AN ITERATED QUADRATIC EXTENSION OF $G F(2)$

DOUG WIEDEMANN
University of Waterloo, Waterloo, Ontario, Canada
(Submitted November 1986)

1. A CONSTRUCTION

It is well known (see, for example, Ex. 3.96 of [1]) that the polynomials $x^{2 \cdot 3^{j}}+x^{3^{j}}+1$ are irreducible in $G F(2)[x]$ for $j=0,1,2, \ldots$. Since

$$
\left(x^{2 \cdot 3^{j}}+x^{3^{j}}+1\right)\left(x^{3^{j}}+1\right)=x^{3^{j+1}}+1
$$

is a square-free polynomial, it follows that the period of each root of $x^{2 \cdot 3^{j}}+$ $x^{3^{j}}+1$ is precisely 3^{j+1}, only one and a half times the degree of the polynomial. The field

$$
C_{j} \approx G F(2)[x] /\left(x^{2 \cdot 3^{j}}+x^{3^{j}}+1\right) \approx G F\left(2^{2 \cdot 3^{j}}\right)
$$

may be obtained by iterated cubic extensions beginning with $C_{0} \approx G F(2)\left(x_{0}\right)$, where $x_{0} \neq 1$ is a cube root of unity. We have $C_{1} \approx C_{0}\left(x_{1}\right)$, where x_{1} is any solution to $x_{1}^{3}=x_{0}$. Iterating, $C_{j+1} \approx C_{j}\left(x_{j+1}\right)$, where $x_{j+1}^{3}=x_{j}$.

This paper deals with an iterated quadratic extension of $G F(2)$, whose generators are described by

$$
\begin{equation*}
x_{j+1}+x_{j+1}^{-1}=x_{j} \text { for } j \geqslant 0, \text { where } x_{0}+x_{0}^{-1}=1 \tag{1}
\end{equation*}
$$

Let

$$
E_{0} \approx G F(2)\left(x_{0}\right), E_{1} \approx E_{0}\left(x_{1}\right), \ldots, E_{j+1} \approx E_{j}\left(x_{j+1}\right)
$$

Note that $x_{0}^{2}+x_{0}+1=0$ has no root in $G F(2)$ so the first extension is quadratic. To show that each subsequent extension is quadratic, it need only be shown that the equation for x_{j+1}, which may be rewritten $x_{j+1}^{2}+x_{j+1} x_{j}+1=0$, has no root in E_{j}, for all $j \geqslant 0$. Although this follows almost immediately from theorems about finite fields, for example, Theorem 6.69 of Berlekamp [2], a more elementary proof will be given here. Let

$$
T P^{(n)}(x)=\sum_{i=1}^{2^{n}-1} x^{2^{i}}
$$

Also, let $|E|$ denote the order or number of elements of a finite field E.
Theorem 1: For $j \geqslant 0, x_{j+1} \notin E_{j},\left|E_{j+1}\right|=2^{2^{j+2}}$ and

$$
\operatorname{Tr}^{(j+2)}\left(x_{j+1}\right)=\operatorname{Tr}^{(j+2)}\left(x_{j+1}^{-1}\right)=1
$$

[Nov.

Proof (mathematical induction): Note $x_{0} \notin G F(2)$ and $\operatorname{Tr}^{(1)}\left(x_{0}\right)=\operatorname{Tr}^{(1)}\left(x_{0}^{-1}\right)=1$. The statement of the theorem is therefore true for $j=-1$ if E_{-1} is defined to be $G F(2)$. In a field of characteristic 2, assume $x^{2}=x z+1$. Then,

$$
x^{4}=x^{2} z^{2}+1=x z^{3}+z^{2}+1, x^{8}=x z^{7}+z^{6}+z^{4}+1
$$

and, in general,

Hence,

$$
x^{2^{k}}=x z^{2^{k}-1}+\sum_{i=1}^{k} z^{2^{k}-2^{i}}
$$

$$
\begin{equation*}
x_{j+1}^{2^{2^{j+1}}}=x_{j+1} x_{j}^{2^{2^{j+1}-1}}+x_{j}^{2^{2^{j+1}}}\left(\operatorname{Tr}^{(j+1)}\left(x_{j}^{-1}\right)\right)^{2} . \tag{2}
\end{equation*}
$$

