Daniel C. Fielder and Cecil O. Alford Georgia Institute of Technology, Atlanta, Georgia 30332-0250 (Submitted April 1987)

1. Introduction

In letters [1] to one of us (Fielder) in mid-1977, the late Verner Hoggatt conjectured that the third diagonal of Pascal's triangle could be used in a simple algorithm to generate rows of integers whose row sums equaled correspondingly indexed Baxter permutation values (see [3], [4]). Later, in 1978, Chung, Graham, Hoggatt, and Kleiman produced a remarkable paper [2] in which they derived a general solution for Baxter permutation values.

In planning an extension of Hoggatt's work, we searched for, but never found, a proof of Hoggatt's conjecture or even a documented statement of the conjecture. Reference [2] did, however, state that Hoggatt had found a simple way of finding the first ten Baxter permutation values but, again, without giving the conjecture. In this note, we formalize Hoggatt's conjecture, derive formulas for the values predicted by the conjecture, and then prove the conjecture. As new material, we extend Hoggatt's conjecture to *all* Pascal diagonals. In so doing, we will introduce structures called *Hoggatt triangles* and integers called *Hoggatt sums*. These names were the explicit choice of one of us (Fielder) as a tribute to Verner Hoggatt for his work with Pascal triangles and, in some small way, to express gratitude for Vern's guidance, help, and friendship through the years. Finally, we report briefly on a computeraided experiment to obtain recursion formulas for selected Hoggatt sums.

2. Hoggatt's Conjecture

Whereas Hoggatt chose a column representation to demonstrate his algorithm, we use a diagonal format. There is, of course, no conceptual or computational difference.

Hoggatt's conjecture may be phrased as follows: "Select the zeroth¹ and third right diagonal of Pascal's triangle and let them become, respectively, the zeroth and first right diagonal of a new triangle with as yet undetermined values for the entries of the other diagonals. For m = 2, 3, 4, ..., in succession, compute the mth row sum and mth row entries for the new triangle as

$$\operatorname{Row}_{m}\operatorname{sum} = 1 + \binom{m+2}{3} \frac{(R_{m-1})_{0}}{D_{0}} + \frac{(R_{m-1})_{1}}{D_{1}} + \dots + \frac{(R_{m-1})_{m-1}}{D_{m-1}}$$
(1)

where the (R_{m-1}) 's are the (m-1)th row integers starting with q = 0 at the left and the *D*'s are the first diagonal integers starting with q = 0 at the top right. Then the *m*th row sum as given by (1) is identically the *m*th Baxter permutation value S_m ."

[May

 $l \, Unless$ stated otherwise, the counting of indices, rows, columns, diagonals, etc. in this note starts with zero as the first encountered.

In order to visualize the algorithm of (1), assume that integers of the rows through the four have been found through successive application of the right side of (1). The diagrams below illustrate how the fifth row is constructed. (Note that the first two integers of any row are always known.)

By using R_s for the fourth row entries and D_s for the first diagonal entries, a graphic preparation for the algorithm appears as

 $-R_{0} R_{1} = D_{3} R_{2} R_{3} R_{4}$ (3)

When generated by (1), the fifth row becomes

1

$$R_0, D_4 \times \frac{R_0}{D_0}, D_4 \times \frac{R_1}{D_1}, D_4 \times \frac{R_2}{D_2}, D_4 \times \frac{R_3}{D_3}, D_4 \times \frac{R_4}{D_4},$$
 (4)

with calculated values, 1, 35, 175, 175, 35, 1. The row sum is 422, which equals Baxter permutation S_5 . The rows completed prior to row five have sums equal to S_0 , S_1 , S_2 , S_3 , S_4 , respectively. In anticipation of later work, the new triangle will be called a *Hoggatt triangle of order three*.

3. Formulas for Row Sums, Row Integers, and Proof of the Conjecture

The development of formulas for the row sums is presented by using the third right diagonal of Pascal's triangle. (If the entries are in the binomial coefficient form, the procedure is easy to follow.) This, in turn, is used as the first diagonal of a third-order Hoggatt triangle. Apply (1) as before, but retain the accumulated binomial coefficients in the row construction. The construction of rows one and two is shown.

