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1. Introduction 

Recurring sequences such as the Fibonacci sequence defined by 

^0 = 0' Fl = U Fn = *"„-! + Fn-2> n S 2 d - D 

and the Lucas sequence given by 

LQ = 25 Ll = 1; Ln = Ln_l +• Ln_2, n > 25 (1.2) 

have been extensively studied because they have many interesting combinatorial 
properties, 

In the present paper, we study the sequence 

which obviously satisfies the recurrence relation 

Li = 1, L3 = 4S 3L2n+i - L2n-i = L2n+3s (1.3) 

and is generated by [9, p» 125] 

n 
Y*L2n + ltn = (1 + t)(l --3£ + t 2)" 1 , \t\ < 1. .(1-4) 

It can be shown that these numbers possess the following interesting property, 

t(-l)n + k(^+
k

l)L2k + 1 - 1, (1.5) 
n = 0 \ TL - K. f 

for every nonnegative integral value of n, which can be rewritten as 

(1.6) (-1)%*+! ("Dn 

^=0 (n - k)!(n + k + 1)! (2n + 1)! 

In sections 2 and 3, we study two different ^-analogues of ^2n + l* ^n t^ie 

last section we pose some open problems and make some conjectures. As usual, 
we shall denote the rising ^-factorial by 

^ ? ) n v n . 7 T — - ^ r b d-7) (1 - a<T) 
"o (1 - aan + i) 

Note that, if n is a positive integer, then 

(a; ?)„ = (1 - a)(l - aa) ... (1 - a?""1), (1.8) 
and 

lim(a; q)n = (a; q)^ = (1 - a) (I - aq) {I - aq2). . . . (1 = 9) 
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The Gaussian polynomial is defined by [4, p. 35] 

( ? ; ? ) „ / ( ? ; <?)m(<7; ^ ) W - O T
 i f 0 < m < n, 

0 otherwise. 
(1.10) 

2. First q-Analogue of L2n + 1 

To obtain our first ^-analogue of i/2« + l> w e u s e t n e following lemma, due to 
Andrews [5, Lemma 3, p. 8]. 

Lemma 2.1: If, for n > 0, 

Pn - 2-» 7 \ 
£ = 0 w ; <7)n-fe 

then 

£ = 0 (?; q)n-k(aq; q)n + k' 

Bi 

(n-k\ 

2n, f (gg; <7W-i(-i)"-y 2 ; 

an = (1 - a^Zn) £ : : ~-
k=o (q; q)n-k 

Multiplying both sides of (2.1) by (1 - q)~l
9 with a = q and 

pn - — ~ — , 
( ? ; g ) 2 ^ 

and using (1.8), we obtain 

(2.1) 

(2.2) 

(<?5 g)2n+l k = 0 (qi q)n-k(qi <?)n + £:+l 
, n > 0, (2.3) 

which, when compared with (1.6), will give us our first ^-analogue of î 2n + l ^ 
we let ak play the role of (~l)kLlk+l. Observe that (2.3), by using (1.10), is 
equivalent to 

k = o k 

'In + ll 
n - k J 1, n > 0. 

Letting ak = ^(qO (»l)fe in (2.4) and (2.3), we have 

±t-»-f::l Ck(q) = 1, n > 0, 

and, by applying Lemma 2.1 to (2.3), 
(n-k\ 

-Y2n+l\n\ 2 / 
C% H

 fcf 0 L« - k] ( 

(1 - qZn+i)c 
-, n > 0 . 

[1 - qZk+1) 

Now we p r o v e t h e f o l l o w i n g : 

Theorem 2.1: For a l l n > 0 , Cn(q) i s a p o l y n o m i a l . 