Now assume that the statement of the theorem holds for $j-1$. Then E_{j} has order $2^{2^{j+1}}$ so, if x_{j+1} were in E_{j}, by the Fermat theorem and (2), $x_{j+1}=x_{j+1}+$ $x_{j}\left(\operatorname{Tr}^{(j+1)}\left(x_{j}^{-1}\right)\right)^{2}$. But $\operatorname{Tr}_{r}^{(j+1)}\left(x_{j}^{-1}\right)=1$ by hypothesis, so, by contradiction, x_{j+1} is not in E_{j} itself but in a quadratic extension of E_{j}. The order of E_{j+1} is, therefore, $\left|E_{j}\right|^{2}=2^{2^{j+2}}$, using the second statement of the hypothesis.

Note that the other root to (1) for x_{j+1} is x_{j+1}^{-1}. Also, $G a Z\left(E_{j+1} / E_{j}\right)$ has order 2 so, if σ denotes the nontrivial Galois automorphism, $\sigma\left(x_{j+1}\right)=x_{j+1}^{-1}$. Finally, $\operatorname{Tr}^{(j+2)}$ is the trace map of E_{j+1} to $G F(2)$, so

$$
\operatorname{Tr}^{(j+2)}\left(x_{j+1}^{-1}\right)=\operatorname{Tr}^{(j+2)}\left(x_{j+1}\right)=\operatorname{Tr}^{(j+1)}\left(x_{j+1}+\sigma\left(x_{j+1}\right)\right)=\operatorname{Tr}^{(j+1)}\left(x_{j}\right)=1
$$

by the last part of the hypothesis, completing the statement of the theorem for j.

Corollary: $x_{n}^{F_{n}}=1$, when $n \geqslant 0$ and $F_{n}=2^{2^{n}}+1$ is the Fermat number.
Proof: Define E_{-1} to be $G F(2)$. Since $\left|E_{n}\right|=2^{2^{n+1}}$, the nontrivial member of $\operatorname{GaZ}\left(E_{n} / E_{n-1}\right)$ is given by $\sigma_{n}(y)=y^{2^{2^{n}}}$. Since the conjugate of x_{n} over the field E_{n-1} is $x^{-1}, x_{n}^{2^{2 n}}=x_{n}^{-1}$. Thus, $x_{n}^{F_{n}}=1$.

The order of a field element is defined to be the smallest nonnegative power which equals 1 . In the case where F_{n} is prime, the above result implies that x_{n} has order F_{n}. In any case, the order of x_{n} divides F_{n}. Since the Fermat numbers are known to be mutually relatively prime, for example, see Theorem 16 of [3], the order of $x_{n} x_{n-1} \cdots x_{0}$ is the product of the orders of the x_{i}, $i \leqslant n$. We say an element of a field is primitive if its order is the same as the number of nonzero field elements. If the order of x_{i} is, in fact, F_{i} for $i \leqslant n$, then $x_{n} x_{n-1} \cdots x_{0}$ is a primitive element of E_{n}, because

$$
F_{n} F_{n-1} \cdots F_{0}=2^{2^{n+1}}-1=\left|E_{n}\right|-1
$$

We have not been able to determine if $x_{n} x_{n-1} \cdots x_{0}$ is always primitive.