 $S_{1} = 1 + {\binom{3}{3}} \left[\frac{1}{\binom{3}{3}} \right] = 1 + \frac{\binom{3}{3}}{\binom{3}{3}}, \qquad (5)$ $S_{2} = 1 + {\binom{4}{3}} \left[\frac{1}{\binom{3}{3}} + \frac{\binom{3}{3}}{\binom{3}{3}} \right] = 1 + \frac{\binom{4}{3}}{\binom{3}{3}} + \frac{\binom{4}{3}\binom{3}{3}}{\binom{3}{3}}, \qquad (6)$

The obvious pattern of the development can be generalized by summations in which the total is the general m^{th} row sum and the individual terms of a summation are the m^{th} row values of a third-order Hoggatt triangle.

19891

$$S = 1 + \sum_{h=0}^{m-1} \prod_{k=0}^{h} \frac{\binom{m+2-k}{3}}{\binom{3+k}{3}} = 1 + \sum_{h=0}^{m-1} \prod_{k=0}^{h} \frac{(m+2-k)^{(3)}}{(3+k)^{(3)}}.$$
 (7)

The general t^{th} term, $0 \le t \le m$ of our development for S_m in (7) can be shown as:²

$$\frac{(m+2)^{(3)}(m+1)^{(3)}(m)^{(3)}(m-1)^{(3)}\dots(m-t+3)^{(3)}}{(3)^{(3)}(4)^{(3)}(5)^{(3)}(6)^{(3)}\dots(t+2)^{(3)}}$$

$$=\frac{(m+2)^{(t)}(m+1)^{(t)}(m)^{(t)}}{(t+2)^{(t)}(t+1)^{(t)}(t)^{(t)}}.$$
(8)

In reference [2], the successful derivation of a compact expression for Baxter permutation values appears as B(n) in equation (1) of [2] and also on page 392 of [2]. In [2], index *n* starts at one, while our index starts at zero (as does Hoggatt's original index). For compatibility with our index, B(n) of [2] becomes

$$B(m+1) = {\binom{m+2}{1}}^{-1} {\binom{m+2}{2}}^{-1} \sum_{k=1}^{m+1} {\binom{m+2}{k-1}} {\binom{m+2}{k-1}} {\binom{m+2}{k}} {\binom{m+2}{k+1}}.$$
(9)

The general t^{th} term, $0 \le t \le m$, from (9) is

$$\frac{2\binom{m+2}{t}\binom{m+2}{t+1}\binom{m+2}{t+2}}{(m+2)^2(m+1)} = \frac{2(m+2)^{(t)}(m+2)^{(t+1)}(m+2)^{(t+2)}}{(m+2)^2(m+1)(t+2)!(t+1)!(t)!}.$$
(10)

To prove Hoggatt's conjecture, all we need do is show that B(m + 1) in (9) and our S_m in (7) have identical t^{th} terms. By restructuring the right side of (10) and canceling like numerator-denominator terms as shown below

$$\frac{\mathscr{Z}(m+2)^{(t)}(m+2)(m+1)^{(t)}(m+2)(m+1)(m)^{(t)}}{(m+2)^2(m+1)(t+2)^{(t)}\cdot\mathscr{Z}\cdot\mathbf{1}(t+1)^{(t)}\cdot\mathbf{1}(t)^{(t)}},$$
(11)

we have identically the right side of (8).

If (m - t) is substituted for t in the left side of (10), the same binomial coefficient product is obtained except for reverse order. This indicates equality between the (m - t)th and tth terms of the sum and establishes symmetry of third-order Hoggatt triangles about a central vertical axis.

Thus, thanks in large measure to work [2] in which Hoggatt participated, a solid conjecture proof exists. We would like to think that Vern would be pleased to know that there are no longer any loose ends.