Proof: Let 

(2 .4 ) 

(2 .5 ) 

( 2 . 6 ) 

ln ~ J J l - <7^' + 1 (2 .7 ) 
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S ince 

Cn(q) = E Dn,nW> 
J = 0 

it suffices to prove that Dnj(q) is a polynomials Now 

Dn.M) 
n + a 
n - 3 

(1 - q23 + l + qz0 + l - q2n+1) ("-->') 

\ n + 

In -

(1 - q2J + l) 

L , ^+1(i-^-^)V(V) 

Ln - j]q 

Lft - j_P 

(q; q)n-tj(q; q) 2- (1 - ^2j + 1) 

• « + ,/ "I 2j + l+(Y)(l +qn-J)t 
n - j - 1 j n n 

which is obviously a polynomial,, 

Theorem 2.2: The coefficient of qn in Cm(q) equals twice the number of parti-
tions of n into distinct parts,, 

:in-f\ (1 - q2n + 1) J}) n (-• 

Proof: Cm{q) = lim Cn{q) = lim £ ' 
n -> oo 77 -> oo j = o L 

<T 

= E i 
j = o (q ; <?). 

(1 - ^ n - 2 J + l ) 

q\z/5 s i n c e i t can be shown t h a t ,(0. 
lim 
n+ oo 

2n + a 
.ft + b . = n n-i 1 - ? n 

Using the identity [4, Eq. (2.2.6), p. 19], we have 

(2) 
£ T 5 r- = ft (1 + qn) = 2 ft (1 + ?") • 
j=0 W5 ?/j "-0 " = 1 

(2.8) 

(2.9) 

Noting that ft (1 + qn) generates partitions into distinct parts, we are done. 
M = l 

We now note that the numbers 

have a combinatorial meaning„ However, we first recall the definitions of 
lattice points and lattice paths. 

Definition 2.1: A point whose coordinates are integers is called a lattice 
point. (Unless otherwise stated, we take these integers to be nonnegative.) 

Definition 2.2: By a lattice path (or simply a path) , we mean a minimal path 
via lattice points taking unit horizontal and unit vertical steps. 

In Church [2], it is shown that dn, k (0 < k < ft) is the number of lattice 
paths from (0, 0) to (2ft + 1 - k9 k) under the following two conditions: 
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(1) The paths do not cross y = x + I (or, equivalently, do not have two verti-
cal steps in succession). 

(2) The first and last steps cannot both be vertical. 

Example: For n = 3, we have ^3,0 = 1> ^3,1 = 7» ^3,2 = 14, a n d ^3,3 = 7-

The values dn ^ also appear along the rising diagonals (see [8, p. 486]). 

3. Second q-Analogue of L2n + 1 

The second ^-analogue of the numbers L2n+i is suggested by the ^-extension 
of Fibonacci numbers found in the literature (cf. [3, p. 302; 1, p. 7]). 

Equation (1.4) can be written as 

±L2n + l tn = (1 + t) ± „ *" n + 2, 
n = 0 rc = 0 (1 - £.) + 

(3.1) 

provided |t/(l - t)&\ < 1. 
Letting 

qn2tn 

we have 

E ^o?)** = (i + t) E ,, , 

E £„(<7)*w = (i + t) E E 
n = 0 n = o m = 0 

In + 1. + w 
77Z 

1<7"V + W 

by using [4, Eq. (3.3.7), p. 36], which is 

(2; q)\ 
j=o 

N + j - 1" 
J 

Equating the coefficients of t n in (3.3), we get 

n- 1 

where 

-°n- 1, m (?), 
777= 0 777= 0 

^,m(<?) = <7 
(n-m)< 2n - m + I 

m 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Since each 5 n OT(^) is a polynomial, Cn(q) is also a polynomial for all n > 0. 

Theorem 3.1: Let 

Then 

£„(?) = lim(l - t) Y.Cn{q)tn. 

£„(<?) = 2(P1(q) + qP2(q))> 

(3.7) 

(3.8) 

where ^i(^) is an enumerative generating function which generates partitions 
into parts which are either odd or congruent to 16 or 4 (mod 20), and P2(q) is 
another enumerative generating function which generates partitions into parts 
which are either odd or congruent to 12 or 8 (mod 20). 
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Proof: S t a r t i n g w i t h t h e l e f t - h a n d s i d e of ( 3 . 7 ) , we have 

