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1 . A CONSTRUCTION 

I t is well known (see, for example, Ex. 3.96 of [1]) that the polynomials 

x2'3° + x3J + 1 are irreducible in GF(2)[x] for J = 0, 1, 2, . . . . Since 

(x2'3' + x3J + l)(x3J + 1 ) = x3J+±+ 1 

is a square-free polynomial, it follows that the period of each root of a;2*3 + 

x + 1 is precisely 3J 1, only one and a half times the degree of the polyno-

mial . The field 

Cj ~ GF(2)[x]/(x2'3J' + x3' + 1) ~ GF(22'3J) 

may be obtained by iterated cubic extensions beginning with CQ ~ GF(2)(xQ)9 

where x0 £ 1 is a cube root of unity. We have C1 ~ CQCX-L), where xx is any 

solution to x1 = xQ, Iterating, C--+1« CAxj + 1) 9 where x- + 1 = x-. 

This paper deals with an iterated quadratic extension of GF(2), whose gen-

erators are described by 

xj + i + xj+i = xj f o r J ̂  °3 where arQ + x~l = 1. (1) 

Let 

Z?0 - GF(2)(*0), ̂  - ff0(*i>* .-•- V i S V * j + i>-

Note that ic2 + ̂ Q + 1 = 0 has no root in GF(2) so the first extension is quad-

ratic. To show that each subsequent extension is quadratic, it need only be 

shown that the equation for x.,1 , which may be rewritten x. + x • x. + I = 0, 

has no root in E -, for all j > 0. Although this follows almost immediately 

from theorems about finite fields, for example. Theorem 6.69 of Berlekamp [2], 

a more elementary proof will be given here. Let 

Tr(n\x) = £ x2\ 
i = l 

Also, let \E\ denote the order or number of elements of a finite field E. 

Theorem 1: For j > 0, xj+1 i E^ \Ej + 1\ = 22° + 2 and 

Tru + Z\x. + 1 ) = 57r(j' + 2)(a;:_J1) = 1. 

290 [Nov. 



AN ITERATED QUADRATIC EXTENSION OF GF(2) 

Proof (mathematical induction): Note xQ £ GF(2) and Tr(1)(xQ) = TP ( 1 ) (^Q 1 ) = 1. 

The statement of the theorem is therefore true for j = -1 if E_ is defined tc 

be GF(2). In a field of characteristic 2, assume x2 = xz + 1. Then, 

x4 = x2s 2 + 1 = xz3 + s2 + 1, x8 = xz7 + z6 + zh + 1, 

and, in general, 

k 
2K 2K - 1 , x~^ ?K - ?v 

X = XZ + 2̂  z • 
i = l 

Hence, 
^r2

+1 = xd + 1x* + *? (Tp(J + 1)(xT1))2
e (2) 

Now assume that the statement of the theorem holds for j - 1. Then #. has or-

der 2 so, if x.x1 were in E J , by the Fermat theorem and (2), #•_,, = #..., + 

# (̂ p (J+D (^T1))2. But Tv^ + 1){x~^) = 1 by hypothesis, so, by contradiction, 

#. . -, is not in E- itself but in a quadratic extension of E •. The order of 27-,. 

is, therefore, |/77'|2 = 22 , using the second statement of the hypothesis. 

Note that the other root to (1) for x.,1 is tf7?\. Also, Gal(E -^JE.) has 

order 2 so, if O denotes the nontrivial Galois automorphism, 0(x. ) = x"1 . 

Finally, Tr(j' + 2) is the trace map of £,J. + 1 to GF(2) , so 

Tr(j' + 2 )0rTM = T P ( J > 2 ) ( X . + 1 ) = TP(J' + 1)(X. + 1 + aU > + .)) = Tr(j" + 1)(x.) = 1 

for j . 

by the last part of the hypothesis, completing the statement of the theorem 

F 9n 

Corollary: xn
n = 1, when n ^ 0 and Fn = 2 + 1 is the Fermat number. 