AN ITERATED QUADRATIC EXTENSION OF GF(2)

2. BASIS SETS

There are several natural ways to construct a basis of E_{n} as a vector space over $G F(2)$. One such is of course the set of powers $x_{n}^{i}, 0 \leqslant i<2^{n+1}$, because $E_{n}=G F(2)\left(x_{n}\right)$ is a degree 2^{n+1} extension of $G F(2)$. Another basis is the collection of elements of the form $x_{n}^{\delta_{n}} \cdots x_{0}^{\delta_{0}}$, where each $\delta_{i} \in\{0,1\}$. This can be shown by induction on n. Clearly, $x_{0}^{0}=1$ and x_{0}^{1} span E_{0}. Since E_{n} is a quadratic extension of E_{n-1}, every member of E_{n} is uniquely expressible as $a x_{n}+b$, where $a, b \in E_{n-1}$. Assuming a and b can be expressed as sums of the $x_{n-1}^{\delta_{n-1}} \cdots$ $x_{0}^{\delta_{0}}$, it follows easily that E_{n} is spanned by the $x_{n}^{\delta_{n}} \cdots x_{0}^{\delta_{0}}$. It immediately follows that these elements form a basis because the number of them is the same as the dimension of the space spanned.

Another basis consists of elements of the form $x_{n}^{\varepsilon_{n}} \ldots x_{0}^{\varepsilon_{0}}$, where $\varepsilon_{i} \in\{ \pm 1\}$. This is shown by a similar argument which uses the fact that each element of E_{n} equals $a x_{n}+b=a x_{n}+c x_{n-1}=(a+c) x_{n}+c x_{n}^{-1}$ for some $a, b, c \in E_{n-1}$.

Theorem 2: The following are bases of E_{n} :

$$
\begin{aligned}
\text { i) } & x_{n}^{\delta_{n}} \cdots x_{0}^{\delta_{0}} \quad \delta_{i} \in\{0,1\} \quad \text { ii) } x_{n}^{\varepsilon_{n}} \cdots x_{0}^{\varepsilon_{0}} \quad \varepsilon_{i} \in\{-1,1\} \\
\text { iii) } & x_{n}^{2^{i}} 0 \leqslant i<2^{n+1}
\end{aligned}
$$

Proof: It has already been shown that i) and ii) each form a basis. The elements iii) are the conjugates of x_{n} over $G F(2)$, and it will be shown that they are linearly independent. This will be done by induction. Certainly, x_{0} and $x_{0}^{2}=x_{0}+1$ are linearly independent over $G F(2)$. Assume that the conjugates of x_{n-1} in E_{n-1} are linearly independent. The transformation $\sigma_{n}(y)=y^{2^{2^{n}}}$ takes each conjugate of x_{n} to its reciprocal. If a combination of the conjugates vanishes, then grouping by reciprocal pairs gives

$$
\begin{equation*}
\sum_{i=0}^{2^{n}-1}\left(\alpha_{i} x_{n}^{2^{i}}+\beta_{i} x_{n}^{-2^{i}}\right)=0 \tag{3}
\end{equation*}
$$

where $\alpha_{i}, \beta_{i} \in G F(2)$. Applying σ_{n} to both sides interchanges α_{i} and β_{i}. Adding this to the original equation gives

$$
0=\sum_{i=0}^{2^{n}-1}\left(\alpha_{i}+\beta_{i}\right)\left(x_{n}^{2^{i}}+x_{n}^{-2^{i}}\right)=\sum_{i=0}^{2^{n}-1}\left(\alpha_{i}+\beta_{i}\right) x_{n-1}^{2^{i}}
$$

By the inductive hypothesis, $\alpha_{i}+\beta_{i} \equiv 0$. Thus, the sum (3) can be rewritten:

$$
\sum_{i=0}^{2^{n}-1} \alpha_{i} x_{n-1}^{2^{i}}
$$

this time the hypothesis implies $\alpha_{i} \equiv \beta_{i} \equiv 0$. Thus, iii) forms a basis.

AN ITERATED QUADRATIC EXTENSION OF GF(2)

In some sense the most interesting is the basis i) because the set for E_{n-1} is contained in the set for E_{n}. Therefore, the union of all bases given by i) is a basis for the infinite field which is the union of all the E_{n}. Another interesting property of the basis i) is that every boolean polynomial in n variables corresponds to an element of E_{n}. These boolean polynomials can be multiplied as elements of E_{n} in a straightforward if tedious manner. To multiply two such elements, collect all terms containing x_{n} to one side. Then using

$$
\left(a x_{n}+b\right)\left(c x_{n}+d\right)=\left(a c x_{n-1}+b c+a d\right) x_{n}+(a c+b d)
$$

the product is computable in terms of a few products in E_{n-1}. Using this formula, it can be seen, though the proof is omitted, that the "degree" of the product of the two elements does not exceed the sum of their degrees. By the degree of a field element, we mean the degree of the associated boolean polynomial.