4. Hoggatt Sums and Hoggatt Triangles

A natural extension of Hoggatt's conjecture is to apply it to all right diagonals of Pascal's triangle. In this paper, the resultant row sums are called Hoggatt sums and the triangles formed by the successive row elements are called Hoggatt triangles. A particular row sum is identified by its index (0, 1, 2, ...) and its order. Order is equal to the index of the particular Pascal diagonal. Order of a Hoggatt triangle is similarly specified. The physical

²The terminology
$$(s)^{(p)} = p! {\binom{s}{p}}$$
 is a "partial" factorial, where

$$(s)^{(p)} = (s)(s - 1) \dots (s - p + 1).$$

Because 0! = 1, $(s)^{(0)} = (0)^{(0)} = 1$.

[May

layout of a Hoggatt triangle is similar to that of Pascal's triangle in that each has the same number of row members. The k^{th} row of a Pascal triangle can be computed from the $(k - 1)^{\text{st}}$ row. Hoggatt triangles share this attribute but additionally require data from the first diagonal to complete a new row.

The general Hoggatt development, including the proof of symmetry, is similar to that used earlier for the special case of d = 3. The row sum, $(S_d)_m$, becomes

$$(S_d)_m = (R_m)_0 + \sum_{i=0}^m (R_m)_{i+1},$$
(12)

where

$$(R_m)_0 = 1, \ (R_m)_{i+1} = \frac{\binom{m+d-1}{d}(R_{m-1})_i}{\binom{d+i}{d}}$$
(13)

and $\begin{pmatrix} d + i \\ d \end{pmatrix}$ is the *i*th element of the *d*th Pascal diagonal.

In our terminology, d is the order and m is the index of the row sum. With the nucleus diagonals in place, operations similar to (5) and (6) lead to the summation forms

$$(S_d)_m = 1 + \sum_{h=0}^{m-1} \prod_{k=0}^h \frac{\binom{m+d-1-k}{d}}{\binom{d+k}{d}} = \sum_{k=1}^{m+1} \prod_{h=1}^d \frac{\binom{m+d-1}{k-2+h}}{\binom{m+d-1}{h-1}}.$$
(14)

The right expression in (14) is the reference [2] "analog" of the left expression in that, for d = 3, it reduces to (9).

Examples of Hoggatt triangles appear in Appendix A; Hoggatt sums in Appendix B. Although the extension of Hoggatt's conjecture is new, it is interesting to note that several of the resulting triangles or sums of orders zero through three are already well known. This actually enhances Hoggatt's work, since his conjecture and extensions introduce new ways of calculating the triangles and/or sums. For example, Hoggatt and Bicknell [5] point out that the array we designate as the Hoggatt triangle of order zero provides triangular numbers in base nine. Development of the Hoggatt triangle of order one introduces a new way of generating the time-honored Pascal triangle. Reference [5] anticipates the Hoggatt triangle of order two as an array of generalized binomial coefficients for the triangular numbers. Further, [5] demonstrates that Hoggatt sums of order two are identically the Catalan numbers, \mathcal{C}_{n+1} . The equivalence of Hoggatt sums of order three and Baxter permutation values needs no further discussion.

5. A Computational Experiment

If a sequence of integers follows a linear index-invariant recursion, it is very easy to find the recursion formula. However, when the recursion is index-variant, the analytic difficulty increases dramatically. Reference [2] credits Paul S. Bruckman for equation (21) of [2], the linear, third-order, index-variant recursion formula for Baxter permutation values (Hoggatt sums of order three). When recast in our index m, Bruckman's formula is identically that which Hoggatt stated in [1]. Unfortunately, we have no way of knowing how Vern obtained this formula.

After a brief struggle with z-transform methods (see Jury's comments in [6], p. 59), we decided to attempt a nonanalytical determination of recursion formulas for second- and third-order Hoggatt sums as an experiment in digital

computation. Because of the large, exact integers involved and the need for mixed symbolic and numeric operations, we chose to compute, in muMath, one of the currently available computer algebra systems (see [7], [8]). The experiment consisted essentially of a brute-force calculation of the coefficients of a recursion formula using simultaneous linear equations. After each run through the experiment, any false, inconsistent, or arbitrary values were either deleted or reassigned and the run repeated with fewer equations.