Proof: Define E_1 to be GF(2) . Since |27n| = 2 , the nontrivial member of 
9 2 n 

Gal(En/En_1) i s g i v e n by On(y) = 2/ . S ince t h e c o n j u g a t e of x n o v e r t h e f i e l d 
2?n_1 i s x ™ , x ^ = #„ . T h u s , ^ n

n = 1. • 

The order of a field element is defined to be the smallest nonnegative 

power which equals 1. In the case where Fn is prime, the above result implies 

that xn has order Fn . In any case, the order of xn divides Fn , Since the Fer-

mat numbers are known to be mutually relatively prime, for example, see Theorem 

16 of [3], the order of xnxn_1 ••• xQ is the product of the orders of the x^9 

i < n* We say an element of a field is primitive if its order is the same as 

the number of nonzero field elements. If the order of xi is, in fact, F^ for 

i < n, then x„x„ 1 ••• x„ is a primitive element of E , because 
ft Yl A. U f L 

Fn?n-i ••• Fo = 2 2 " + 1 - 1 = \En\ - 1 . 

We have n o t been a b l e t o d e t e r m i n e i f x x . • 
w n - 1 
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2. BASIS SETS 

There are several natural ways to construct a basis of En as a vector space 

over GF(2). One such is of course the set of powers x£, 0 < i < 2n + 1, because 

#„ = GF(2)(xn) is a degree 2 n + 1 extension of GF(2). Another basis is the col-

lection of elements of the form xn
n • •• xQ°9 where each 6̂  £ {0, l}. This can be 

shown by induction on n. Clearly, x = 1 and x1 span E . Since Z?n is a quad-

ratic extension of En_19 every member of Z?n is uniquely expressible as axn + b , 

where a9 b £ E _1. Assuming a and 2? can be expressed as sums of the ^ " l ^ ,,# 

xQ° , it follows easily that En is spanned by the xn
n ••• ;r00. It immediately 

follows that these elements form a basis because the number of them is the same 

as the dimension of the space spanned. 

Another basis consists of elements of the f orm xn
n - • • x^ where e . e {±1}. 

This is shown by a similar argument which uses the fact that each element of 

En equals axn + b = axn + cxn_1 = (a + c)xn + cx^1 for some a, b9 c e En_1. 

Theorem 2: The following are bases of En: 

i) x6
n«.--x6

Qo 6 ^ ( 0 , 1 } ii) x^-'-xl* £{ e {-1,1} 

iii) x2
n
l 0 < i < 2n + 1 

Proof: It has already been shown that i) and ii) each form a basis. The ele-

ments iii) are the conjugates of xn over GF(2), and it will be shown that they 

are linearly independent. This will be done by induction. Certainly, xQ and 

XQ = x + 1 are linearly independent over GF(2) . Assume that the conjugates of 
22?1 

xn_1 in En_1 are linearly independent. The transformation On(y) = y takes 

each conjugate of xn to its reciprocal. If a combination of the conjugates 

vanishes, then grouping by reciprocal pairs gives 
2 r W f + s.*-21) = o, o) 
i = 0 

where ai, g^ e GF(2). Applying On to both sides interchanges ou and 3^. Add-

ing this to the original equation gives 

0 = t <<** + MOrf +x'n2i) = t\^i + Wn-i-
i=0 £ = 0 

By the inductive hypothesis, ai + 3^ E 0. Thus, the sum (3) can be rewritten: 

2 n - 1 

i = 0 

this time the hypothesis implies a- E @- E 0. Thus, iii) forms a basis. 

Z a--̂  21 

£"~n - 1 : 
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In some sense the most interesting is the basis i) because the set for E 

is contained in the set for En. Therefore, the union of all bases given by i) 

is a basis for the infinite field which is the union of all the En. Another 

interesting property of the basis i) is that every boolean polynomial in n 

variables corresponds to an element of En. These boolean polynomials can be 

multiplied as elements of En in a straightforward if tedious manner. To multi-

ply two such elements, collect all terms containing xn to one side. Then using 

(ax„ + b)(cx„ + d) = (aox^ n + be + ad)x„ + (ac + bd) 

the product is computable in terms of a few products in E ,. Using this for-

mula, it can be seen, though the proof is omitted, that the "degree" of the 

product of the two elements does not exceed the sum of their degrees. By the 

degree of a field element, we mean the degree of the associated boolean poly-

nomial. 

Each basis element of i) can be identified with the 0-1 vector, or bit vec-

tor, (6n, ..., 60) which, in turn, can be identified with the integer 

6n2n + -.. + 602° . 

Let bi be the basis element associated with the integer i. We now prove a fact 

regarding the expansion of a product of two basis elements as the sum of basis 

elements. 

Theorem 3- For any i, j , and k the expansion of b^bj contains bk if and only 

if the expansion of b^b^ contains bj . 

