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1. Introduction

Recurring sequences such as the Fibonacci sequence defined by

Fo=0,F =1, F =F | +F ,,nz2 (1.1)
and the Lucas sequence given by
Ly=2,Ly =1L, =1L, _; +L, ,,n2=>2, (1.2)

have been extensively studied because they have many interesting combinatorial
properties.
In the present paper, we study the sequence

{L2n+1}::0’

which obviously satisfies the recurrence relation
Ly =1, Ly =4, 3Lppt1 = Lop-1 = Loni3s (1.3)

and is generated by [9, p. 125]

7

;g%L2n+1t” = (1 + &)1 -3¢+t |¢] < 1. (1.4)
It can be shown that these numbers possess the following interesting property,

ngo("l)n+k(in_+kl>L2k+l =1, (1.5)

for every nonnegative integral value of 7, which can be rewritten as

n (-1)%Lops _ -1" . (1.6)
io(n - kK)t(n + k + 1)1 (2n + 1)1

In sections 2 and 3, we study two different g-analogues of [,,,;. In the
last section we pose some open problems and make some conjectures. As usual,
we shall denote the rising g—~factorial by

= (1 - aq®)
as - b S A 1.7)
(as q), i[% 1~ aa™ (
Note that, if »n is a positive integer, then
(a; @), = (L =a)(l - ag) ... (1 -ag*™ 1), (1.8)
and
lim(a; q), = (a; g, = (1 = a)(1l - ag) (1 - ag)... . (1.9)

(R
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The Gaussian polynomial [Z] is defined by [4, p. 35]

" (g5 9,/ P,(q;5 @, ., if 0<m=<mn,
7] -

0 otherwise.

2. First g-Analogue of L,,,,

To obtain our first g-analogue of L,,,;, we use the following lemma, due
Andrews [5, Lemma 3, p. 8].

Lemma 2.1: 1If, for n = 0,

n

o
g = k ) (2.
" k2=:0 (@5 Dn-x(aq; PDnix
then (n—k
n (aq; Quax-1(-1)""Fg\ 2 )sk
o, = (1 - aq?™) ¥ - (2.
K=o (@5 @In-x
Multiplying both sides of (2.1) by (1 - ¢)~!, with a = and
q q
n
B, = (‘]—) s
" @ Do
and using (1.8), we obtain
-1)" n a
1) k , n =0, (2.

(93 @ons1 T (g Dn-x(qs Pnsr+1

which, when compared with (1.6), will give us our first g-analogue of L,,,;
we let a; play the role of (—1)kL2k+1. Observe that (2.3), by using (1.10),
equivalent to

k=0 n

Letting oy = Ck(q)(—l)k in (2.4) and (2.3), we have

k=0 [

and, by applying Lemma 2.1 to (2.3),

(%)
& n+ k10 - q2n+1)q 2
C,(q) ~k2=:0 [m N k] TEpIT T nz 0. (2.
Now we prove the following:
Theorem 2.1: For all n = 0, C,(q) is a polynomial.
Proof: Let
N n + j 1 - q2n+l (nEJ
Dn’j(C[) = [7’2 _ J]—“‘——‘l ~ q2j+l q ). (2

) (~1)”uk[2”_+kl] =1, n>0. 2.

o2 e @ =1, 20, (2.

(1.10)

to

9]

2)

3)

if

is

4)

5)

6)

.7)
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Since
n
Col@) = 2 Dy 5(Q)s
Jjg=0

it suffices to prove that Dn,j(q) is a polynomial. Now

(L = g23+] 4 g23+] _ g2+l n-j
Dn,j(q) l:n + J] 4 q 4 ) q( 2 )

n - gi (1 - g2i+1)

S

n + j]<1 .\ g2i*1(1 - q2n—2j)>q(n£j>

/ 1 - q2j+l

- J
. . n-g - .
j]q(nEJ) L q>n+jq2J+1+( 2 ) - iy v )
(@5 Dn-5(q5 @21 - g2d+1)

N
+

N
|
[

S
.

[
|
[ ']q(nij) S P 1]q25+1+(n5j><1 + ),

N
I+
Q

which is obviously a polynomial.

Theorem 2.2: The coefficient of ¢" in C,(g) equals twice the number of parti-
tions of » into distinct parts.

Proof: C.(q) = lim Cp(q) = lim 3. {2”.‘ j] - q**h q<g)

N> n>w j=0 dJ (]_ - q2n—2j+l)
S S 3 I
= Z: — qq , since it can be shown that
i=0 (g5 q@);
L 42n +al _ R 1
%1ﬂ[n + b] _,Illl - q”' (2.8)

Using the identity [4, Eq. (2.2.6), p. 19], we have

- q(g) i« ) I ( ) (2.9)
4 = 1+qgn =201+ gm. 2.9
jgo (@5 @); n=o0 7 n=1 7

Noting that [] (1 + g™ generates partitions into distinct parts, we are done.
n=1

We now note that the numbers
Dn,n—j(l) = d

have a combinatorial meaning. However, we first recall the definitions of
lattice points and lattice paths.

g

Definition 2.1: A point whose coordinates are integers is called a lattice
point. (Unless otherwise stated, we take these integers to be nonnegative.)

Definition 2.2: By a lattice path (or simply a path), we mean a minimal path
via lattice points taking unit horizontal and unit vertical steps.

In Church [2], it is shown that dn,x (0 < k < n) 1is the number of lattice
paths from (0, 0) to (27 + 1 - k, k) under the following two conditions:
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(1) The paths do not cross y = x + 1 (or, equivalently, do not have two verti-
cal steps in succession).

(2) The first and last steps cannot both be vertical.
Example: For n = 3, we have d3,o = 1, d3,1 = 7, d3, o = 14, and d3 3 = 7.

