary Perfect Number．＂Canad．Math．BuZZ． 18（1975）：115－122．MR 51非12690．

4．Charles R．Wall．＂On the Largest Odd Component of a Unitary Perfect Num－ ber．＂The Fibonacci Quarterly 25 （1987）：312－316．

NOW AVAILABLE

＇Applications of Fibonacci Numbers＇

Proceedings of the Second International Conference on Fibonacci Numbers and their Applications，San Jose State University，U．S．A．，August 1986

Edited by A．N．Philippou，A．F．Horadam and G．E．Bergum
（ISPN：90－277－2673－6）
The book will be available from Kluwer Academic Publishers from March 1988 onwards at the price of $\$ 59.25$（including a 25% discount）．

Orders should be prepaid by cheque，credit card，or international money order．
Order from：Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell，MA 02061
U．S．A．
if you reside in the U．S．A．and Canada，
Residents of all other countries should order from：
Kluwer Academic Publishers
Sales Department
P．O．Box 322
3300 AH Dordrecht
The Netherlands