Each basis element of i) can be identified with the $0-1$ vector, or bit vector, $\left(\delta_{n}, \ldots, \delta_{0}\right)$ which, in turn, can be identified with the integer

$$
\delta_{n} 2^{n}+\cdots+\delta_{0} 2^{0}
$$

Let b_{i} be the basis element associated with the integer i. We now prove a fact regarding the expansion of a product of two basis elements as the sum of basis elements.

Theorem 3: For any i, j, and k the expansion of $b_{i} b_{j}$ contains b_{k} if and only if the expansion of $b_{i} b_{k}$ contains b_{j}.

Lemma: For all i and $j, b_{i} b_{j}$ contains the basis element $b_{0}=1$ if and only if $i=j$.

Proof of the Lemma: Once again, we use induction on n. Obviously, the Lemma holds whenever the two basis elements are in E_{-1}. Assume it holds whenever the two basis elements are in E_{n-1}. Now, in E_{n}, if both b_{i} and b_{j} are in E_{n-1}, the statement of the Lemma is true. If x_{n} is a factor of one but not the other, the product is in $x_{n} E_{n-1}$ and b_{0} cannot occur in the expansion. If $b_{i}=x_{n} c$ and $b_{j}=x_{n} d$, where $c, d \in E_{n-1}$, then $b_{i} b_{j}=x_{n} x_{n-1} c d+c d$. The first term is in $x_{n} E_{n-1}$ and does not contain b_{0}. By hypothesis, the second term contains b_{0} if and only if $c=d$, meaning $i=j$. This establishes the statement of the Lemma for E_{n} in all cases.

Proof of Theorem 3: Consider the coefficient of b_{0} in $\left(b_{i} b_{j}\right) b_{k}$. By the Lemma, it is the coefficient of b_{k} in $b_{i} b_{j}$. Since

AN ITERATED QUADRATIC EXTENSION OF GF(2)

$$
\left(b_{i} b_{j}\right) b_{k}=\left(b_{i} b_{k}\right) b_{j}
$$

it is also the coefficient of b_{j} in $b_{i} b_{k}$.
Corollary 1: Let $i \oplus j$ be the mod 2 sum of i and j as bit vectors. The coefficient of $b_{i \oplus j}$ in $b_{i} b_{j}$ is one.
Proof: Let $i \cap j$, $i \cup j$ be the bitwise AND, bitwise OR of i and j, respectively. It will be shown that the coefficient of b_{0} in $b_{i \oplus j} b_{i} b_{j}$ is one which, together with the Lemma proves the Corollary. Now, by rearranging terms,

$$
b_{i \oplus j} b_{i} b_{j}=\left(b_{i \oplus j} b_{i \cap j}\right)^{2}=\left(b_{i \cup . j}\right)^{2}
$$

and by the Lemma, this contains a b_{0} in its expansion.
The following corollary is an immediate consequence of the Lemma.
Corollary 2: For any $a \in E_{n}, a^{2}$ contains b_{0} in its expansion if and only if a is the sum of an odd number of basis elements.

3. MINIMAL POLYNOMIALS

The minimal polynomials over $G F(2)$ of the x_{n} are quite easy to compute. Starting with $p_{0}(y)=y^{2}+y+1$, let $p_{1}(y)=y^{2} p_{0}\left(y+y^{-1}\right)$ and, in general, $p_{n}(y)=y^{2^{n}} p_{n}\left(y+y^{-1}\right)$. It is clear that $p_{n}\left(x_{n}\right)=0$ for all n because

$$
p_{k+1}\left(x_{k+1}\right)=x_{k+1}^{2^{k+1}} p_{k}\left(x_{k}\right)=0
$$

Since p has degree 2^{n+1}, it is the minimal polynomial of x_{n}. The following result gives a method for computing the p_{n} which is probably better suited to calculation.