Surprisingly, we could never duplicate the coefficients of Bruckman's formula. A significant result, however, was that we could obtain an infinite number of sets of coefficients for formulas which were correct for all m values except one. For Hoggatt sums of order three (or Baxter permutation values), S_7 was always indeterminate. While the presence of arbitrary coefficients was responsible for the infinite number of sets of valid coefficients, the indeterminancy of S_7 was independent of the arbitrary coefficients. The results for the second-order Hoggatt sums were similar except that the sole indeterminant value occurred for m = 2, i.e., S_2 was indeterminant.

From the experiment we can ask, "Is Bruckman's analytical solution the only solution with no indeterminant S_m 's? Also, does the above behavior hold for $d = 4, 5, 6, \ldots$?"

For a more detailed account of the experiment as well as more complete derivations from within the main body of the paper, the reader is encouraged to contact the authors.

6. Summary

We have proved Hoggatt's conjecture and have extended it to all Pascal diagonals. Formulas for obtaining Hoggatt triangles and sums have been developed. We have shown that lower-order triangles and sums provide new ways to view previously known structures. A computational experiment produced an infinite number of restricted recursion formulas for several lower-order Hoggatt sums.

7. Acknowledgments

We are indebted to Marjorie Bicknell-Johnson and Paul S. Bruckman for sharing their recollections, calculations, and correspondence relative to the time when Vern Hoggatt conceived his conjecture. Specifically, Bicknell-Johnson alerted us to the Catalan connection, while Bruckman provided an outline of his analytic derivation of the recursion formula for Baxter permutation values.

We also wish to thank the referees for excellent suggestions which improved the content and readability of the paper. The first referee provided the right expression of (8), which simplified our calculations greatly. The second referee contributed a neat, condensed version of (12) and (13) and also found the errors from two embarrassing typos by the senior author.

APPENDICES

ORDER TWO

ORDER THREE

ORDER FOUR

ORDER FIVE

1989]