The values d,,; also appear along the rising diagonals (see [8, p. 486]).

3. Second g-Analogue of L,,,;

The second g-analogue of the numbers L,,,; is suggested by the g-extension
of Fibonacci numbers found in the literature (cf. [3, p. 302; 1, p. 71).
Equation (l.4) can be written as

© 0 tn
n - —_—
Lloner 17 = (L4 D) B (3.1
provided |t/(1 - t)2| < 1.
Letting
© ™ nztn
T (th = A +t) Y —, (3.2)
w n‘\;o (ts g)on+2
we have
Lott= 1+ Y % [2” tl+ m]qnzt’””’, (3.3)
n=0 n=0 m=0 mn
by using [4, Eq. (3.3.7), p. 36], which is
a_a[r+g -1
(25 Oyl =X A PER (3.4)
N i=o0 J
Equating the coefficients of ¢” in (3.3), we get
— 7 n-1
Cnlq) = ZOBn,m(q) + ZOBn—l,m(q)’ (3.5)
m= m=
where
- -m+
By m(@) = g my2 [Zn mm 1}. (3.6)

Since each B, ,(q) is a polynomial, Eg(q) is also a polynomial for all n > O.

Theorem 3.1: Let

Cal@) = Lin(1 - %) ioin(qnn. (3.7)
Then
Culq) = 2(P1(q) + qP2(q)), (3.8)

where Py (q) is an enumerative generating function which generates partitions
into parts which are either odd or congruent to 16 or 4 (mod 20), and P,(g) is
another enumerative generating function which generates partitions into parts
which are either odd or congruent to 12 or 8 (mod 20).

172 [May



PROPERTIES OF A RECURRING SEQUENCE

Proof: Starting with the left-hand side of (3.7), we have

_ = (1 + t)qnitn e q"*
lim(l - ¢) —_—t T = . S
£ a1 n};O (T3 Poans2 n=0 (@5 @)on+1

5 i qnz (1 q2n+l
[ S —— + _—
n=o (@5 @ on 1 - q2”+1>
o qnz © qn(n+2)

— 1 42 A
R TR PO R e P

Co(q)

= 2

Now, an appeal to the following two identities found in Slater's compendium [6,
I-(74), p. 160; I-(96), p. 162], i.e.,

ﬁl(l _ qZOn—B)(l _ q20n—12)(1 — C12071)

o (1 - an) o qnz
=11 s 3.9
n=1 (1 +q2”‘1)n>=:o (G5 @) on ( )

and

ﬁl(l _ qun—H)(l _ q10n—6)(1 - q20n—18)(1 - q20n—2)(1 _ qIOn)

® o qn(n+2)
=M a-¢v ¥y ——" (3.10)
n=1 n=0 (95 @on+1
proves the theorem.
Next, we define the polynomials E, ,(q) by

By,m(q@) + By-1,m(q) 1f 0 <m<n -1,

En,m(q) = [” ;: 1] if m=mn, (3.11)
0 otherwise.

To give a combinatorial interpretation of the polynomials Bj,,n(q) and Ev,m(q)»
we consider an integer triangle whose entries e, ; (n =0, 1, 2, ...50 < k < n)
are given by

€k = bux * bn-1,15 (3.12)

where b,,x is the (k + 1)th coefficient in the expansion of (x + y)2”+1'k when
0 <k <n, and b, 3 =0 for k > n.
It can be shown that

n n
2 by k= Fonso and ¥ ek = Lopy1-
k=0 k=0
Note that E, ,(q) and By,n(q) are g-extensions of the numbers e, , and bu,m
respectively. Moreover, B, ,(1) = bu,m is the number of lattice paths from (1,
0) to (2n + 1 - m, m) with no two successive vertical steps. Defining Z,(q) by

E,(q) = ZO [infkl]c—’k(q)(-l)”‘k, (3.13)

k=
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it is easy to show that E, (q) is a polynomial in g where the sum of the coeffi-
cients is equal to unity.

Note also that (2.7) and (3.13) are g-analogues of (1.5).

Finally, we set

Dn<q>==;§05n,m(q>, (3.14)

and observe that D,(q) is a g-analogue of W, ., where W/, is the weighted compo-
sition function with weights 1, 2, ..., n [7, p. 39]; hence, (3.5) leads to the
formula

Lopy1 = Wyyy + Wy m 2 1. (3.15)
Note that the sum of the coefficients of D, (g) is the Fibonacci number Fy, 5.

We close this section with the following theorem, which is easy to prove.

Theorem 3.2: Let 5;(q) be defined by (3.7) and D,(g) = lim D,(q), then

7> ©

Du(@) = 3 Cul@) (3.16)

4. Conclusion

We have given several combinatorial interpretations of the polynomials

Cal@)s Duym(@)s €, (@) s Bu,m(q)s and E, n(q) at q = 1,

the most obvious question that arises is: Is it possible to interpret these
polynomials as generating functions? We make the following conjectures:

Conjecture 1: 1In the expansion of (,(q), the coefficient of gk (k < 2n - 2)
equals twice the number of partitions of k into distinct parts.

Conjecture 2: TFor 1 < k < n, let

A(k, n) = the number of partitions of k into parts
£ 0, 2, *6, *8, 10 (mod 20) + the number of partitions
of k - 1 into parts # 0, *2, *4, *6, 10 (mod 20).

then the coefficient of qk in the expansion of D, (g) equals Ak, n).

Conjecture 3: 1In the expansion of (,(gq), the coefficient of gk (k < n - 1)
equals 24(k, n - 1).

Remark: Theorems 2.2, 3.1, and 3.2 are the limiting cases n + » of Conjectures
1, 3, and 2 respectively.

We hope that some interested readers can prove Conjectures 1, 2, and 3.
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