Theorem 4: Let sequences of polynomials $a_{n}(y)$ and $b_{n}(y)$ be defined as follows:

$$
a_{0}=1+y^{2}, b_{0}=y \text { and } a_{n+1}=a_{n}^{2}+b_{n}^{2}, b_{n+1}=a_{n} b_{n}, \text { for } n=1,2,3, \ldots
$$

Then $a_{n}+b_{n}$ is the minimal polynomial of x_{n}.
Proof: Let $x_{-1}=1$ and observe that, for $n \geqslant 0, y=x_{n+1}$ is a root of $a_{0}+x_{n} b_{0}$ and, therefore, a root of

$$
\left(a_{0}+x_{n} b_{0}\right)\left(a_{0}+x_{n}^{-1} b_{0}\right)=a_{1}+x_{n-1} b_{1}
$$

If $n \geqslant 1, y=x_{n+1}$ is a root of

$$
\left(a_{1}+x_{n-1} b_{1}\right)\left(a_{1}+x_{n-1}^{-1} b_{1}\right)=a_{2}+x_{n-2} b_{2}
$$

After repeating this $n+1$ times, we see that $y=x_{n+1}$ is a root of $\alpha_{n+1}+b_{n+1}$. It follows from the definition that a_{n} has degree 2^{n+1} and that b_{n} has degree
$2^{n+1}-1$. Thus, $a_{n}+b_{n}$ has degree 2^{n+1} with x_{n} as a root, so it must be the minimal polynomial of x_{n}.

4. EXPERIMENT

The numbers $F_{0}, F_{1}, F_{2}, F_{3}, F_{4}$ are prime so, by the Corollary to Theorem 1 , x_{n} has order F_{n} for $n \leqslant 4$. In addition, using the complete factorizations [4, 5] of F_{n} for $5 \leqslant n \leqslant 8$, it has been checked on a computer that $x_{n_{k}} \neq 1$ for any proper divisor k of F_{n} for $n \leqslant 8$. It would be desirable to know whether x_{n} always has order F_{n}. If this is true, then $y_{n}=x_{n-1} \ldots x_{0}$ is primitive. It would be useful to have a good way to compute the minimal polynomials of the y_{n}.

5. A FIELD USED BY CONWAY

J. H. Conway has given an iterated quadratic extension [6, 7] of GF (2) that comes from the theory of Nim-like games. In our terminology, this extension would be defined by

$$
c_{n}^{2}+c_{n}=c_{n-1} \cdots c_{0} \text { for } n \geqslant 1 \text { and } c_{0}^{2}+c_{0}=1
$$

It is well known that any two finite fields of the same order are isomorphic. However, we do not yet know of an explicit isomorphism between $G F(2)\left(x_{n}\right)$ and $G F(2)\left(c_{n}\right)$.

ACKNOWLEDGMENT

The author would like to thank Norman Herzberg and Neal Zierler for their assistance.

REFERENCES

1. R. Lidl \& H. Niederreiter. Introduction to Finite Fields and Their Applications. Cambridge: Cambridge University Press, 1986.
2. E. R. Berlekamp. Algebraic Coding Theory. New York: McGraw-Hill, 1968.
3. G. H. Hardy \& E. M. Wright. The Theory of Numbers. Oxford: Oxford University Press, 1971. Fourth Edition.
4. R. P. Brent \& J. M. Pollard. "Factorization of the Eighth Fermat Number." Math. Comp. 36 (1981):627-630.
5. J. C. Hallyburton, Jr., \& J. Brillhart. "Two New Factors of Fermat Numbers." Math. Comp. 29 (1975):109-112; see also Corrigenda, Math. Comp. 30 (1976):198.
6. J. H. Conway. On Numbers and Gomes. New York: Academic Press, 1976.
7. J. H. Conway \& N. J. A. Sloane. "Lexicographic Codes: Error-Correcting Codes from Game Theory." IEEE Transactions on Information Theory 32 (May 1986).