Appendix B: Hoggatt Sums

SUMS	VALUE	SUMS	VALUE
so	1	s0	,
\$1	2	S1	2
\$2	5	s2	-
S3	14	\$3	22
S4	42	S 4	92
S5	132	\$ 5	422
\$6	429	\$6	2074
\$7	1430	\$7	10754
S8	4862	S 8	58202
S9	16796	S9	326240
S10	58786	\$10	1882960
S11	208012	S11	11140560
\$12	742900	\$12	67329992
\$13	2674440	s13	414499438
\$14	9 694845	\$14	2593341586
\$15	35357670	\$15	16458756586
S16	129644790	\$16	105791986682
\$17	477638700	\$17	687782586844
\$18	1767263190	\$18	4517543071924
S19	6564120420	\$19	29949238543316
\$20	24466267020	\$20	200234184620736
\$21	91482563640	S21	1349097425104912
\$22	343059613650	s22	9154276618636016
\$23	1289904147324	s23	62522506583844272
\$24	4861946401452	\$24	429600060173571952
\$25	18367353072152	s25	2968354097506204352
\$26	69533550916004	\$26	20616682170931488704
\$27	263747951750360	\$27	143886306136373723072
s28	1002242216651368	s28	1008739441056488779984
\$29	3814986502092304	\$29	7101857696077190042814
s30	14544636039226909	s30	50197792010624790718274
s31	55534064877048198	\$31	356134037157421426324858
s32	212336130412243110	\$32	2535503283457453475113498
s33	812944042149730764	s33	18111330098002679241995204
s34	3116285494907301262	s34	129775523667497672794119820
\$35	11959798385860453492	\$35	932649996060323085135343660
\$36	45950804324621742364	\$36	6721418743462792115061865000
\$37	176733862787006701400	s37	48568825344643221105258466964
\$38	680425371729975800390	s38	351844920522232388929981300716
\$39	2622127042276492108820	s39	2554987813422078288794169298972
\$40	10113918591637898134020	\$40	18596055885560437500207978342572
S41	39044429911904443959240	s41	135644235608879594521014316895264
S42	150853479205085351660700	\$42	991488035658098636545959755543168
\$43	583300119592996693088040	\$43	7261715593999548236305978326928768
S44	2257117854077248073253720	S44	53286745759568455589698874494878272
\$45	8740328711533173390046320	S45	391734954014771562094562102701976912
\$46	33868773757191046886429490	\$46	2884866707621100648995326107469142704
\$47	131327898242169365477991900	S47	21280832747254136400685727258623694064
\$48	509552245179617138054608572	S48	157235970697232109921578618634420133232
S49	1978261657756160653623774456	\$49	1163558691573487855005674103586862832160
\$50	7684785670514316385230816156	s50	8623270949913637637693313639417883473760
\$51	29869166945772625950142417512	s51	63999829606711522650915748086714806055520
\$ 52	116157871455782434250553845880	s52	475648020504874336968975846703558704767360
\$53	451959718027953471447609509424	s53	3539736620746899551478214384426524560969920
\$54	1759414616608818870992479875972	\$54	26376309482014901194800065543131184691392320
S55	6852456927844873497549658464312	\$55	196786571758072254774209654628466146096941120
\$56	26700952856774851904245220912664	\$56	1469930377434643825117255656238830229231391040
\$57	104088460289122304033498318812080	\$57	10992599534625333878995280114433052775213597440
\$58	405944995127576985730643443367112	\$58	82298082996123210666432106893608345734255512320
\$59	1583850964596120042686772779038896	\$59	616806373541881093477734895753501754683667475200

ORDER THREE

ORDER TWO

[May

Appendix B (continued)