Lemma: For all i and j, b^b- contains the basis element bQ = 1 if and only if 

i = J. 

Proof of the Lemma: Once again, we use induction on n. Obviously, the Lemma 

holds whenever the two basis elements are in E_ . Assume it holds whenever the 

two basis elements are in E . Now, in En, if both bi and bj are in En_1, the 

statement of the Lemma is true. If xn is a factor of one but not the other, 

the product is in x E and bn cannot occur in the expansion. If b- = x a and 
r n n -1 0 L n 

bA = x d, where c, d e E n, then b-b- = xx„ ^od + cd. The first term is in 
J Yl Yl — x <s d i l Y l — L 

x En_1 and does not contain bQ« By hypothesis, the second term contains b0 if 

and only if o = ds meaning i. = j . This establishes the statement of the Lemma 

for En in all cases, m 

Proof of Theorem 3: Consider the coefficient of ^ in (bibj)bk. By the Lemma, 

it is the coefficient of bk in b^bj. Since 
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(bibj)bk = (bib^bj 

it is also the coefficient of hi in b^b^* m 

Corollary 1: Let i 0 j be the mod 2 sum of i and j as bit vectors. The coef-

ficient of b• ~ • in fc.-&i is one. 

Proof: Let iDj9 i U j be the bitwise AND, bitwise OR of i and j, respectively. 

It will be shown that the coefficient of bQ in fy^jb^b- is one which, together 

with the Lemma proves the Corollary. Now, by rearranging terms, 

and by the Lemma, this contains a b0 in its expansion, m 

The following corollary is an immediate consequence of the Lemma. 

Corollary 2: For any a e E 9 a2 contains bQ in its expansion if and only if a 

is the sum of an odd number of basis elements. 

3. MINIMAL POLYNOMIALS 

The minimal polynomials over GF(2) of the xn are quite easy to compute. 

Starting with p Q(y) = y2 + y + 1, let p (y) = y2p>Q(y + y'1) and, in general, 

V (y) = y2 V (y + y'1)- It is clear that p (x ) = 0 for all n because 

pfe+1(^+1) =^TX(x!<> = °-
Since p has degree 2n + 1, it is the minimal polynomial of xn. The following 

result gives a method for computing the p which is probably better suited to 

calculation. 

Theorem k: Let sequences of polynomials an(y) and bn(y) be defined as follows: 

a 0 = 1 + y2
9 bQ = y and an + 1 = a2

n + b2, bn + 1 = anbn, f o r n = 1, 2 , 3 , . . . . 

Then an + bn is the minimal polynomial of xn. 

Proof: Let x = 1 and observe that, for n > 0, y = xn+1 is a root of aQ + xnbQ 

and, therefore, a root of 

(a0 + a;„fc0)(a0 + x^b 0) = a± + xn_1b1. 

If ?i ) 1, w = i is a root of d n+1 

(ax + ̂ n.A)K + <-A> = a2 + ^n-2^2* 

After repeating this n + 1 times, we see that y = xn + 1 is a root of an + 1+bn + 1. 

It follows from the definition that an has degree 2n+1 and that Z?n has degree 

294 [Nov. 



AN ITERATED QUADRATIC EXTENSION OF GF(2) 

2n + 1 - 1. Thus, an + 2?n has degree 2n + 1 with xn as a root, so it must be the 

minimal polynomial of x . m 

k. EXPERIMENT 

The numbers FQ, F± , F2, F3 , F^ are prime so, by the Corollary to Theorem 1, 

xn has order Fn for n < 4. In addition, using the complete factorizations [4, 

5] of Fn for 5 < n < 8, it has been checked on a computer that xn £ 1 for any 

proper divisor & of Fn for n < 8. It would be desirable to know whether xn al-

ways has order Fn . If this is true, then y = oon_1 . . . xQ is primitive. It 

would be useful to have a good way to compute the minimal polynomials of the 

y • 
5. A FIELD USED BY CONWAY 

J. H. Conway has given an iterated quadratic extension [6, 7] of GF(2) that 

comes from the theory of Nim-like games. In our terminology, this extension 

would be defined by 

c2
n + cn = cn_± ... c0 for n > 1 and c\ + oQ = 1. 

It is well known that any two finite fields of the same order are isomorphic. 

However, we do not yet know of an explicit isomorphism between GF(2) (xn) and 

GF(2)(an). 
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