_ oo ( 1 _1_ 4-\nn2-4-n oo nn2-

CAq) = limd " t) E (+. I? = 2 £ t + 1 n = 0 ( £ ; ^?)2n + 2 n = 0 ( ? 5 ? ) 2 n + l 

n = 0 (^7; ^ 2 n \ 1 - qln+l 

T = 2 E v N— + 2q E ? r • 
n = 0 W 5 ^ 2 n n = 0 W ? <?v2n + l 

Now, an a p p e a l t o t h e f o l l o w i n g two i d e n t i t i e s found i n S l a t e r ' s compendium [ 6 , 
I - ( 7 4 ) , p . 160; I - ( 9 6 ) , p . 1 6 2 ] , i . e . , 

ft (1 - q20n-8)d - q20n-l2)a - q20n) 
n= 1 

~ (1 -' q2n) ^ qn^ 
n - l (1 + q2n~l) n = 0 (q; ( ? ; <?)2n 

( 3 . 9 ) 

and 

0 ( 1 - ^1 0 n"1 +)( l - ql0n-e)(l - q 2 0 " - 1 8 ) ( l - <7 2 0 n - 2 ) ( l - ql0n) 
n = 1 

00 00 nn(n + 2) 

= n (i - ?") E T - 2 - ^ — . <3-10> 
n - l n = 0 C ^ ; q)2n+l 

proves the theorem. 

Next, we define the polynomials En^m(q) by 

(#n,m(<7) + 5n-ifOT(d7) if 0 < m < n - 1, 

*n.m(?> = < [ n ^ *] if m-n, • (3.11) 

VO otherwise. 

To give a combinatorial interpretation of the polynomials BniTn(q) and EntTn(q)9 
we consider an integer triangle whose entries enfk (n = 0, 1, 2, . .. ; 0 < fc < n) 
are given by 

en3k = bn,k + &n-l,fc» ( 3 ' 1 2 ) 

where &njk is the (k + l) t h coefficient in the expansion of (£ + y)2n + l~k when 
0 < fe < n, and 2?n> k = 0 for k > n. 

It can be shown that 

n n 
E bn9k = F 2 n + 2 and E en,fe = L2n + l-

fe=0 fc = 0 

Note that En9m(q) and Bna-m(q) are ̂ -extensions of the numbers £nsOT and bn,m 
respectively. Moreover, 5„>m(l) = £>n,m is the number of lattice paths from (1, 
0) to {In + 1 - m9 m) with no two successive vertical steps. Defining En(q) by 

EnW = to[2;_+^Ck(q)(-ir-k, (3-13) 
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it is easy to show that En (q) is a polynomial in q where the sum of the coeffi-
cients is equal to unity. 

Note also that (2.7) and (3.13) are ^-analogues of (1.5). 
Finally, we set 

Dn(q) = t Bn,m(q), (3.14) 
m= 0 

and observe that Dn(q) is a q'-analogue of Wn+i> where Wn is the weighted compo-
sition function with weights 1, 2, ..., n [7, p. 39]; hence, (3.5) leads to the 
formula 

^2n+l = Wn+l + K> n > 1. (3.15) 

Note that the sum of the coefficients of Dn(q) is the Fibonacci number ^2n+2a 

We close this section with the following theorem, which is easy to prove. 

Theorem 3.2: Let Cm(q) be defined by (3.7) and Dm(q) = lim Dn (q), then 

D„(q) = \ Ca(q). (3.16) 

4. Conclusion 

We have given several combinatorial interpretations of the polynomials 

CnW> Dn9mW* CnW> Bnim(q)^ and En>m(q) at q = 1, 
the most obvious question that arises is: Is it possible to interpret these 
polynomials as generating functions? We make the following conjectures: 

Conjecture 1: In the expansion of Cn(q) , the coefficient of qk (k < 2n - 2) 
equals twice the number of partitions of k into distinct parts. 

Conjecture 2: For 1 < k < n, let 
A(k, ri) - the number of partitions of k into parts 
t 0, ±2, ±6, ±8, 10 (mod 20) + the number of partitions 
of k - 1 into parts $ 0, ±2, ±4, ±6, 10 (mod 20). 

then the coefficient of qk in the expansion of Dn(q) equals A(k, n). 

Conjecture 3: In the expansion of Cn (q) , the coefficient of qk (k < n - 1) 
equals 2A(k, n - 1). 

Remark: Theorems 2.2, 3.1, and 3.2 are the limiting cases n •> °°  of Conjectures 
1, 3, and 2 respectively. 

We hope that some interested readers can prove Conjectures 1, 2, and 3. 
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