<u>SUM</u>	S VALUE	SUN	IS VALUE
\$0	. 1	S0	1
S 1	2	S1	2
s2	7	\$2	- 8
s3	32	S3	- 44
S 4	177	S4	310
S5	1122	S 5	2606
\$6	7898	S 6	25202
S7	60398	S7	272582
S8	494078	\$8	3233738
59	4274228	S9	41454272
S10	38763298	S10	567709144
S11	366039104	\$11	8230728508
s12	3579512809	S12	125413517530
S13	36091415154	S13	1996446632130
514	373853631974	S14	33039704641922
\$15	3966563630394	\$15	566087847780250
516	42997859838010	\$16	10006446665899330
517	475191259977060	S17	181938461947322284
518	5344193918791710	\$18	3393890553702212368
519	61066078557804360	519	64807885247524512668
520	/0/984385321/0/910	\$20	1264344439859632559216
622	8318207051955884772	521	25157307567003414461132
673	90930727930728404152 110017725713727578752	522	509758613701956725065312 1050777777100757065312
526	1190144234132420330022	e2/.	10004032497377410033004512
525	177588048040030457042055	\$25	217002344014437972071094112
\$26	210076655576212560//802//	\$26	1005/5/8581107516415180270582/
s27	27/ 798/ 13237/// 7898300//430244	\$27	2102618866178263336833055155336
s28	346013356369921918769855929	\$28	48379667285208331243156909951858
s29	4389333539509515126591248594	s29	1079611110993258648130498445227930
S30	56070810203828991362664847534	s30	24347329288405445022766602579123442
S31	720991537747532706012643525026	S31	554566629846326336323633836780509714
\$32	9328596513998279672146714203426	s32	12750735363523736895224533482780247714
s33	121407761182708178024779745555236	\$33	295784841468452675270005420750848137236
S34	1588853327416452312225693971901886	S34	6919476264486250695584491663120163937904
\$ 3 5	20902698473348916294574193083438576	\$35	163169952940281696912145006005492340179568
\$36	276366709279158375016777229713551178	S36	3877071820176178830433674797637159283033876
S37	3671353895684626011348096048652533188	\$37	92790578667967629170910388674462669088090860
S38	48991879229954382412465500058360070428	\$38	2236101047387592560288927021551097525450121020
\$39	656578339509065473624710057081932405468	s39	54241035539604690484028904444539438691470414804
\$40	8835422665626508141712557966494394806108	S40	1323989240924397287678504113074504691152647841900
S41	119361980337149820156413158335452884741480	S4 1	32511753934173216440442934840169645923808825880160
\$42	1618555251833277417723413502651871963117380	S42	802940141706099352768612717751656935735641885154128
S43	22026306046942304682421202107440636378252080	S43	19939180912572384650238245526841891336089453041203076
S44	300775665856985037635815504148162320960569030	S44	497753077340750439345361117379228609393516565922287616
\$45	4120680721821174437200697187060554338727113380	\$45	12488499358131177277361272166359232020651763582248580116
\$46	56632089950769630959003010091719578219572701768	\$46	314835804201793426134718207824493669241936791219996967272
S47	/806/2963674065363024657714942613611640651191668	S47	7974948166936771934625468937473862232444337311576280767986
548	10792880714535509030956272898321515183823343600148	\$48	202903551153561615979904796282755550111616510117391503555556
549	149630114772321753565389670918869975981300480583368	549	5184669610150751736195690096646261341819573250915901150000004
\$50	2080024562297456725585587627542252184290452724625868	550	7/ 07055/ 9201501000007733007334015/5907006225260108// 1/63298272/48
501	2070703122172330081504207057059047102030111477237074250	50 ech	RRA2K300532650160622353671840012502212486805402782010944440267027820632
5J2 657	40504203743233377013700707333700044700304037210273770 567280563023023026076/302216033/812317866643/205076/260	332 657	2300485147484122546569992300460137733495781737369600781780516134976
572	70437/0035502352/057310381320358/35277801/524/197205444	573 65/	5002884.0083050360859807945129004440086248293188817578582162240727680
524	1120/817047755742572572572572572572572572572572572572572	334 ett	1566605017513682961732955658845929295951027100154584705176100343447424
556	157091/136/278558090/2575760510/270567272088570221050683/210/	555 656	41090373302605147887752883307921674253835971440718737659073287348513408
\$57	223240203381865382931261283307541517610831772674383845140304	\$57	1081259820998848048353209424742475697589922619283381601497939222715737088
\$58	3160762512031293096204497160156094620737550686304124391199144	\$58	28541983181144917576594561989169677540337165840094612722197240073620315232
\$59	44839790319506826307665601833880717528407912782175379485606144	\$59	755716976463771668194168330657640641261070871073397885785459539567999933788

ORDER FIVE

ORDER FOUR

References

- 1. Personal letters from Verner E. Hoggatt, Jr., to Daniel C. Fielder, dated June 15, 1977, August 19, 1977, and October 28, 1977.
- 2. F. R. K. Chung, R. L. Graham, V. E. Hoggatt, Jr., & M. Kleiman. "The Number of Baxter Permutations." *Journal of Combinatorial Theory* 24.3 (1978): 382 - 394.
- 3. G. Baxter & J. T. Joichi. "On Permutations Induced by Commuting Functions, and an Imbedding Question." *Math. Scand.* 13 (1963):140-150.
- W. M. Boyce. "Generation of a Class of Permutations Associated with Com-4. muting Functions." Math. Algorithms 2 (1967):14-26. V. E. Hoggatt, Jr., & M. Bicknell. "Triangular Numbers." Fibonacci Quar-
- 5. terly 12.3 (1974):221-230.
- E. I. Jury. Theory and Application of the z-Transform Method. 6. New York: Wiley & Sons, 1964.
- D. Small, J. Hosack, & K. Lane. "Computer Algebra Systems in Undergraduate 7. Instruction." The College Mathematics Journal 17.5 (1987):423-433. 8. D. D. Shochat. "A Symbolic Mathematics System." Creative Computing 8.10
- (1982):26-33.
